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Abstract

An estimate on the integral of the product of a vector field f ∈ L1(RN ;R2N−1) and
a function u ∈ W1,N (RN ) when f satisfies a condition involving the sum of some second-
order derivatives. This generalizes a previous result concerning vector fields whose divergence
is a summable function [1, 3]. A relationship between this inequality and a Korn–Sobolev
inequality of Strauss [2] is established.

1 Introduction

This note originates in the inequality proved by the author in [3].

Theorem 1. There exists a constant CN such that for each f ∈ L1(RN ;RN ) such that div f ∈ L1

and u ∈ (L∞ ∩W1,N )(RN ;RN ),∣∣∣∣∫
RN

f · u dx

∣∣∣∣ ≤ CN (‖f‖1 ‖∇u‖N + ‖div f‖1 ‖u‖N ).

Theorem 1 was proved when div f = 0 by Bourgain and Brezis [1]. In this note, a variant of
Theorem 1 is proved where the divergence is replaced by a second order operator.

Theorem 2. Let u ∈ (L∞ ∩W1,N )(RN ) and fij ∈ L1(RN ), gi ∈ L1(RN ) for N − 1 ≤ i ≤ N and
1 ≤ j ≤ i. If ∑

N−1≤i≤N
1≤j≤i

∂2fij

∂xi∂xj
=

∑
N−1≤i≤N

∂gi

∂xi
, (1)

in the sense of distributions, then for each N − 1 ≤ i ≤ N and 1 ≤ j ≤ i∣∣∣∣∫
RN

fiju

∣∣∣∣ ≤ CN (‖f‖1 ‖∇u‖N + ‖g‖1 ‖u‖N ),

where
‖f‖1 =

∑
N−1≤i≤N

1≤j≤i

‖fij‖1

and
‖g‖1 =

∑
N−1≤i≤N

‖gi‖1 .

Remark 1. Theorem 2 implies Theorem 1. Indeed, suppose f satisfies the hypotheses of Theorem
1. If fNj = fj , fN−1j = 0 for each j, gN = div f and gN−1 = 0, then f and g satisfy the hypotheses
of Theorem 2. The conclusion of Theorem 2 implies the conclusion of Theorem 1.

∗Département de Mathématique, Université catholique de Louvain, 2 chemin du Cyclotron, 1348 Louvain-la-
Neuve, Belgium. vanschaftingen@math.ucl.ac.be

1



The restriction N − 1 ≤ i ≤ N does not seem natural when N ≥ 3. In particular, Theorem 2
does not answer the question whether∣∣∣∣∫

R3
f · u dx

∣∣∣∣ ≤ CN ‖f‖1 ‖∇u‖3 .

for each u ∈ (L∞ ∩W1,3)(R3;R3) and f ∈ L1(R3;R3) such that
∑3

i=1 ∂2
i fi = 0 excepted when

one of the components fi vanishes. More generally one can ask whether Theorem 2 is true under
more natural assumptions:

Open Problem 1. Let u ∈ (L∞ ∩W1,N )(RN ), fij ∈ L1(RN ) and gi ∈ L1(RN ) for 1 ≤ i ≤ N
and 1 ≤ j ≤ i. If ∑

1≤i≤N
1≤j≤i

∂2fij

∂xi∂xj
=

∑
1≤i≤N

∂gi

∂xi
,

in the sense of distributions, then is it true that for each 1 ≤ i ≤ N and 1 ≤ j ≤ i,∣∣∣∣∫
RN

fiju

∣∣∣∣ ≤ CN (‖f‖1 ‖∇u‖N + ‖g‖1 ‖u‖N ),

where
‖f‖1 =

∑
1≤i≤N
1≤j≤i

‖fij‖1

and
‖g‖1 =

∑
1≤i≤N

‖gi‖1?

The problem is open even in the simple case where gi = 0 for all i and fij = 0 for i 6= j.

Open Problem 2. Let u ∈ (L∞ ∩W1,N )(RN ;RN ) and f ∈ L1(RN ;RN ). If

N∑
i=1

∂2fi

∂xi
2

= 0,

in the sense of distributions, then is it true that∣∣∣∣∫
RN

f · u
∣∣∣∣ ≤ CN ‖f‖1 ‖∇u‖N?

2 Proof of Theorem 2

The key estimate is in the following

Lemma 3. Let u ∈ C1(RN−1). Let fij ∈ L1(RN ) and gi ∈ L1(RN ) for N − 1 ≤ i ≤ N and
1 ≤ j ≤ i. If (1) holds in the sense of distributions, then for each t ∈ R,∣∣∣∣∫

RN−1
fNN (x, t)u(x) dx

∣∣∣∣ ≤ 1
2

(
‖fNN‖1 ‖∂N−1u‖∞ +

∑
N−1≤i≤N
1≤j≤N−1

‖fij‖1 ‖∂ju‖∞ +
∑

N−1≤i≤N

‖gi‖1 ‖u‖∞
)
.

Proof. Let y ∈ RN−2 and z ∈ R. Write the integrand as

fNN (y, z, t) =
1
2

∫ 0

−∞

(
∂

∂xN−1
+

∂

∂xN

)
fNN (y, z + s, t + s)

+
(

∂

∂xN−1
− ∂

∂xN

)
fNN (y, z + s, t− s) ds.
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This gives

2
∫
RN−1

fNN (y, z, t)u(y, z) dz dy

=
∫
RN−1

∫ 0

−∞
u(y, z)

( ∂fNN

∂xN−1
(y, z + s, t + s) +

∂fNN

∂xN−1
(y, z + s, t− s)

)
ds dz dy

+
∫
RN−1

∫ 0

−∞
u(y, z)

(∂fNN

∂xN
(y, z + s, t + s)− ∂fNN

∂xN
(y, z + s, t− s)

)
ds dz dy. (2)

The first term is estimated by integration by parts∫
RN−2

∫ 0

−∞

∫
R

u(y, z)
(

∂fNN

∂xN−1
(y, z + s, t + s) +

∂fNN

∂xN−1
(y, z + s, t− s)

)
dz ds dy

= −
∫
RN−2

∫ 0

−∞

∫
R

∂u

∂xN−1
(y, z)

(
fNN (y, z + s, t + s) + fNN (y, z + s, t− s)

)
dz ds dy

= −
∫
RN−2

∫ 0

−∞

∫
R

∂u

∂xN−1
(y, z′ − s)

(
fNN (y, z′, t + s) + fNN (y, z′, t− s)

)
dz′ ds dy

≤
∥∥∥∥ ∂u

∂xN−1

∥∥∥∥
∞

∫
RN

|fNN | . (3)

For any y, z, t and s, the integrand of the second term of (2) can be written as

∂fNN

∂xN
(y, z + s, t + s)− ∂fNN

∂xN
(y, z + s, t− s) =

∫ s

−s

∂2fNN

∂xN
2

(y, z + s, t + τ) dτ. (4)

Bringing (4) and (1) together yields∫
RN−2

∫
R

∫ 0

−∞
u(y, z)

(∂fNN

∂xN
(y, z + s, t + s)− ∂fNN

∂xN
(y, z + s, t− s)

)
ds dz dy

=
∫
RN−2

∫
R

∫ 0

−∞
u(y, z)

∫ s

−s

∂2fNN

∂xN
2

(y, z + s, t + τ) dτ ds dz dy

= −
∑

N−1≤i≤N
1≤j≤N−1

∫
RN−2

∫
R

∫ 0

−∞
u(y, z)

∫ s

−s

∂2fij

∂xi∂xj
(y, z + s, t + τ) dτ ds dz dy

+
∑

N−1≤i≤N

∫
RN−2

∫
R

∫ 0

−∞
u(y, z)

∫ s

−s

∂gi

∂xi
(y, z + s, t + τ) dτ ds dz dy.

Each term of the sum will now be bounded separately. For i = N and 1 ≤ j ≤ N − 1, one has∫
RN−2

∫
R

∫ 0

−∞
u(y, z)

∫ s

−s

∂2fNj

∂xN∂xj
(y, z + s, t + τ) dτ ds dz dy

=
∫ 0

−∞

∫
RN−2

∫
R

u(y, z)
(∂fNj

∂xj
(y, z + s, t + s)− ∂fNj

∂xj
(y, z + s, t− s)

)
dz dy ds

= −
∫ 0

−∞

∫
RN−2

∫
R

∂u

∂xj
(y, z)

(
fNj(y, z + s, t + s)− fNj(y, z + s, t− s)

)
dz dy ds

≤
∥∥∥∥ ∂u

∂xj

∥∥∥∥
∞

∫
RN

|fNj | . (5)
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If i = N − 1 and 1 ≤ j ≤ N − 1, then∫
RN−2

∫
R

∫ 0

−∞

∫ s

−s

u(y, z)
∂2fN−1j

∂xN−1∂xj
(y, z + s, t + τ) dτ ds dz dy

=
∫
RN−2

∫
R

∫
R

∫ −|τ |

−∞
u(y, z)

∂2fN−1j

∂xN−1∂xj
(y, z + s, t + τ) ds dτ dz dy

=
∫
RN−2

∫
R

∫
R

u(y, z)
∂fN−1j

∂xj
(y, z − |τ | , t + τ) dτ dz dy

=
∫
R

∫
RN−2

∫
R

u(y, z)
∂fN−1j

∂xj
(y, z − |τ | , t + τ) dz dy dτ

=
∫
R

∫
RN−2

∫
R

∂u

∂xj
(y, z)fN−1j(y, z − |τ | , t + τ) dz dy dτ

≤
∥∥∥∥ ∂u

∂xj

∥∥∥∥
∞

∫
RN

|fN−1j | . (6)

The reasoning is similar for the terms with gi. The sum of all these inequalities yields the result.

Next lemma proves an estimate for u ∈ W1,N (RN ) when there is an estimate of the type of
Lemma 3 for v ∈ C1(RN−1).

Lemma 4. Let f ∈ L1(RN ) and a, b ∈ R+ such that, for any function v ∈ C1(RN−1) and for
any t ∈ R, ∣∣∣∣∫

RN−1
f(x, t)v(x) dx

∣∣∣∣ ≤ a ‖∇v‖∞ + b ‖v‖∞ ,

then, for any u ∈ (L∞ ∩W1,N )(RN ),∣∣∣∣∫
RN

fu

∣∣∣∣ ≤ CN (‖f‖ ‖∇u‖N )1−(1/N)(a ‖∇u‖N + b ‖u‖N )1/N .

Proof. Let ρ : RN−1 → R be a measurable bounded function with compact support such that∫
RN−1 ρ = 1 and let ρε(·) = ε1−Nρ( ·ε ). If ut(y) = u(t, y) and f t(y) = f(t, y), then∫

RN−1
f tut dy =

∫
RN−1

f t(ut − ρε ∗ ut) dy +
∫
RN−1

f t(ρε ∗ ut) dy.

The Sobolev-Morrey embedding in RN−1 gives∣∣∣∣∫
RN−1

f t(ut − ρε ∗ ut) dy

∣∣∣∣ ≤ C ′
Nε1/N

∥∥f t
∥∥

1

∥∥∇ut
∥∥

N
.

On the other hand ∣∣∣∣∫
RN−1

f t(ρε ∗ ut) dy

∣∣∣∣ ≤ C ′′
Nε(1/N)−1(a

∥∥∇ut
∥∥

N
+ b

∥∥ut
∥∥

N
).

The constants C ′
N and C ′′

N depend only on the dimension N (and of ρ). For each t ∈ R, if
‖f t‖1 ‖∇ut‖N 6= 0, the choice ε = (a ‖∇ut‖N + b ‖ut‖N )/(‖f t‖1 ‖∇ut‖N ) yields∣∣∣∣∫

RN−1
f tut dy

∣∣∣∣ ≤ C ′′′
N (

∥∥f t
∥∥

1

∥∥∇ut
∥∥

N
)1−(1/N)(a

∥∥∇ut
∥∥

N
+ b

∥∥ut
∥∥

N
)1/N .

If ‖f t‖1 ‖∇ut‖N 6= 0, let ε → ∞ to obtain the same inequality. The inequality is thus valid for
any t ∈ R.
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Finally, by Hölder’s inequality∣∣∣∣∫
RN

fu dx

∣∣∣∣ ≤ ∫
R

C ′′′
N (

∥∥f t
∥∥

1

∥∥∇ut
∥∥

N
)1−(1/N)(a

∥∥∇ut
∥∥

N
+ b

∥∥ut
∥∥

N
)1/N dt

≤ C ′′′
N

(∫
R

∥∥f t
∥∥

1
dt

)(N−1)/N (∫
R

∥∥∇ut
∥∥N

N
dt

)(N−1)/N2

(∫
R

(a
∥∥∇ut

1

∥∥
N

+ b
∥∥ut

1

∥∥
N

)N dt

)1/N2

≤ CN (‖f‖1 ‖∇u‖N )(N−1)/N (a ‖∇u‖N + b ‖u‖N )1/N .

The combination of Lemmas 3 and 4 yields a special case of Theorem 2.

Lemma 5. Under the hypotheses of Theorem 2,∣∣∣∣∫
RN

fNNu

∣∣∣∣ ≤ CN (‖f‖1 ‖∇u‖N + ‖g‖1 ‖u‖N ),

where CN is a constant independent of f , g and u.

Proof. This is a direct consequence of Lemmas 3 and 4.

By appropriate changes of variable, Theorem 2 can be deduced from Lemma 5.

Proof of Theorem 2. By Lemma 5, the result is true for i = j = N . It is also true for i = j = N−1,
by interverting N and N − 1 in the hypotheses.

If j < N − 1 and i = N , define new variables by x′j = xj − xN and x′k = xk if k 6= j
and a new vector field f ′, defined by f ′NN = fNN + fNj and f ′NN−1 = fNN−1 + fN−1j (for the
other components, let f ′ij = fij). Let g′ = g. One checks that f ′ verifies the same hypotheses
as f and that ‖f ′‖1 ≤ 2 ‖f‖1. Since the inequality is true for f ′NN and for fNN , it is true for
f ′NN − fNN = fNj .

The situation is somewhat more tedious when j = N − 1. Define new variables by x′N−1 =
xN−1 − xN and x′k = xk for k 6= N − 1. Let

f ′Nk =


fNk + fN−1k if k < N − 1,
fNN−1 + 2fN−1N−1 if k = N − 1,
fNN + fNN−1 − fN−1N−1 if k = N,

and f ′N−1k = fN−1k. Let g′N−1 = gN−1 and g′N = gN + gN−1. The condition (1) is checked by f ′

and g′. Since the inequality holds for fNN , fN−1N−1 and f ′NN , it holds for fNN−1.

3 Relationship with a Korn-Sobolev inequality

The Sobolev-Gagliardo-Nirenberg inequality

‖u‖N/(N−1) ≤ C ‖∇u‖1

can be obtained by a combination of Theorem 1 and the classical Calderón–Zygmund estimates.
In a similar way a Korn–Sobolev inequality of Strauss results from Theorem 2 and the classical

Calderón–Zygmund estimates.

Theorem 6 (Strauss [2]). For any u ∈ D(RN ;RN ),

‖u‖ N
N−1

≤ KN

∑
1≤i≤j≤N

‖∂iuj + ∂jui‖1 .
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Sketch of the proof of Theorem 6 using Theorem 2. Let H ∈ D(RN ;RN ). Let A be the differen-
tial operator defined for RN -valued functions by

(Au)ij = (∂iuj + ∂jui).

Its formal adjoint is defined for RN2
-valued functions by

(A∗v)i = −
N∑

j=1

(∂jvij + ∂jvji).

Consider the system A∗Ap = H. It is equivalent to

∆pi + ∂i

N∑
j=1

∂jpj = −Hi

2
. (7)

This system is elliptic and has a solution in p ∈ (W1,∞ ∩ W2,1
loc)(R

N ;RN2
). Furthermore, there

exists a constant BN independent of H such that∥∥D2p
∥∥

N
≤ BN ‖H‖N .

Since p solves (7), ∫
RN

uH =
∫
RN

u A∗Ap =
∫
RN

Au Ap.

Recalling ∂2
i (Au)jj +∂2

j (Au)ii = 2∂i∂j(Au)ij , the application of Theorem 2 to each 2×2 submatrix
of Au gives ∣∣∣∣∫

RN

uH

∣∣∣∣ =
∣∣∣∣∫

RN

Au Ap

∣∣∣∣ ≤ CN ‖Au‖1 ‖∇Ap‖N ≤ BNCN ‖Au‖1 ‖H‖N .

Since H is arbitrary, the result follows.

Remark 2. The proof of Theorem 6 needs only a weak version of Theorem 2 where fij = 0 and
gi = 0 for j < N − 1 and N − 1 ≤ i ≤ N .
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