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A symmetrization transforms functions into more symmetrical functions. This
transformation preserves or decreases some integral functionals. This is useful to
enquire about minimizers of a functional, which can then be sought among sym-
metrical functions. For example, consider the functional I, defined on VVO1 P(Q)
by
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Abstract

The partial anisotropic symmetrization is defined, extending Steiner
symmetrization and convex symmetrization. Inequalities of the type of
Hardy-Littewood, Pélya-Szeg6 and Klimov are proved for this symmetriza-
tion, while it is shown that Riesz-Sobolev rearrangement inequalities are
not valid. Applications are given to the proof of isoperimetric inequalities,
integral inequalities and existence and symmetry of solutions of variational
problems.

Résumé

Nous définissons la symétrisation anisotrope partielle, qui est & la fois
une extension de la symétrisation de Steiner et de la symétrisation con-
vexe. Nous prouvons des inégalités du type Hardy-Littlewood, Pdlya-
Szegd et Klimov pour cette symétrisation, alors qu’elle ne vérifie pas
d’inégalité de réarrangement du type Riesz-Sobolev. Nous donnons des
applications a la preuve d’inégalités isopérimétriques et intégrales ainsi
qu’a celle de I'existence et de la symétrie de solutions de problemes aniso-
tropes.
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If @ = B(0, 1), then the Schwarz symmetrization -* maps any nonnegative func-
tion u to a radial function u*(z) = v(|z|,), where v : RT — R™ is a nonincreasing
function, such that I(u*) < I(u) [17,19,25,26]. Therefore one can search for a
minimizer among radial functions.

The symmetrization of functions remains possible whenever 2 has less sym-
metry. For example, if Q = B(0,1) x R¥=% < RY then the Steiner sym-
metrization of u, also denoted by -* is a function u* such that I(u*) < I(u) and
u(z’,2") = v(|z|,,2") for some function v : RT x R¥=F — R that does not
increase with respect to its first argument.

The anisotropic symmetrization is a symmetrization adapted to anisotropic
variational problems. In those problems, the function of the gradient in the
functional does not depend on the euclidian norm, but on another positively
homogeneous function H : RY — RT. Anisotropic problems have in general
too small symmetry groups to obtain symmetry from uniqueness arguments as
it is possible in the isotropic case. Therefore symmetrization seems to be the
most natural way to prove symmetry of minimizers of anisotropic functionals.

Anisotropic problems arose at the beginning of the twentieth century in
Wulff’s work on crystal shapes and minimization of anisotropic surface tensions.
He considered the minimization problem

min H(v)do,
LY (Q)=1Ja0

among sufficiently regular domains 2, and computed the solution whose opti-
mality was proved by Dinghas and Taylor:

(t,x)
terny\ (o} H(t)

Q={zeR" : H°(-2)<1}, H°(z)=

This solution is unique up to translations [15]. This model explains the polyhe-
dral shape of many crystals. The structure of the functional and of the solution
are not the same, but are dual. A Schwarz anisotropic symmetrization was
constructed for nonlinear variational problems by Alvino, Ferone, Lions and
Trombetti [3] with the same duality relation. They proved Pdlya-Szegd and
Hardy-Littlewood inequalities for non-partial anisotropic symmetrizations.

In this paper, we study anisotropic symmetrization associated to a homoge-
neous convex function G and its associated inequalities. Such hypotheses appear
in other frameworks in the works of Taylor, Busemann, and Dacorogna and Pfis-
ter [9,12,27]. Our main objective is to define and understand partial anisotropic
symmetrizations that generalize the convex symmetrization of Alvino, Ferone,
Lions and Trombetti [3].

For any nonnegative measurable function u : RY — R* whose positive
sublevel sets have finite measure and for any convex function G € H(RF), a
unique function u* : RY — R¥ is defined such that u*(2’,2") = v(G(—2'),z"),
for any 2’ € R¥ and 2" € RN~ where the function v : RT x RVN=F — R+
decreases with respect to its first argument and such that for any ¢ > 0 and
2" e RN—IC7

LYTF{2 w2, 2") > ) = LV w2, 2") > c})

(See the beginning of section 2 for precision on the notations.) This function u*
is the anisotropic symmetrization of v with respect to G. This transformation is
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a rearrangement in the sense of [6,29]. Therefore all classical integral inequalities
follow easily, e.g. for any Borel measurable function f : R x R¥N=% — R+ such
that f(0,-) =0,
fu* 2" de = flu,z") dz.
RN RN

Similarly, -* is a contraction in LP spaces (and many other spaces, see Proposi-

tion 2.29). The definitions and basic properties of the anisotropic symmetriza-
tions are the object of section 2.

Section 4 is devoted to convolution inequalities for the anisotropic sym-
metrization of the form

// u@) o)z —y)drdy < / / (@) v (y) w' (@ — y) da dy.

The conclusion is that such inequalities can occur only when the rearrangement
is made with respect to an euclidian gauge (Propositions 4.2 and 4.4). The same
arguments show that the full Riesz-Sobolev rearrangement inequality does not
hold for the spherical cap symmetrizations and the polarizations (Corollary
4.3). The proof of Proposition 4.4 uses dual characterizations of symmetrized
functions studied in section 3: For example if, for any ¢ € K4 (RV),

/cpudxé/ prudr,
RN RN

then v = v* almost everywhere (Lemma 3.1). The case where u is a measure is
also investigated (Lemma 3.3).

Even if convolution inequalities do not hold for the anisotropic symmetriza-
tion, if ¢, = —(—¢)" and ¢ is the Fenchel transform of ¢ (Definition 5.1), there
are Klimov inequalities of the form

/E(w”,u*(m),Vu*(m))dacé/gp(x”,u(x),Vu(x)) dz,
Q

Q

(Theorem 6.9). In this inequality only the gauge G appears, but the dual of
Wulff’s crystal is embedded inside the Fenchel transform.
The Pélya-Szeg6 inequality for anisotropic symmetrization can be stated as

/J(x”,u*,H(V’u*),V"u*)dacS/J(x”,u,H(V/u),V”u)dx.
Q Q

where J is convex with respect to its last two variables and G = H° (Theorem
6.8). The left-hand side is not necessarily convex in Vu, since H is not convex
in general, but it is convex on the subset of gradients of symmetrized functions.

These results emphasize the local character of symmetries of crystals in
contrast with the long-range of isotropic symmetry. Physically, this could be
the fact that we observe anisotropic symmetries for crystals, whose energy is
mainly an interface energy, but not for stars, whose energy depends of long-
distance (gravitational) interaction terms.

The proof of these inequalities consists a generalization of an anisotropic
inequality for Steiner symmetrization of Klimov [18] (section 5), followed by a
change of variable in order to return to anisotropic functionals (section 6). The
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high degree of generality of the proof makes it appealing even for the isotropic
symmetrization.

Applications of the previous inequalities are given as an anisotropic isoperi-
metric inequality (Theorem 7.2) and optimal constants for Sobolev and Hardy-
Sobolev inequalities (Propositions 7.3 and 7.5). Finally, the existence and sym-
metry of solutions of two model anisotropic variational problems is showed
(Propositions 7.6 and 7.9).

The definition of symmetrization is interesting also in the isotropic case be-
cause of its good pointwise behavior. As symmetrizations of sets were originally
defined from compact sets to compact sets, they were nonexpansive mappings
with respect to the Hausdorff distance. The symmetrization inequalities of Sar-
vas [23] for condensers or capacitors, defined by a compact set and an open
set, required the extension of symmetrizations to open sets. Any extension
to measurable sets, was only defined on almost every hyperplane. The use of
Lebesgue’s outer measure gives a precise definition of the symmetrized set which
was needed in this paper since the Fenchel transform is sensitive to modifications
on sets of measure zero.

This paper also clarifies the relationship between the different symmetriza-
tion inequalities by giving examples of symmetrizations for which Pélya-Seg6
and Klimov inequalities hold but Riesz-Sobolev rearrangement inequalities do
not hold.

2 Definition and properties of symmetrizations

In this section, the symmetrization with respect to a gauge is defined. Its basic
properties, similar to those of the classical rearrangements, are studied.

Notation 2.1. For f: X — R and c € R, let

{f<et={zeX : f(z)<c}.

The characteristic function of a set A is denoted x 4. The N -dimensional outer
Lebesgue measure is denoted £V. The extended set of real numbers is R =
RU{+00, —oo}. The set of compactly supported continuous functions is denoted
K(RYN), while D(RY) is the set of smooth functions with compact support. The
subscript 4 denotes the subset of nonnegative functions of a function space.
For 0 < k< Nand 2z = (21,...,o5) € RN, let 2’ = (x1,...,2;) and 2" =
(Tk+1,---,2N). Similarly, let V'u = (Vu)" and V'u = (Vu)”.

Definition 2.2. Let X be a vector space. The function H : X — R belongs to
H(X) if

(1) if x € X and A > 0, then H(\z) = A\H(x),
(2) if x € X and z # 0, then H(z) > 0,
(3) H is lower semi-continuous.

Definition 2.3. The polar transform of H € H(RF) is

t,x)
HO:RkHR:HO(t):sup“ ,
z€RF H(‘T)
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where (t,z) = Zle tix;.

Definition 2.4. The function G : R¥ — R is a gauge if G € H(RF) and G is
convex. For any gauge G, let

)

Wi

Ko = ,\C/L:W{Gm <1})

where wy = £¥(B(0,1)) is the volume of the unit ball in R¥.
Remark 2.5. Any gauge G is a continuous function, and 0 < K¢ < co.
Example 2.6. If H € H(RF), its polar transform H® is a gauge.

Definition 2.7. Let G : R* — R™ be a gauge. The anisotropic symmetrization
(called convex symmetrization in [3]) of the set A C R* with respect to G is the

set
1/k
A* = {x eR" . G(—z) < K;' (ﬁk(A)) }

Wk

Remark 2.8. The set A* is chosen among the sets ({G(—x) < 7})ogr<oo SO that
LE(A*) = L¥(A). The set A does not have to be measurable.

Definition 2.9. Given a decomposition of RV = L x T, and a gauge G : L —
R*, the (G, L, T)-anisotropic symmetrization of the set A C R is the unique
set A* such that, for all 2/ € T,

(Ao = [Ala”,

where [Bly» = {2’ € L : (2/,2") € B} and the symmetrization on the right-
hand side comes from Definition 2.7.

The symmetrization of a finite-measure set A C RN with respect to a gauge
G : RF — Rt is the (G, R* x {0}, {0} x RV~*)-anisotropic symmetrization of
A.

Remark 2.10. Even when A is measurable, [A],~ is not measurable in general.
Therefore Definition 2.7 embraces nonmeasurable sets.

Remark 2.11. The result A* of the anisotropic symmetrization with respect to
the gauge G has a cylindrical geometry:

1k
A* = {(z’,x”) eRY : G(-2') < Kg' <£k([A]x”)> } (2.1)

Wk

Example 2.12. The (k, N)-Steiner symmetrization with respect to the sub-
space T'C RY | is the (G, T+, T)-anisotropic symmetrization, where G : 2’
|z"|,. The Steiner symmetrization with respect to RY is the Schwarz sym-
metrization (see e.g. [4,6,23]).

Example 2.13. If G : RV — RT is a gauge and is an even function, then
the anisotropic symmetrization with respect to G is the convex symmetrization
with respect to G of Alvino, Ferone, Lions and Trombetti [3].
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The following proposition summarizes the properties of anisotropic sym-
metrization of sets.

Proposition 2.14. Let -* be a (G, L, T)-anisotropic symmetrization on RY.
(1) (Monotonicity) If A C B C RY, then A* C B*.

(2) (Interior continuity) If (A, )nen is an increasing sequence of subsets of RV
(i.e. Ay, C Apt), then

(U An>*: U 4;.

neN neN

(3) (Preservation of measure) If A C RN is measurable, then A* is measurable

and LN (A) = LN (A%).
(4) If A C RY is open, then A* is open.

Remark 2.15. Whereas the continuity of symmetrization held in previous works
only up to sets of zero measure [6,23], this definition ensures interior continuity.
The exterior continuity (Property (2) with reversed inclusions) still holds up to
sets of zero measure, but it is not used in the sequel. This property was true
already for the definitions of the Schwarz symmetrization which mapped all sets
to open sets (see e.g. [19]).

Remark 2.16. Part (3) remains true when A is not measurable if T' = {0}, by
definition of the anisotropic symmetrization. If T' # {0}, then part (3) implies
LN(A*) < LN (A), and for some nonmeasurable sets A C RY, the inequality is
strict.

Proof. The notations of Definition 2.9 are used throughout the proof. Part
(1) comes from the monotonicity of outer measures: for any a” € T, since
[A]x// C [B]yq ,Ck([A]m//) < ,Ck([B]x//), and [A*]m// - [B*]zw. It is then clear
that A* C B*.

If (A,) is any sequence satisfying the hypotheses of (2), for any z” € T, by
an elementary property of Lebesgue’s outer measure,

nlgrolo Ek([An]r”) =t (Unen[An]s) = Ek([A]z”)~

(This is a consequence of monotonicity and countable subadditivity of outer
measures, see e.g. [14, 2.1.5] for a proof.) Since the sequence ([An]z7)nen
is increasing, by Definition 2.7, Unen([An]ar™) = [A]o»". By Definition 2.9,
UnENAn* = A",

Part (3) is a consequence of Remark 2.11 and of Fubini’s Theorem (see
e.g. [14, 2.6.2]):

N *\ k ”* x//: k o x//: N .
c (A)—/chA]x )d /chA] )da" = £ (4)

Part (4) relies on Remark 2.11. If the set A is open, the right-hand side of
the inequality inside (2.1) is lower semi-continuous, whence the symmetrized set
A* is open. O
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Following [6,29,30], the symmetrization is extended from sets to functions.

Definition 2.17. The (G, L, T)-anisotropic (decreasing) symmetrization -* of
a function u : RY — R is

v RY S Riz—u(z) =sup{ceR:ze{u>c}"}.

Remark 2.18. Since x(a+) = (xa)", the symmetrization of functions is an ex-
tension of the symmetrization of sets.

Notation 2.19. For a function v and a sequence of functions (uy)nen from a
set X to R, we write u,, " w if for all z € X, lim,,_,o0 u,(z) = u(z) and for all
ne N7 un<x) < Un-i-l(m)' Simﬂaﬂya Pn \ ¥ if —¥n /l —p-

The simplest properties of symmetrization of functions are consequence of
the corresponding properties of symmetrization of sets [6,29].

Proposition 2.20. Let -* be a (G, L, T)-anisotropic symmetrization.
(1) For any u: RN — R,
u*(z) =sup{ceR:ze{u>c}"}.
(2) For anyc € R and u: RN — R,
{u>c} ={u*>c}.

(3) Let u,v: RN —R. Ifu < v, then u* < v*.
(4) If (un)nen is a sequence of functions from RN to R, and u, /" u, then

u,* S ut.

Remark 2.21. Part (1) is Hildén’s definition of the Schwarz symmetrization of
a function.

Remark 2.22. Part (2) means that if -* is the (G, L, T)-symmetrization, the
hypograph of the symmetrization is the symmetrization of the hypograph:

{(z,c) € RY xR : u*(z) > ct ={(z,¢c) eRY xR : u(z) > c}*.

(The symmetrization on the right-hand side is the (G, Lx{0} , T xR)-anisotropic
symmetrization in RY x R.) This is essentially Pélya and Szegé’s definition of
the symmetrization of a function [22].

Remark 2.23. Part (2) implies in particular that if u(z) > ¢ for almost every
x € RN, then u*(z) > ¢ for all x € RY. If the function u does not take the
value —oo, neither does its symmetrization uv*.

Remark 2.24. The equality of sets in part (2) holds pointwise. This is not the
case for most of the usual definitions of rearrangements, for which the equality
in part (2) holds only up to a set of zero measure. This comes from the fact our
definition of symmetrization ensures interior continuity in a pointwise sense.

Part (2) holds with the strict inequality sign, but not with the non-strict
inequality (if u* is a nonconstant continuous function, then for some ¢ the set
{u* > ¢} is closed, while {u > ¢}" is not closed).
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Remark 2.25. In part (4), lim,— o un(z) = u(x) holds everywhere. That is
crucial in section 5, since the Fenchel transform is continuous for increasing
sequences converging everywhere.

Proof of Proposition 2.20. Part (3) is a consequence of the monotonicity of the
anisotropic symmetrization.

For part (1), let a(y) denote the right-hand side of the inequality. It is clear
from monotonicity of the symmetrization that for any ¢ > 0, u*(y) < a(y) <
(u+¢)"(y) = u*(y) + &. The conclusion follows as & — 0.

By the interior continuity of the symmetrization of sets (Proposition 2.14),
for any c € R,

{fu>c}" C{u*>c} C U{U>C+i}*:<u{u>c—l—i}) ={u>c}".

neN neN

The proof is the same for ¢ = —oo, provided ¢ + 1/n is replaced by —n, while
for ¢ = 400, both sides are the empty set. This proves part (2).

Part (4) is a consequence of the interior continuity of symmetrization of sets
(Proposition 2.14, part (2)) and of the description of the symmetrization of a
function of part (2). O

Remark 2.26. The proof of Proposition 2.20 only relies on the corresponding
properties for the symmetrization of sets (Proposition 2.14, parts (1) and (2)).

The preservation of measure for the symmetrization of sets has as counter-
part integral equalities and inequalities for the symmetrization of functions. A
natural class for studying integrals is the class of functions vanishing at the in-
finity (see Lieb and Loss [19]). This class contains the functions spaces LP(R")
and Co(RY) (continuous functions such that limyz|, oo u(z) = 0).

Definition 2.27. A measurable function u : RY — R wvanishes at the infinity
with respect to a k-dimensional linear subspace L C R¥ if for all ¢ > 0 and
r € RN, LE({u > c}N(L+z)) < co. We also say that u vanishes at the infinity
with respect to the (G, L, T)—anisotropic symmetrization.

Proposition 2.28. (Cavalieri principle) Let -* be the anisotropic symmetriza-
tion with respect to a gauge G : RF — R¥.

If u: RN — R* vanishes at the infinity with respect to -* and f : R x RN=F —
R+ is a Borel measurable function such that f(0,2") = 0 for almost every
" € RN=* then

- fu*,2")dx = /RN flu,2") dz.

(Hardy-Littlewood inequality)Let F : R x R x RN~k — R be a function such
that

(i) F(s,t,-) is measurable for every (s,t) € R x R,
(ii) F(-,-,2") is continuous for almost every 2" € T,
(iii) for almost every x” € RN=F and for any a,b,c,d €R, ifa < b, c < d,

F(a,c,2") + F(b,d,2") > F(a,d,2") + F(b,c,z"),
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If u,v are nonnegative measurable functions defined on RN and F(u,0,z"),
F(0,v,2") and F(u,v,z") are summable, then

F(u,v,2")dr < F(u*,v*,2") d.
RN RN

Proof. The result is true without any dependence on z” (see [21,29]). For any
7", there holds

/ flu* (2", 2" da’ = / flu(x',2"),2") dz’.

RN—k RN—k

Since f is a Borel measurable function, f(u(-),-) is measurable and is almost
everywhere equal to a Borel measurable function. The result comes from the
application of Fubini’s Theorem.

For the second inequality uses the fact that F' is a Carathédory function and
that such functions are almost everywhere equal to a Borel measurable function.
The conclusion comes from the corresponding inequality in [10,30] and Fubini’s
Theorem. O

Proposition 2.29. Let -* be the anisotropic symmetrization with respect to G
and g : R x RN=F — R*. Suppose that for almost every x"" € RN=F g(-,2") is
a convex and lower semi-continuous function and g(0,z") =0, and that for all
s €R, g(s,z") is measurable. If u and v are measurable functions, then

/ g(u*(z) —v*(x),2") dz < / g(u(z) —v(z),2") d.
RN RN
For any 1 < p < +00 and for any measurable functions u and v
[u* = v, < lu—2l,
Remark 2.30. There are no integrability assumptions in this proposition.

Proof. By Fubini’s Theorem, we have to prove

/ / g(u*—v*,x”)dwé/ / g(u—wv,2")dx.
Rk JRN—E Rk JRN—-E

The inequality will be proved for the interior integral. Without loss of generality
we can thus assume k = N and g¢(s,z”) = g(s). Let

c:inf{s:ﬁN({u>s})<oo} dzinf{s:L'N({v>s})<oo}

If g(c — d) > 0, then, without loss of generality, we can assume that ¢ >
d. By definition of ¢ and d, for any e > 0, LN({v >d+¢}) < +oo and
LN({u>c—¢e}) = +o0, hence the measure of the set Q. = {u>c—e} N
{v < d+ ¢} is infinite. Furthermore, for any = € Q., u(z) — v(z) > c—d — 2e.
Since g is convex and g(0) = 0, it is increasing on R*. Hence, for ¢ < 54

glua) —v(@)) > gle - d — 2¢). (2.2)

Since g is lower semi-continuous, the right-hand side of (2.2) is positive for
sufficiently small . This means

/ g(u(z) —v(z)) de = +oo.
RN
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The inequality is then trivial.

If g(c — d) = 0, without loss of generality we can assume that ¢ = d = 0.
If g is continuous, the function F : (s,t) — —g(s — t) verifies the hypotheses
of the last part of Proposition 2.28. If w, = min(n, max(u — 1/n,0)), and
vp, = min(n, max(v —1/n,0)), then g(u,), g(—v,) and g(u, —v,) are summable
and, by Proposition 2.28,

/ 9(uy, (z) — vy (2)) d </ 9(un(z) — v (2)) da.
RN RN
Furthermore, u,, / u*, v, / v* and g(u, —v,) / glut —vT) < glu — v),
whence u,* /" u*, and v,* /" v*. Moreover, liminf, . g(u,*(z) —v,*(x)) >
g(u*(x) — v*(z)) since g is continuous. Fatou’s Lemma and Levi’s monotone
convergence Theorem bring the conclusion. If g is not continuous, it can be
approximated by an increasing sequence of continuous convex functions and
Levi’s monotone convergence Theorem gives the conclusion.

The second part is a consequence of the first part, with g = [¢t|” if 1 <p <
+oo. If p = +o0, let g(t) =0 for ¢t < |lu —v||, and g(t) = 400 else. O

The anisotropic symmetrizations can be defined for functions which are de-
fined on totally invariant sets.

Definition 2.31. A set Q C RY is totally invariant with respect to a hyperplane
Lif Q4+ L = Q. The set Q is totally invariant with respect to the (G,L,T)-
anisotropic symmetrization if it is totally invariant with respect to L.

A function f : RN — R is totally invariant with respect to a hyperplane L if
flx+1)= f(z) for any | € L.

If Q2 is totally invariant with respect to the (G, L, T')-anisotropic symmetriza-
tion -*, then for any A C RN, (ANQ)" = A*NQ.

Definition 2.32. If -* is an anisotropic symmetrization, {2 is totally invariant
with respect to -*, then the symmetrization of u : Q — R is u* = @*|q, where @
denotes an extension of u to RY.

The definition of u* does not depend on the extension %. All the previous
results remain valid with Q in place of RY, provided the set € is measurable for
the integral inequalities.

The increasing symmetrization is a natural counterpart to the decreasing
symmetrization.

Definition 2.33. The (G, L,T)-anisotropic increasing symmetrization of a
function ¢ : RV — R is

o (y)=inf{seR:yef{p<s}}.

The increasing and decreasing anisotropic symmetrization are essentially the
same transformation.

Proposition 2.34. For any function ¢ : RV — R,
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Remark 2.35. This means that all the properties of the decreasing symmetriza-
tion are true for the increasing symmetrization up to obvious modifications.

Proof. For any y € RV,

o (y)=inf{seR:yef{p<s}'}=-sup{ceR:ye{p<—c}'}
= —sup {c ER:ye{—p> C}*} =—(—¢)'(y). O

3 Dual characterization of symmetrized func-
tions

This section is devoted to dual characterizations of symmetrized functions that
are used in the proof of Proposition 4.4.

Lemma 3.1. Let -* be an anisotropic symmetrization and let u € Lt (RY).
If for any compact set K C RV,

/udajg/ udz, (3.1)
K *

then u = u* almost everywhere.
If7 fO’f' any ¢ € ,CJF(]RN)f

/gpud:ﬂg/ P udr, (3.2)
RN RN

then uw = u* almost everywhere.

Remark 3.2. This Lemma is reminiscent of the bathtub principle and of the
necessary condition of equality of the Hardy-Littlewood inequality (see [19]).

Proof. If the inequality (3.1) holds for any compact set K, then it holds also for
any measurable set B by interior continuity of the anisotropic symmetrization
and by Levi’s monotone convergence Theorem. The inequality (3.1) is equivalent

to
/ udr < / udz, (3.3)
B\B* B*\B

for any measurable set B. For ¢ € R, let B = {u > ¢}. Then the inequality
(3.3) holds if and only if £V(B \ B*) = 0. The function u is then almost
everywhere equal to a function @ such that {@ > ¢} = {u > ¢}* = {u* > ¢}. By
the characterization of the symmetrization by sublevel sets (Proposition 2.20),
u=u".

Suppose now that the inequality (3.2) holds for any ¢ € Ky (RY). Let
K c RY be compact. Let ¢, = XB(0,1/n) * XK » Where x denotes the convolution
product. Then ¢, is continuous, ¢, — xx in L*(R™). Hence, by Proposi-
tion 2.29, ¢,* — X+ in LY(RY). Up to a subsequence ¢, *(z) — xp-(z) and
©n*(x) < 1 for almost every x € RV, Hence by Lebesgue’s dominated conver-
gence Theorem, the inequality (3.1) holds, and the conclusion comes from the
first part of the proof. O

11
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Lemma 3.3. Let G : RF — R* be a gauge, -* be the anisotropic symmetrization
with respect to G. Suppose 1 is a nonnegative Radon measure such that for any

p e K:+(Rk)7
/ pdu </ ©" dp.
R* Rk

Then there exists w € L1 (R*) and a > 0 such that w = w* and

/ cpdp:ago(O)—f—/ wdx.
Rk Rk

Proof. Let 1 € D4 (B(0,1)) and v,(z) = ¢*(p~'z). Fix z € R*\ {0}. For any
p>0ande>0,if p+e < |z|y then (Yp(- — @) +9:(-))" = (phpery/e. The
function f(p) = [pn 1, dp is smooth on (0, 400). The hypothesis applied to the
function 9, (- — x) + () gives

vel =) < [ apndu— [ b
Rk Rk Rk

k—1
€
< sup |f/(V/p* + )| ——c < C,eF,
0<e’<e Y/ pk + e’k

where C, is a constant that depends only on = and p for € in a neighborhood
of 0. Hence p is absolutely continuous on R¥ \ {0} and by the Radon-Nikodym
Theorem of decomposition of a measure, the support of the singular part of p
lies in the set {0}. Therefore, there exists a € R and w € L*(R¥) such that

/Rkwdu:aw(())—k/wwdx

Since w € L'(R¥), for any fixed = # 0,

0=lim [ ¢,(-—z)dp < lim / ¥, dp = ap(0).
p—0 RF p—0 Rk

Because (0) >0, a > 0.
Now, let ¢ € K(R* \ {0}). For sufficiently small € > 0, it is clear that

(7 0) =+ (i)
Hence,
/ (so(x)ﬂo*(f))w(x)dx+w*(0)=/ o(x) + " (£) dp
RF Rk

< [ o (e = [ " (tetye) wio) o+ a5 0

If ¢ — 0, inequality (3.2) follows. For a general ¢ € K. (R¥), there exists
a sequence (¢ )men in K4 (RF\ {0}) such that ¢,, / ¢ almost everywhere.
As m — oo, the inequality (3.2) follows. The conclusion comes from Lemma
3.1. O

12
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4 Riesz-Sobolev rearrangement inequalities

In this section we prove that the Riesz-Sobolev rearrangement inequalities do
not hold for an anisotropic symmetrizations unless it is the classical Steiner
symmetrization. That is the crucial difference between Steiner and anisotropic
symmetrizations. This justifies the approach of the following sections for the
Pélya-Szego inequalities.

If -* denotes a Steiner symmetrization, the Riesz—Sobolev inequality

/RN/RN u(z) v(y) w(z — y) dedy < /RN/RN () 0 () w* (i — ) dady (4.1)

holds for any nonnegative functions vanishing at infinity u, v and w (see Bras-
camp, Lieb and Luttinger [5], and Lieb and Loss [19]).

Lemma 4.1. Let A C RN and E C RN. If E is an ellipsoid, A is measurable,
LN(A) = LN(E), and

/ XE(@)XxEW)xe(r —y)drdy < / xa(T)xa(y)xalr —y) dz dy,
R2N R2N

then A is an ellipsoid centered ground the origin up to a set of measure 0.

Proof. Since the inequality remains invariant through affine change of variables,
suppose E = B(0,1) without loss of generality. Let -* be the Schwarz sym-
metrization. Then A* = B(0,1) = E* = E. Since the inequality (4.1) holds for
the Schwarz symmetrization,

L] xe@ xet) vt — ) dedy
< [ xa@ xa) xate =) dedy
< / ) / X () s () s (o — ) drdy,

The first and the last term of the inequality are equal. By the work of Burchard
on the necessary conditions for equality in the Riesz—Sobolev inequality, A is an
ellipsoid centered around the origin up to a set of measure zero [7]. O

Proposition 4.2. If -* is an anisotropic symmetrization and the inequality
(4.1) holds for any u,v,w € K+ (RY), then G is an euclidian norm on R¥.

Proof. By standard arguments, the inequality (4.1) holds also for characteristic
functions of open sets. Lemma 4.1 with A = B(0,1)" brings the conclusion. [

The same arguments shows also that the Riesz-Sobolev rearrangement in-
equality does not hold for the spherical cap symmetrization and for the polar-
ization (see [4,23,29] for definitions).

Corollary 4.3. If -* denotes the spherical cap symmetrization or the polariza-
tion, the inequality (4.1) does not hold for any u,v,w € K4 (RN).

13
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Proof. Suppose by contradiction that the inequality (4.1) holds for any u,v,w €
K1 (RY). By standard arguments, the inequality (4.1) holds also for character-
istic functions of open sets. By Lemma 4.1, the set E* should be an ellipsoid
when FE is an ellipsoid. This is not the case: for the spherical cap symmetriza-
tion, take e.g. the ellipsoid {:c e RV : Zfil ir? < 1}, and for a polarization
take an ellipsoid centered on the polarization plane and which is not symmetric
with respect to it. This is possible for NV > 1.

If N = 1 and the boundary of the polarizing halfspace is {c}, then the
inequality fails for u = X[2c—1,2¢41]s ¥ = X[—c—1,—c4+1] a0d W = X[c—1,c41]- O

The Riesz-Sobolev rearrangement inequality is a strong inequality, which re-
quires good properties with respect to the convolution product. For the spherical
cap symmetrization or the polarization the weaker inequality

// w(lz —y|) dedy < // Jw(lz —y|) dz dy
RN JRN RN JRN

holds for any u,v € K(R™) and for any decreasing function w : Rt — R*
[4,6,29]. This is not the case for nontrivial anisotropic symmetrization.

Proposition 4.4. Let G : R* — Rt be a gauge, and -* be the anisotropic
symmetrization with respect to G. Let u be a nonnegative Radon measure such
that [o |x|§ dp < +oco. If the inequality

L) sa=mmdnan< [ [ w@-ne @ 62

holds for any u,v € K. (RY), then either p is concentrated on R* x {0} or
G(z") = Va'* Az’ for some positive definite symmetric matriz A € RF¥F. Fur-
thermore, for any u € K4 (RY),

/RN udp < /RN u* du. (4.3)

If k = N, then p = w* + ady, where w € LL(RN), a > 0 and 6y is Dirac’s
measure.

Remark 4.5. If p = w € LY (R"), the condition (4.3) and Lemma 3.1 ensure
w=w".

Remark 4.6. The inequality (4.2) always hold for measures concentrated on 7.
This is a consequence of the Hardy-Littlewood inequality (Proposition 2.28).

Proof. First suppose k = N. Without loss of generality, u(RY) = 1. If (4.2)
holds for any u,v € K1 (R"), by density it holds also for any u € L} (R") and for
any v € K4 (RN). Take uy € K4 (RY) such that [, uide =1, [on ui |2]3 do <
o0, and u1* = wuy. For n > 1, let upq1(x) = fRN un(z — y) du(y). By Fubini’s
Theorem, [y tUn+1dz = 1. Furthermore, since u,, € L'(RY), inequality (4.2)
holds with u,, in place of u, and then, by Lemma 3.3, t,,41* = up41. Let

z :/ xdp.
RN

14
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Consider the sequence of independent identically distributed random vari-
ables (X,,)n>2 with probability law p and the independent random variable X
with distribution law wu;. All X; have mean T for 7 > 2. The function u,, is
the probability distribution of Z?:l X;. By Lindeberg and Lévy’s central-limit
Theorem (see Stromberg [24]), the sequence n=1/23"" (X; — Z) converges in
law to a normal distribution v with mean 0, i.e. for any bounded continuous

function ¢ : RV — R

/ o(n V2 (x — nd)un(y)de — [ pdv, (4.4)
RN RN

where v is characterized by

/RN o(x)dv = (2m)~N/? /RN ap(Mx)e_IZ/Q dx

for some fixed linear operator M : RN — RY. (When M is the identity one
recovers the standard normal distribution. The operator M is not necessarily
invertible.)

For every ¢ € K4 (RY), since u,* = uy,, one has

/ (012 (& — ) )un(y) di < / o P () de. (45)
RN

RN
Since v(RY) = 1, there is ¢ € K4 (RY) such that ¢ < 1 and

1
dv > —.
/RN‘p” 2

Therefore, for large n both sides of the inequality (4.5) must be strictly greater

than 1/2. Since
/ Uy, dr =1,
RN

this implies that the supports of ¢(n~"/2(-—nz)) and ¢(n~"/2-) have a nonempty
intersection for large n. This is only possible if = 0.
Since T = 0, letting n — oo in (4.5) yields, by (4.4),

/g@dug/ ©*dv.
RN RN

In view of Lemma 3.3, either the normal distribution v is concentrated at zero,
orv=w € LY (RY), with w(z) = e~ A7y — w* and A € RV is a positive-
definite symmetric matrix. In the first case, this implies that [, |x|g dp =
f]RN |x\§ dv = 0, and thus that the support of p lies in 7. In the second case,
w = w* means G(z) = AWzt Az for some A > 0.

Now, if & < N, let fi denote the projection of y on R¥, i.e., if ¢ € K(RF),
Jgr ¢di = [on p(2') dp. Then the inequality (4.2) holds for fi. By the first
part of the proof, either G is euclidian or [ is concentrated at 0, whence pu is
concentrated on {0} x RF =T

For (4.3), take p € K4 (RY) with [pn pdz =1 and p. = eV p(<). Inequality
(4.2) with v = p. gives (4.3) as € — 0. O

The Riesz—Sobolev type inequalities (4.1) and (4.2) are useful to prove Pélya—
Szegd inequalities (see [4,19]). Propositions 4.2 and 4.4 show that this is not a
valid method for the anisotropic symmetrization.

15
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5 Anisotropic inequalities for Steiner symmetri-
zations

The objective of this section is to prove that for any Steiner symmetrization -*,
any suitable weakly differentiable u and any function ¢ : RV — RT such that
©(0) = 0, the inequality

[ ewydn< [ G,

holds. Recall that ¢, denotes the increasing Steiner symmetrization of ¢, i.e.
¢, = —p(—)" (see Definition 2.33 and Proposition 2.34). Klimov proved this
inequality for the Steiner symmetrization with respect to a hyperplane when
¢ : RN — R is convex and even [18]. He suggested the inequality for a gen-
eral Steiner symmetrization. We first prove the inequality for the Steiner sym-
metrization with respect to a hyperplane and then extend it to general Steiner
symmetrizations.

Definition 5.1. The Fenchel transform of ¢ : RV — R is

o:RY SRt p(t) = sup (t,z) — p(a).
rcRN

Remark 5.2. By an abuse of notation, when ¢ comes from a functional of the
form

/ (e, V) da,
Q

then ¢ denotes the Fenchel transform and the symmetrization with respect to
the gradient coordinates: p(z,s, ) = p(z,s, ). The same abuse of notation is
made for the symmetrization: ¢, (z,s,-) = (¢(z,s,)),.

Proposition 5.3. Let ¢ and v be functions from RN to R. If o < 1, then
=1 B o
Let (on)n>1 and ¢ be functions from RN to R. If o\, @, then ¢, / ¢.
Proof. Immediate. O

Definition 5.4. An open set (2 is an extension domain if there exists a bounded
linear operator Eq : WH1(Q) — WHI(RY), such that, for each u € Wh1(Q),
(ZEQIO|Q = Uu.

Example 5.5. A Lipschitz domain is an extension domains [1].

Proposition 5.6 (1-dimensional Steiner symmetrization inequality for
anisotropic functionals). Let ¢ : RN — R* with ¢(0) = 0. If T is a (N —1)-
dimensional vector subspace of RN, -* is the Steiner symmetrization with respect
to T, Q0 is an extension domain, € is totally invariant with respect to T and
u € Wi’l(RN), then

/Q 2. (Vut)da < / 2(Vu) dz. (5.1)

Q

Remark 5.7. The hypothesis ¢(0) = 0 ensures ¢(t) > 0 for t € RN , while ¢ > 0
implies ¢(0) < 0.

16
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Definition 5.8. A function u : Q — R is simplicial if it is continuous, it has a
bounded support, and if there exists a finite collection of open sets (S;)1<i<n,
such that @|g, is an affine function for each 1 < ¢ < n and u vanishes outside
the closure of Ui, .S;.

It is standard that if €2 is an extension domain, then simplicial functions are
dense in W11(Q) [13, Chapter X, section 2.1]. Furthermore, simplicial functions
with % 2 0 in UL, S; are also dense in W1(Q).

Proof of Proposition 5.6. The proof is an adaptation from Klimov [18], with
modifications allowing more general functions ¢ and other domains than R,
For simple functions, it relies on the geometric results in Lemma 5.12 and a
coarea formula. The result is extended by density to non-simplicial functions
with some restriction on ¢ and is finally generalized to any function ¢ by Levi’s
monotone convergence Theorem.

Step 1: wu is a simplicial function Without loss of generality, let T' =
{0} x RN¥=1 and Q = R x Q”. Suppose u € W1(Q) is a nonnegative simplicial
function such that dyu # 0 on U?:l S;. On each set S;, Vu is constant. We
have thus

/@(Vu)d:c:/ / o(Vu) dzy da”
S, "J{z1€R: (z1,2"")ES; }
p(Vu) ds dx”

/”/{s>o:(u|5_m{(m,, boresy) (s e} 1014l

2(Vu(er,a")
PYRILT D) ds day,
// Brular,am)] @

(z1,2")e(u 1({ HNS:)

where the sum contains zero or one term. Summing over ¢ gives, since Vu(x) = 0

for almost all z € |J_, S;, and ¢(0) = 0 by Remark 5.7,
s "
/ (Vu)dz —/ / beﬂ))dsdm”.
0 Js>0 x,,)Eu 1({s}) |O1u (1, 2")]

For each z” € Q”, the sum contains always a finite number of terms (at most
n). Furthermore, the number of terms for which dyu(z1,2”) > 0 is equal to the
number of terms for which dyu(z1,2”) < 0. Similarly,

/% (Vu*) dx_/ / e (Vur (e, @) oo
i Js=0 |Ovu* (21, 2")|

(1 T“)Eu 1(s)

‘P* (Vu*) -1 "

= 2/ / |Q// ]R+> ({S}) dS dZC .
o Jsso [O1ur] ) )

For all 2”7 € ©”, the definition of the Steiner symmetrization gives, for all but a

finite number of s € (0,supu(-,z")),

V//u* 4 v/,u(xl x//)
27 * 1" == — v 2
e e D v

(1,27 )eu="(s)

1 . o 1
QW((U |R+x{z”}) (5)) = Z

my|-
(zl,x”)Gufl(s)‘alu(xb r )‘

17
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Then by Lemma 5.12, inequality (5.1) holds for u.

Step 2: extension to u € Wj_l(Q) Suppose u € Wj_l(Q) and that there
exists R € R such that ¢(z) = oo if |z[, > R. Then ¢(t) < |t[, /R and
©,(t) < |t|, /R (since the right-hand side of the inequality is symmetrization-
invariant). The functionals on both sides of (5.1) are continuous in W11(€Q).
Since simplicial functions are dense in W'1(Q) and the Steiner symmetrization
is continuous in WH1(Q) [8], the inequality follows.

(Alternatively, the nonexpansiveness of symmetrization in L!'(2) and the
classical Pélya—Szegd inequality can be used to prove that if u,, — u in W11(Q),
then u,* — u* in W11(Q). The inequality comes then from the weak lower
semi-continuity of the left-hand side with respect to u € W11(Q).)

Step 3: general ¢ For general u € Wil(Q) and ¢ : RN — RY| let

x) if |z|, < n,

+oo if |z], >n
for n > 1. Since p,\, ¢ for x € Q, Propositions 2.20 and 5.3 imply ¢, "\, ¢,,
wn /¢ and ¢,, / ¢,. The inequality follows by Levi’s monotone convergence
Theorem. O

We now prove Klimov’s geometric Lemma used in the proof of the inequality
for the 1-dimensional Steiner symmetrization. The simplest case is when ¢ is
the indicator function of some set A:

0 ifxeA,
p(r) = :
+oo ifx & A

Definition 5.9. The function

da(t) =¢(t) = 823@’ )

is the support function of A.

Lemma 5.10. Let -* be the Steiner symmetrization with respect to {0} x RV—1
and A CRN. For any a,b € RN~

0a(1,a) +64(—1,0) = 64«(2,a + ).
Remark 5.11. Klimov proves this result for a convex compact set A. His repre-
sentation of the set A = {(z1,2”) : h(z") < z1 < g(2”")} is not anymore valid,
but his arguments can be adapted to sets which are not bounded, measurable
and convex.

Proof. For " € RN71 let

ma(z”) =inf {zy : (z1,2") € A},
Ma(2") =sup{z1 : (z1,2") € A}.

18
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Then
da(l,a) = sup (a,z")+ Ma(z"),
z//GRN—l
Sa(-1,b)= sup (ba") — ma(a").
',E//E]RN—I

The identities hold with A* in place of A. The inequality comes from the fact
that that for all 2”7 € RVN=1 2M 4. (2"") = 2ma«(2") < Ma(2") — ma(z") by
definition of the Steiner symmetrization. O

Lemma 5.12 (Klimov). Let ¢ : RN — R, a;,b; € RN oy, 3; € RT, for all
I1<i<m. Ifa=Y1" 0, B=Y 1" Bi,a=> " a; andb=Y_"" b;, then
— (1 aq —( 1 b —( 2 a+b
T % —h v a Z> *\ A A . 5.2
;_;0(% ai>a+<p< B &)ﬁ Qp<a+ﬂ a+ﬁ>(a+ﬂ) (5.2)

Proof. Without loss of generality, the left hand side of (5.2) is finite. By defini-
tion of the Fenchel transform,

o(t) = sup (t,z) —p(z) = sup (t,z) — A
z€eRN xeicpﬂéz\}
€

= sup l sup (t,z) — )\] =sup (6{par}(t) = A).
AER | ze{p<A} AER

Thus for any A € R,

UL A Y _ 1 b
> () o (i)

m 1 i 1 bz
> Z {5{%/\} (ai’ ;) - )\] a; + {5{%,\} <_5i7ﬁi> _ )\} 5

=1

— lz Sroany (1, @) + 0ppany(—1, bi)] —Ma+0). (5.3)

i=1

By Lemma 5.10, and since the function dy,<xy+(f1,t") increases with respect to
tl when tl 2 0,

LY 1 i — 1 bz
> {so <a<’2> o+ (ﬂ’ﬁ-) @} 2 0oy (2m,a+b) — Mo+ )
i=1 L v

> 0pany (2,a+0) — Ma + B).

This implies the inequality since, from the first part of the proof and from
Proposition 2.20,

o.(t) = 5 1) — A\l = ) «(t) = Al O
@, (t) ilé%[{w*<A}() ] i‘ég[{wd}() ]

We extend the inequality to Steiner symmetrizations with respect to higher
dimensional subspaces by approximation, as suggested by Klimov [18]. Since the
approximation procedure in Hausdorff distance of open sublevel sets is unusual,
we give a complete proof.
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Proposition 5.13 (Steiner symmetrization inequality for anisotropic
functionals). Let T C RY be a vector space, 2 a totally invariant extension
domain, -* denote the Steiner symmetrization with respect to T, u € Wil(Q)
and ¢ : RN — RT such that ©(0) = 0. If u vanishes at the infinity with respect
to -*, and for any M > 0,

sup / |Vuly + |u| de < +oo, (5.4)
LN (A)=MJa

then u* € Wli)cl(Q) and

/Q o (Vur) dz < / (V) da. (5.5)

Q

Remark 5.14. In general, when u € VVlicl (€2), it is not true that u* € W'licl (Q).

The condition (5.4) is a slightly stronger than u € VVlicl (Q) and guarantees that
ut e Whl(Q).

loc

Proof. The inequality is established by approximation of the symmetrization
for u € W}rl(Q) and ¢ with a finite image, and then extended to general ¢ and
then general u.

Step 1: ¢ has a finite image First suppose u € Wi’l(Q), p is lower semi-
continuous and coercive, and ¢ has a finite image, i.e. the set p(RY) is finite.
The conclusion is contained in Proposition 5.6 if dim7 = N — 1. From now on,
dim7T < N — 1. By classical approximation results in symmetrization theory
[5,6,19,28], there exists a sequence of (N —1)-dimensional hyperplanes (T},)n>1
such that, if -7» denotes the Steiner symmetrization with respect to T},

(i) forany n > 1, T C Ty,

Ty T,

(ii) the iterated sequence of symmetrizations u, = u n converges to u*:

Up — u*  in WHH(Q),

up, — u*  in L'(Q);

(i5i) if A is measurable and A* is bounded and open, then the sequence of
iterated symmetrizations A,, = ATt converges to A* in the sense that
small neighborhoods of A,, contain A*:

lim sup d(z,A,) =0. (5.6)

n—oo IEA*
This last assertion is proved in Lemma 5.16.

Since the function ¢ is lower semi-continuous and limyy), oo o(t) = +o0, the set
{p < A} is open and bounded for each A > 0. Hence the set {¢ < A}" is open
and bounded. Since ¢ has a finite image, the convergence of sublevel sets is
uniform with respect to levels in (5.6):

lim sup d(z,{p <A} =0.
n—oo A%0
z€{p, <A}
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Thus for any € > 0, there exists ng > 0 such that for all n > ng, z € RV,
there exists y € RY such that |z —y|, < € and ¢, (z) > on(y) = o1,..1, ().
Therefore

@, (t) = sup (t,z) — ¢, () <eltly + sup (t,y) — pn(y) = ctly + n(t).
TERN yERN

and

/Qsoi(wn) < Vual, + / on(Vun).

Since ¢, is convex and lower semi-continuous in RY, the left-hand side is lower
semi-continuous in W11(Q2). By induction on Proposition 5.6 and by letting
n — oo,

/ @, (Vu*)dz < liminf | ¢, (Vu,)dz
Q Q

m—00

< liminfe | Vu,|; + liminf/ on(Vuy,) dr
m—0oQ0 m—00 9]

< el Vul, + / 2(Vu) de
Q

Since € > 0 is arbitrary, the result follows.

Step 2: general ¢ If ¢ does not have a finite image or is not coercive, but
is lower semi-continuous, then it can be approximated by a decreasing sequence
of coercive and lower semi-continuous functions with a finite image ¢, \, .
Because ¢,, /' ¢, the result follows by Levi’s monotone convergence Theorem.
If ¢ is not lower semi-continuous, let ¢ (x) = liminf, ., ¢(y). Then 1) = ¢ and
¥y = p,, whence the inequality for ¢ follows from the inequality for .

Step 3: general v Let u,, = max(u — 1/m,0). It is clear that u,, converges
uniformly to u, so that u,,* converges to u* uniformly and in L{ (). Fur-
thermore u,, converges to u in Wlicl(Q) by Lebesgue’s dominated convergence
Theorem. The sequence of functions |Vu,,*|, in L{ () is also nondecreasing.
By a result of Alvino, Ferone and Lions [2], for any compact subset K of Q,

/\Vum*b sup /|Vum|2
K LN (L)=LN (K)

Hence, if g(z) = lim,, o, V., (2), by Levi’s monotone convergence theorem,

/ gl < +o.

This implies, by Lebesgue’s dominated convergence Theorem, that Vu,,* — ¢
in L (). Thus u* € I/Vlicl (). The inequality follows by Levi’s monotone
convergence Theorem. O

We have to prove the convergence result of iterated symmetrizations of sets.
Since our definition of symmetrization is different from the classical one that
maps compact sets into compact sets, we cannot use the classical results on
approximation in Hausdorff distance. Lemma 5.15 is a general measure-theoretic
convergence result.
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Lemma 5.15. Suppose (A,)n>1 is a sequence of measurable sets in RY, G cC
RYN is open, bounded, and nonempty. If

lim £N(G\ A,) =0, (5.7)
n—0oo
then
lim sup d(zx, A,) =0,
n—0o0 pe@
where

d(z,A) = yiggd(:my).

Proof. Suppose the conclusion is false. Then there exists an increasing sequence
(nk)ken in N, a sequence z € G and § > 0 such that, for each k& € N,

d(xk, Ank) > 0.

Since G is a bounded subset of RY, the sequence (zj)ren has a subsequence
(2k,)een that converges to & € G. If £ is sufficiently large,

¢ #B(%,3) NG CBlag,, 0) NG C G\ Ay,
Because B(Z, g) N G is open and not empty,
LY(G\ An,,) = LY (B, 3)NG) >0,
in contradiction with (5.7). O

Lemma 5.16. Suppose G € RY is a bounded open set and (G,)n>1 is the
sequence of sets obtained by iterated Steiner symmetrizations of G. Then

lim sup d(z,G,) =0.

=00 zeG*

Proof. This comes from the fact that G* is open, the convergence in measure
of G,, to G* and Lemma 5.15. O

Proposition 5.17. Let Q be a totally invariant domain, ¢ : QxRT xRN — R*
and u € Wli)cl+(Q) vanishing at the infinity with respect to -*. If p(-,8,&) is
totally invariant with respect to -* for each (s,€) € Rt x RN, »(-,-,0) = 0,
o(+,-, &) is lower semi-continuous for each & € RY and if each x € ) has a

totally invariant neighborhood N, C Q such that for any M > 0,

sup |Vuly + |u| de < +oo, (5.8)
ACN: JA
LN (A)=M

then

/E(m,u*(m),Vu*(x))dmg/&(:&u(az),Vu(m))dw.
Q

Q
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Proof. Without loss of generality, T = R* and Q@ = RV % x Q”. Let

Un—ie1 i +1
— _N-k N—k+1 tN—-k+1
Bn={8=R ><< e, )x

Iy In+1 n n+1
X[ =, = x| ==, —
27Tl 2m 2m 2m

: 6 €Z, neN, BC QxR and u verifies (5.8) with NV, = P(B)}.

where P is the projection P: Q x RT — Q: (z,s) — x. Let Q,, = P(Ugeg,, ).
For (z,5) € Qm x RT, let 8,,(x) denote the unique 8 € By, such that (z,s) € B.
Let wy, () = P(Bn(z)). For any (z,s) € Q,, x RT, let

om(z,5,§) = sup  @(y,t,§).
(yvt)eﬁm(xvs)

Fix ¢ > 0. From Proposition 5.13, it is clear that for any w,(z) C Q,,, and

Up,m = Max( g5, min(u, ”2%;1)),

/ G (T, U™, Vg ™) < / o (T, Uy Vg m)
Wm(x)

wim ()

since @, (-, -, &) is constant on 3 for any £ € RY. Since Q; C Q,,, up to a set of
measure zero, the sum with fixed m for all w,,(x) with wp,(z) C Q; and n > 0
is

/ (pm*(z7U*7VU*) < / @7(53,U, Vu)
Qy Q

Since (-, -, ) is lower semi-continuous, ¢, (-, -, &) \, ¢(-, -, &) as k — oco. There-
fore pm(x,s,) 7 olx,s,:) and om,(z,s,-) / ¢, (x,s,-), so that by Levi’s
monotone convergence Theorem,

/%T*(z,u*,Vu*)é/ o(a,u, Vu).
Qe

Qe

The conclusion comes from Levi’s monotone convergence Theorem for £ — oo
and from the fact that Upen$y = Q2 up to a set of zero measure. O

Proposition 5.18. Let I : Q x Rt x RY — RT be lower semi-continuous,
suppose I(-,s,&) is totally invariant with respect to L and, for any x € Q, I(z,-)
is conver and lim|,|y|¢|, oo [(2,5,§) = +o00. If

/ I(x,u,Vu)dx < oo,
Q

then for any x € Q, there exists a neighborhood N totally invariant with respect
to L such that for any M > 0,

sup / [Vul, + |u| de < +oc.
ACN, JA
LN (A)=M
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Proof. Let x € RN. Since I(z,-) is coercive, there exists R > 0 such that
I(z,s,&) > 1if |s| 4+ [£], = R. Since I is lower semi-continuous and the set
{z} x {(s,€) : |s| +1&|, = R} is compact, this remains true in a neighborhood
of this set. Hence, there is a neighborhood N, of z such that I(y,s, &) > 1 if
|s| +1¢l, = R and y € N,. Since I(-,s,§) is totally invariant, without loss of
generality, A, is totally invariant. By convexity of I(z,-), I(y,s,&) > (|s| +
1€l5)/ R if (s| + |&|y) = R. Therefore I(y,s, &) > (|s| + [¢],)/R—1. f AC N,
and LN (A) = M, then

/|(u,Vu)\2 dng/ I(x,u,Vu)+1dm<R/I(a?,u,Vu)das—i—REN(A)
A A A
<R/I(:U7u,Vu)+RM<+oo.
Q

Since the right-hand side does not depend on A, the proof is complete. O

6 Inequalities for anisotropic symmetrization

Definition 6.1. The vector t € RY is a subdifferential of f : RV — R at
x € RV if for all y € RY,

fy) =z fz) +{ty — ).
The set of the subdifferentials of f at z is denoted Of(z).

It is standard in the theory of convex functions that if ¢ : RN — R is convex,
then dyp(z) is nonempty for every z € RYN. If ¢ is also Gateaux-differentiable
at x € RY, then dp(z) = {Vip(z)}.

Proposition 6.2. If H € H(R¥), then for all t € R*, there exists x € OH°(t)
such that H(x) = 1. In particular, if H® is differentiable at t, H(VH®(t)) = 1.

Proof. Let t € R*. By definition of H® and by positive homogeneity of H,

o) = sup Yy (BY)
H(t) = yegv H(y) \y\fz)l H(y)
y#0

Since the function on right-hand side is upper semi-continuous, its least upper
bound is attained for some 2 € RY. Since H is positively homogeneous, without
loss of generality, H(z) = 1 and H°(t) = (¢t,z). For any s € R¥

H°(s) 2 (s,x) = H°(t) + (s — t,x). O

Lemma 6.3. If G1,Gs : RN — RT are gauges, then the function

U:RY SRY iz 2

is Lipschitz-continuous.

24



Jean Van Schaftingen, Anisotropic symmetrization 25

Proof. Since |G;(z) — Gi(y)| < Gi(z —y), there holds

[U(z) — ¥ (y)l,
Gi(z) . Gi(y) Gi(y) _ ,..Gi(y) Gi(y) . Gi(y)
SPP&m ~Tam |, T ‘f”c:z(x) %2@)’2*‘ G YW,

Gi(z) EdPS
<z — su L2 su
|2 =yl LERBV e | 0 G
EdP G1(y) Ga(2) Gi(z)
+ su - su - su + su
xE]RIi’ Ga(=) yERE\’ G2(y) ZERI?V 1212 ZERI?V G2(2)‘|

Since all least upper bounds can be restricted to the unit sphere in RY and G,
G9 and ||, are continuous and do not vanish on the unit sphere, the function
¥ is Lipschitz-continuous. O

Proposition 6.4 (Gauge change of variable). Let Q" C RN=F O = RF x
Q" w: RY x Q" — R, H € H(RF), u(x) = w(Ky!|2'|,,2") and v(z) =
(H°(=xa'),2"). Then, u € I/Vlicl (Q) if and only if v € Wli)cl (Q).

Furthermore, for any f: Q" x Rt x Rt x RN=F - R,

/f(ac”,v,H(V’v),V”v)dx:/ f(@" u, Kgo|V'uly, V'u) dz,
Q RN

provided one of the integral exists.

Remark 6.5. Recall that for any gauge G : R¥ — R, K is the positive constant
given by Definition 2.4.

Proof. Since v is a obtained by a bi-Lipschitzian mapping from weakly differ-
entiable u, it is also weakly differentiable [31, Theorem 2.2.2, p. 52].

Since H° is Lipschitz, it is almost everywhere differentiable, its weak deriva-
tive coincides almost everywhere with its unique subgradient, and, by Proposi-
tion 6.2, H(—VH®°(—z')) = 1 almost everywhere. Hence

F@" u, Ko |V'uly, V') (2!, 2") = f(2",w, —0w, V'w) (Kt 2], 2"),
f(Z”, v, H(VI’U),VN’U) (SC/7 IN) = f(x”? w(Ho(ix/)v QZ‘N), H(ava VHo(ix,))av”w(Ho(izl)a ‘TH))
= f(z",w, —0,w,V"w)(H°(—2"),z").

Since LE({H°(—2") < A}) = LF({|2|, < AKpo}) for all A € R, the equality
follows. O

Corollary 6.6. Let H € H(RF), -* denote the (G, L, T)-anisotropic symmetriza-
tion and -* denote the Steiner symmetrization with respect to T'. If ) is totally
invariant with respect to -*, f : RY xRN xQ — R, f(-,s,n,£) is totally invariant
for each (s,m,&) € RT x RT x RNk 4 vanishes at the infinity with respect to
* and u* € WhH(Q), then

loc

fla,u H(V'a"), V") do = / Ft, Ko [V |, V') dar,
RN RN

provided one of the integrals exist.
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Lemma 6.7. Let J: RT x RN=F Rt H ¢ H(RY), and
p(x) = J(H"(2'), 2").

If J(0) = 0, then

p(t) = J(H>(t),t") < J(H(H'),1").
Proof. By definition of the Fenchel transform,

o(t) = sup (t,a) — J(H* (), 2")

zERN

= sup ")+ ", 2"y — J(\ 2")

AeRT

zeRY HC(z')=X

= sup HOO(tl))\ + (t”,x”> _ J(Aax”)

AERT

I//ERN—k:

= J(H*(t),t") < J(H(H),"),

the last inequality coming from the convexity of .J, and the fact J(0) = 0 and
J=0. O

Theorem 6.8. Let H € H(R¥), -* be the anisotropic symmetrization with
respect to H°, let Q C RN be an open set totally invariant with respect to
Fand J 0 Q x RT x RY x RVN=F — R, If J(-,8,1,&) is totally invariant
for each (s5,m,&) € RTY x RY x RN=F J(x,s,-,-) is conver and lower semi-
continuous for each (x,s) € QxR*Y, J(-,-,n,£) is lower semi-continuous for each
(n,€) ERT xRN=F gndu € VVI}EIJF(Q), and there exists I : @ x Rt xRN — R+
such that I is lower semi—contihuous, I(-,s,&) is totally invariant for each
(5,€) € RY x RN, I(x,-) is convex and limyg) 4 1¢],—o00 1 (2, 5,§) = 400 for each
x € and

/ I(z,u, Vu) dz < oo,
Q
then u* € Wli)cl(ﬂ) and

/ J(z,u*, H(V'u*), V"'u") dz < / J(z,u, H(V'u), V"u) da.
Q Q

Proof. Let o(x,s,t) = J(z,s, H°(t'),t"). Then, by Lemma 6.7,

o(z,8,0) = J(x,s, H°(6'),0") < J(z,s, H('),0"),
©*(x,8,t) = J(x, 8, |t']y /Kpo,t"),
o (x,5,0) = J(x,s, Ko 16'],,60").

The function w verifies the hypotheses of Proposition 5.17 by Proposition 5.18.
Hence, by Proposition 5.17

/J(x,u*,KHo \V’u*|2,V”u*)dx</J(x,u,H(V’u),V"u)dx.
Q Q

The conclusion comes from Proposition 6.4. O
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Theorem 6.9 (Anisotropic symmetrization inequality for anisotropic
functional). Let -* be the anisotropic symmetrization with respect to a gauge
G :RF — RT, let Q be a totally invariant open set, ¢ : @ x RT x RN — Rt and
u € W11)C1+(Q) If o(-,-,0) = 0, (-, s,&) is totally invariant with respect to -* for
each (5,€) € RT x RN and ¢(-,-,€) is lower semi-continuous for each & € RV,
and there exists I : Q x RT x RN — Rt such that I is lower semi-continuous,
I(-,5,&) is totally invariant for each (s,&) € RT x RY x RN=F [I(x,-) is convexr
and limyg| 1 |¢), oo [(2,5,§) = +o00 for each x € Q, and

/ I(z,u,Vu)dzx < oo,
Q

then u* € W21 (Q) and

loc

/E(x,u*(m),Vu*(x))dmé/gp(x,u(x),Vu(m))da?,
Q

Q

where the symmetrization and the Fenchel transform of ¢ are taken with respect
to the last variable.

Proof. There exists a unique function J : Q x Rt x Rt x RV =% — R such that
for each (z,s5,&) € Q@ x RT x RV,

QD*(:IT? s? 5/7 5,/)
<p* (x7 S? 6,7 g”)

J(IZ’, S, Kél |§/|2 35”)3
‘](xv S, G(_g/)a 5//);

Lemma 6.7 implies

ol b t") = (@5, Ka |t'],,1"),
@@, 5,1, 1") = J(x, s, G°(=t),t");

with Proposition 6.4 we have

/Q(x,s,Vu*)dx = / o, (x,s, Vu*) dz;
Q Q
and the conclusion follows from Proposition 5.6. O

Definition 6.10. For u € Wé’é#Q), F € H(RF) and a Borel measurable

function J : Q x Rt x R* x R¥=% — R* such that J(z,-) is convex for each
x €, let

ull jpo = inf{)\ >0 : /QJ (:c, %,F(V;\“), v;:“) dz < —i—oo}

and let
WP (@) = {ue WL (@) : ull g < +00}

Corollary 6.11. Suppose F : RF — R is a gauge, -* is the anisotropic sym-
metrization with respect to F°, Q C RY is a totally invariant open set and
J: Q@ x RY x RY x RN=F — RT is lower semi-continuous, J(x,s,0,0) = 0

27



Jean Van Schaftingen, Anisotropic symmetrization 28

for each (x,s) € Q x RY, J(x,-) is convex for each x € Q, J(-,-,n,€) is lower
semi-continuous for each (1n,€) € Rt x RN=F and for each x € 9,

lim J(z,s,n,&) = .
[sl+[n|+1€],— 00 ( 7€)

Ifue WiJF(Q) vanishes at the infinity with respect to -*, then u* € Wi’J’F(Q)
and

w1l 0 < lullspao-

7 Applications

7.1 Anisotropic isoperimetric inequalities

The results can be extended to BV (R”) and to isoperimetric inequalities. Since
our approach uses perimeters in the sense of Cacciopoli defined by duality, it
cannot prove anything for non-convex perimeter functions like the ones arising
in Wulff’s theory of crystals.

Definition 7.1. For any u € L'(R"V), let

Py (u) = sup {Z/uahl : h e DRY), Vo € RN, H°(—h(z)) < 1}.

Theorem 7.2 (Anisotropic isoperimetric inequality in BV (RY)). Let
H :RY — R be a gauge. Let -* denote the anisotropic symmetrization with
respect to H°. If u € L*(RY), then

Proof. This will be deduced as a corollary of Theorem 6.8. Note that Py is
convex and lower semi-continuous in L' (RY). If u € D(RY), then

Py (u) = sup{/ (Vu,h) : H°(h) < 1} = H°(Vu).
RN RN
Let (pn)nen be a sequence of nonnegative smooth mollifiers. By lower semi-
continuity of Py,
liminf Py (py, * u) = Pg(u).

n—oo

Conversely, for h € D(RY), if H(—h) < 1, then the convexity of H implies
H(—pn *h) <1, whence

Py (pn *u) < Pr(u).
We have thus lim,, .o Pg(pn * u) = Pg(u). Since p, * u — u in L*(RY), then
(pn *u)" — w* in LY(RY). Since Py is lower semi-continuous in L!(RY), by
Theorem 6.8,

Py (u*) < liminf Py (py, * v*) < liminf Py (p, * u) = Py (u). O

n—oo n—oo

A consequence of this proposition is the following isoperimetric inequality:
For any measurable set A C RY,

Py (A*) = Pu(xa+) < Pu(A) = Pu(xa).
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7.2 Anisotropic Sobolev and Hardy-Sobolev inequalities

Proposition 7.3. Suppose F € H(RF), -* is the anisotropic symmetrization
with respect to F°, Q C RY is a totally invariant open set and J : Q x Rt x
Rt x RN=F — Rt is lower semi-continuous, J(x,-) is convex for each x € Q,
J(z,5,0,0) = 0 for each (x,s) € AxRT, J(-,-,n,€) is lower semi-continuous for
each (1n,€) € RYxRN=F and for each x € Q, ) 4 14 ¢], — o0 (T, 8,1, ) = 0.
Suppose ||-|| x is a norm that is invariant with respect to -*. Suppose for any
u € WiJF(Q) that vanishes at the infinity with respect to -*,

lullx < llullypa- (7.1)

then for any E € H(R*) such that Kgo = Kpo,
||U||X < HUHLE,Q'

If there exists u € WiJF(Q) that vanishes at the infinity with respect to -* such
that ||ul| x = l|ull ; pq then [u*|lx = |u*[| ; g o, where -* denotes the anisotropic
symmetrization with respect to E°.

Proof. First note that ||-||  is invariant with respect to -*. In fact, for any w,

lull ¢ = lu*]|x = l|u*||, since v** = u* and ||-|| is invariant with respect to
Uk
It is then clear that

lullx = Nl lx <lullp 0= w g0 < gz

where the first inequality comes from the hypothesis (7.1) and the second from
Corollary 6.11. The conclusions follow. O

Remark 7.4. Sobolev inequalities thus do not rely essentially neither on the
convexity nor on the evenness of the euclidian norm. It is not surprising that
such inequalities are possible since for any F' € H(RF), there exists a > 0 such
that F(y) > aly|,. The striking fact is that optimal Sobolev-Orlicz constants
depend on F € H(R¥) only through K.

Proposition 7.5. For any H € H(RY) and any u € D(RY) and 1 <p < N,
N — p p
P ul® .
RN p RN He (x)p
The constant is optimal for any fized H € H(RF).

H(Vu)P dz > (

Proof. Without loss of generality, Kgo = 1. Let -* denote the Schwarz sym-
metrization. Then, by Theorem 6.8, the classical Hardy-Sobolev inequality [30]
and by Proposition 2.28,

H(Vu)P dx > /
R

_ p *|P _ p P
) [ s () [
D Ry 2[5 D ry He(2)P

The fact that the constant is optimal comes from the same reasoning with
the symmetrization -* with respect to H° and the fact that the constant is
optimal in the isotropic case [30]. O

|Vu*} dx
RN N
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7.3 Recovering continuity and compactness

Proposition 7.6. Suppose H € H(RF), J: RTxRN=F — R* J(t,-) is a gauge
for eacht € RT and 1 < p < N. Let -* denote the anisotropic symmetrization
with respect to H° and Q be totally invariant with respect to -*. If f € L1(Q),
g4+ pt=1+N""and f* = f, then the function E : Déﬁ_(Q) — R (where

Dy? is the completion of D() with respect to the norm |[ul| = ([, |Vu|p)1/p),
ur— E(u) = / J(H(V'u),V"u)? — fudz
RN

has a minimizer u = u®*.

Remark 7.7. If (u,) is a minimizing sequence for E, it is bounded in D> (),
hence up to a subsequence, u,, — u in D?(). Then

/qundac—>/ﬂfudw.

But if H is not convex it is not true in general that

/ J(H(V'u), V"u)P dz < lim inf/ J(H(V'up), V"up,)? dx
Q n—oo Jo
(see [11]).

In a different setting, the symmetry of the domain helps to recover the ex-
istence for some nonconvex problems [16]. On the other hand, some crystalline
problems close to Wulff’s problem do not have any solution (except in the var-
ifold sense) when the energy is not convex [27].

Remark 7.8. Even if the minimizer is unique (if e.g. J is strictly convex), that
does not guarantee the symmetry of the minimizer since, except in the radial
case, the problem is not invariant under the action of a continuous group.

Proof. Let u,, be a minimizing sequence. Then (v,,) = (u,,*) is also a minimizing
|
sequence. Up to a subsequence v,, — v in Dy’? (RY), hence

/vand:rﬁ/gfvdx.

/ J(H(V'v), V'v)P do < lim inf/ J(HV'vy), V"0,)P da,
Q Q

n—oo

Furthermore

since the functional u — [, J(H(V'u), V""u)? dx is convex on the image set of
*. Then v is a minimizer for the functional E. Hence v = v* is a minimizer of

E. O

Proposition 7.9. Suppose H € H(R¥), -* is the anisotropic symmetrization
with respect to H®, Q is totally invariant with respect to -*, J : Q x RT x
Rt x RN=F — R is such that J(-,-,n,&) is lower semi-continuous and totally
invariant with respect to -* for each (n,&) € RY x RN=* and J(z,-) is convex
for each x € Q. Let f : Q x Rt — Rt be such that for almost every x € Q,
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f(z,0) =0 and f(x,-) is continuous for each x € Q and f(-,s) is measurable
and totally invariant for each s € RT.
For any u € Woly’ﬁ(Q), let

Bu) = /Q Tz, u(@), HV u(z)), V'u(z)) dz,

and

M= {ue Wolf(Q) : /f(:c,u(sc))dwl}.
Q
If there existsl<p<+oo,0<a<ﬂ,p<q<NN—_’; and v > 0 such that

a(ls| + [nl + 1€]2)" < J(2,5,1,8) < B(Is| + [n] + [£],)"
and
[f (@, 8)| < y(Is]” + Is]),
and if img_,o sup,cq @9 — 0, then there exists u € M such that E(u) =

[s[?

inf,esm E(v). Furthermore, u* = u.

Proof. Let (un)neny be a minimizing sequence of E in M. By Theorem 6.8
with I(z,s,&) = a(|s| + [£']y + £7],)?, E(un*) < E(u,) and by Proposition
2.28, up,* € M. Without loss of generality, u,* = u, for each n € N. Since
E(uy) is bounded, the sequence (u,) is bounded in Wy (). Hence up to a
subsequence it converges weakly to u € Wol’p(Q). By Lemma 3.1, u* = u. Since
the functional F is convex on the set of symmetrized functions and is strongly
lower semi-continuous on WO1 P(Q), it is weakly lower semi-continuous on the set
of symmetrized functions, whence

< Timi _ .
E(u) \llTlrllng(un) Ulenjf/[ E(v)

Let -* denote the Steiner symmetrization with respect to {0} x R¥=*. By
a theorem of Lions on compact embeddings of sets of symmetric functions [20]
the sequence (u,,*) is compact in L(2). Therefore, the sequence (uy,) = (un*™)
is compact in LI(Q).

Up to a subsequence, u,, — u almost everywhere. Since

lim sup 7|f(33,p5)| =0,
s—0geq 9]

for any € > 0, there exists 7. > 0 such that
[f(@,s)| <elsl” + 7 Is|-
By Fatou’s Lemma and by the weak convergence of the sequence (u,) in LP(2),
Nl 4 e ol + [ fGew) o < timint [ lual + e fonl? = £ ) d
Q n—o Jo

< alinnlgéf lJun iy + e llull] + llnnigf/ﬂ [z, uy) dz.
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As ¢ — 0 this becomes

/ flz,u)de < liminf [ f(z,uy)dz.
Q

n—oo Q

The same argument holds also for — f, hence

/ flzyu)de = lim [ f(x,u,)dx =1,
Q

n—oo Q

u € M and E(u) = inf,e pm E(v). O
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