
APPROXIMATION OF SYMMETRIZATIONS AND SYMMETRYOF CRITICAL POINTS
JEAN VAN SCHAFTINGEN

Abstract. We give a su�cient condition in order that a sequence of capor Steiner symmetrizations or of polarizations approximates some �xed capor Steiner symmetrization. This condition is used to obtain the almost sureconvergence for random sequences of symmetrization taken in an appropriateset. The results are applicable to the symmetrization of sets. An applicationis given to the study of the symmetry of critical points obtained by minimaxmethods based on the Krasnoselskii genus.
1. IntroductionA symmetrization by rearrangement transforms a set or a function into a moresymmetric one, while some quantities remain under control. For example, for eachu 2 W 1;p0 (B(0; R)) with 1 6 p < 1 and u > 0, one can construct a radial andradially decreasing function u� such that for every Borel-measurable function f :R! R+, Z

B(0;R)f(u�) dx = Z
B(0;R)f(u) dx :In particular, u� 2 Lp(B(0; R)) and ku�kp = kukp. While the map u 7! u� is non-linear, it is still non-expansive in Lp(B(0; R)). Furthermore, u� 2 W 1;p0 (B(0; R))and one has the P�olya-Szeg}o inequality:Z

B(0;R)jru�jp dx 6
Z
B(0;R)jrujp dx :Other useful inequalities, such as the Riesz-Sobolev rearrangement inequality hold.For symmetrization inequalities, we refer to [12,16]. Symmetrizations were de�nedfor sets in the nineteenth century by Steiner and Schwarz. Symmetrizations offunctions go back to Hardy, Littlewood and P�olya [11] and to P�olya and Szeg}o [19].Applications of symmetrization by rearrangement are multiple. Symmetrizationswere used by Talenti and Aubin to compute the optimal constants for the Sobolevinequality [2,27]. They can be used to obtain estimates on the �rst eigenvalue of theLaplacian with Dirichlet boundary conditions (Faber-Krahn inequality [19,28,33]).By symmetrization techniques, it is also possible to prove that solutions of problemsin the calculus of variations are symmetric functions [23]. In some cases they providealso an alternative to concentration-compactness [8].Since symmetrizations and symmetrization inequalities are useful, it would benice to have general, simple and elegant methods to construct symmetrizations andprove the associated inequalities. The main di�culty is that symmetrizations arenonlinear and nonlocal transformations. One way to manage these problems is thelevel-sets method. The functional for which an inequality is needed is decomposedin integrals on level sets. For example, if u : 
! R+ is nonnegative and measurable

Supported by a Research Fellow Grant of the Fonds National de la Recherche Scienti�que.1



2 J. VAN SCHAFTINGEN
and f 2 C1(R+;R+), one has

Z

 f(u) dx = Z

R+
LN (fx 2 
 : f(x) 6 tg)f 0(t) dt:

This can be thought as localizing the functional with respect to the u variable.As long as the functionals in consideration do not involve gradients or convolu-tion products, the inequalities are proved trivially. | For example, the proof ofthe Hardy-Littlewood inequality becomes very elegant [10, 33]. | When it is notthe case any more, the set inequalities become nontrivial geometric inequalities.For example, the P�olya{Szeg�o inequality follows from the classical isoperimetricinequality [18], and the Riesz-Sobolev rearrangement inequality is a consequence ofthe same inequality for characteristic functions of sets [16]. In those cases the levelset method does not essentially simplify the proof. The method of level-sets is usedextensively by Mossino [18].Another method to study symmetrization is to approximate a symmetrizationby a sequence of simpler symmmetrizations | which are more localized than moreelaborated symmetrizations. This goes back to the original de�nition of the Steinersymmetrization as a tool to prove the classical isoperimetric Theorem. Later, in-equalities for capacitors were proved by approximation of Steiner and cap sym-metrizations by lower-order Steiner and cap symmetrizations [21]; the Riesz-Sobolevinequality was proved by approximation of a Steiner symmetrization by lower-orderSteiner symmetrizations [5]; Recently, a still simpler transformation, the polariza-tion, was used to approximate many symmetrizations in order to obtain simpleproofs of the isoperimetric inequality, the P�olya-Szeg}o inequality and a weak formof the Riesz-Sobolev rearrangement inequality [3, 6, 23,31].In a recent work [30], we used approximation of symmetrization in order to in-vestigate the symmetry properties of critical points obtained by minimax methods.The key point was the use of polarizations to obtain a continuous approximationof a Steiner or cap symmetrization which is not continuous in general in Sobolevspaces [1].In this paper, we investigate further the approximation of symmetrizations bysimpler symmetrizations. We study which sequences of symmetrizations approxi-mate a given symmetrization, and we give a simple su�cient condition. Since almostevery sequence of symmetrizations in a well-chosen set satis�es this condition, wesolve by the way a conjecture of Mani-Levitska concerning random sequences ofSteiner symmetrizations [17]. This su�cient condition allows us to obtain some in-formation about the symmetry of critical points of symmetric functionals obtainedby minimax methods using the Krasnoselskii genus.The paper begins by reviewing in section 2 the main facts about symmetrizationsused in the sequel. We de�ne in section 2.1 the Steiner with respect to an a�nesubspace and cap symmetrizations with respect to a closed a�ne half subspace.The set of a�ne subspaces and closed a�ne half subspaces is denoted by S, andthe symmetrization of u with respect to S 2 S is denoted by uS . The simplestcap symmetrizations are the polarizations; they are symmetrizations with respectto H 2 H, where H � H is the set of closed a�ne halfspaces. Many of theirproperties are easy to prove (section 2.2). We introduce a partial order �, suchthat S � T if the symmetrization with respect to T can be used to approximatethe symmetrization with respect to S (De�nition 2.19 and Proposition 2.20). ForS 2 S, the set of T 2 S (resp. 2 H) such that S � T is denoted by SS (resp. HS).With these notations, we restate in a common framework all the approximationresults of [31]:
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Theorem 2.28. Let S 2 S and T � SS. If for every H 2 HS, there exists T 2 T
such that T � H, then there exists a sequence (Tn)n>1 � T such that if 
 � RN is
open, u 2 K(
) and (u; S) is admissible, then

kuT1:::Tn � uSk1 ! 0:
The condition \(u; S) is admissible" simply means that the symmetrization uSis de�ned. In order to state a su�cient condition for a sequence of symmetrizationsto approximate a symmetrization, we de�ne a metric d on S for which the mapping(u; S) 7! uS is continuous (De�nition 2.35, Proposition 2.38 and Corollary 2.39).With all the machinery of section 2, we can state and prove the main result ofSection 3,

Theorem 3.2. Let S 2 S, T � SS and (Tn)n>1 � SS be such that

a) for every H 2 HS, there exists T 2 T such that T � H,
b) for each m > 1 and S1; : : : ; Sm 2 T , there exists k > 0 such that for every1 6 i 6 m, d(Si; Tk+i) 6 �,
Then for each open set 
 � RN and u 2 K(
) such that (u; S) is admissible,

kuT1:::Tn � uSk1 ! 0; as n!1:
The proof relies on the fact that for every m > 1 and � > 0, the m �rst termsof the sequence of Theorem 2.28 are contained up to an error � in the sequence(Tn)n>1.Given T , it is easy to construct sequences satisfying the hypotheses of Theorem3.2. In fact, if the approximating symmetrizations are symmetrization with respectto random variables that are distributed throughout the whole of T , then theconvergence occurs almost surely (Theorem 3.4).All the preceding results can be extended to the approximation of the sym-metrization of compact sets in Hausdor� distance dH (Proposition 3.10). For ex-ample, if K(RN ) denotes the set of compact sets of RN , one has:

Theorem 3.13. Let S 2 S with @S = � and let (E;�; P ) be a probability space.
Let ` > dimS and

TS̀ = fT 2 SS : @T = � and dimT = `g :
If (Tn)n>1 are independent random variables with values in TS̀ whose distribution
functions are invariant under isometries that preserve S, then

P �sete 2 E : 8K 2 K(RN ); limn!1 dH(KT1(e):::Tn(e);KS) = 0� = 1:
Finally, in section 4, Theorem 3.2 is applied to the proof of symmetry propertiesof critical points obtained by minimax methods using the Krasnoselskii genus. IfA is a symmetric (i.e. A = �A) set in a Banach space V , its Krasnoselkii genus
(A) is the least integer k such that there is an odd mapping in C(A;Sk�1). Theproperties of 
 are developed in section 4.1. For ' :M � V ! R, let

�` = infA�MA is closed
(A)>`
supu2A'(u):

Theorem 3.2 allows us to construct, given a set of small Krasnoselskii genus, a set ofmore symmetric functions that has not a smaller Krasnoselskii genus (Propositions4.7).The main result is that when the functional ' satis�es some symmetry assump-tions, then there are symmetric critical points on the levels �` for small `:
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Theorem 4.8. Let 
 = 
0 � 
00 � RN be open, with 
0 � Rk invariant underO(k). Let M � W 1;p(
) n f0g be a complete symmetric C1;1-manifold. Suppose' 2 C1(M) is an even functional that satis�es the Palais-Smale condition, and is
bounded from below on M . Also suppose that if H 2 H, f0g � RN�k � @H andu 2 M , then uH 2 M and '(uH) 6 '(u). If ` 6 k, then there is a critical pointu 2M and x 2 Sk�1 such that '(u) = �` and uSx = u.

Here Sx denotes the cap symmetrization with respect to Rx�RN�k. We end withsimple applications of this result. The method applies to Dirichlet and Neumannproblems (Theorems 4.9 and 4.10).
2. Symmetrizations2.1. De�nitions. In the following, Hk denotes the k-dimensional outer Hausdor�measure, while for x 2 RN and 0 6 r 6 1, B(x; r) = �y 2 RN : jx� yj < r	.The extended set of real numbers is denoted by �R = R [ f�1;+1g. The set ofcompactly supported continuous functions on the open set 
 is denoted by K(
)and the modulus of continuity of a function u 2 K(
) is the function !u : R+ ! R+de�ned by !u(�) = sup fju(x)� u(y)j : x; y 2 
 and jx� yj 6 �g :We de�ne the Steiner and spherical cap symmetrizations according to Sarvas [21].In contrast with Sarvas, our de�nition does not make di�erence between compactand open sets, but is valid for any set, possibly non-measurable. This ensures agood pointwize de�nition of the symmetrization of measurable sets and functions.

De�nition 2.1 (Steiner symmetrization). Let S be a k-dimensional a�ne subspaceof RN , 0 6 k 6 N�1. The symmetrization of a set A � RN with respect to S is theunique set AS such that for any x 2 S, if L is the (N � k)-dimensional hyperplaneorthogonal to S that contains x,AS \ L = B(x; r) \ L;where 0 6 r 61 is de�ned by HN�k(B(x; r) \ L) = HN�k(A \ L).
Remark 2.2. The symmetrization with respect to a 0-dimensional plane is calledpoint symmetrization or Schwarz symmetrization. (Some authors call Schwarz sym-metrization a symmetrization with respect to a 1-dimensional plane and Steinersymmetrization a symmetrization with respect to a (N�1)-dimensional plane [16].)
De�nition 2.3 (Cap symmetrization). Let S be a k-dimensional closed a�ne halfsubspace of RN , 1 6 k 6 N and let @S be the boundary of S inside the a�neplane generated by S. The symmetrization of a set A � RN with respect to S isthe unique set AS such that AS \ @S = A \ @S and for each x 2 @S, if L is the(N � k + 1)-dimensional hyperplane orthogonal to @S that contains x and y is theunique point of the intersection @B(x; %) \ S, then for every % > 0AS \ @B(x; %) \ L = B(y; r) \ @B(x; %) \ L;where r > 0 is de�ned by HN�k(B(y; r)\@B(x; %)\L) = HN�k(A\@B(x; %)\L).
Remark 2.4. The symmetrization with respect to a one dimensional closed a�nesubspace is also called foliated Schwarz symmetrization [23].
De�nition 2.5. The set of all the k-dimensional a�ne subspaces of RN for 0 6k 6 N � 1, and of all the k-dimensional closed a�ne half subspaces of RN for1 6 k 6 N is denoted by S.

Symmetrizations have the following basic properties:
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Proposition 2.6. Let A; B � RN and S 2 S. If A � B, then AS � BS.
If A is measurable, then AS is measurable and LN (AS) = LN (A).
If A is open, then AS is open.

We need some condition to ensure that the symmetrization of a function ismeaningful.
De�nition 2.7. Let 
 � RN , u : 
! �R and S 2 S. The pair (u; S) is admissibleif 
S = 
, and, for every c > 0,LN (fx 2 
 : ju(x)j > cg) <1and either u > 0, or @S 6= � and (RN n 
)S = RN n 
.
De�nition 2.8. Let 
 � RN , u : 
 ! �R and S 2 S. Suppose that (u; S) isadmissible. The symmetrization of u with respect to S is the unique function uSsuch that for each c 2 �R,�x 2 
 : uS(x) > c	 = fx 2 
 : u(x) > cgS :
Remark 2.9. The function uS can be de�ned as

uS(x) = supnc 2 R : x 2 fy 2 
 : u(y) > cgSo :
The de�nitions with open balls of symmetrization of sets are of crucial importancein order to obtain the existence of uS satisfying De�nition 2.8 (see [29]).

The symmetrization of a function does not essentially depend on the domain:
Proposition 2.10. Let u : 
 ! �R, ~u : RN ! �R be de�ned by ~uj
 = u and~ujRNn
 = 0 and S 2 S. If (u; S) is admissible, then (~u; S) is admissible and~uS j
 = uS.

The symmetrization of functions in Lp is a non-expansive nonlinear mappingthat preserves the norm:
Proposition 2.11 (Lp properties of symmetrizations). Let 1 6 p 6 1, 
 � RN
be measurable and u; v 2 Lp(
). If (u; S) and (v; S) are admissible, then uS ; vS 2Lp(
), kuSkp = kukp, kvSkp = kvkp and kuS � vSkp 6 ku� vkp.
Proof. See e.g. [10, 32]. �
Remark 2.12. If u 2 W 1;p(
) then uS 2 W 1;p(
) and kruSkp 6 krukp, but if@S = �, the mapping u 7! uS is continuous inW 1;p(
) if and only if dimS = N�1[1,7,9]. If @S 6= �, u 7! uS is continuous if dimS = N (see [30] and Corollary 2.40below). If dimS < N � 1, then a reasoning in the spirit of Lemma 2.33 and theresults of Almgren and Lieb [1] shows that u 7! uS is not continuous. The casedimS = N � 1 remains open, but it is likely that the method of Burchard wouldshow that the cap symmetrization is then continuous.

We introduce the complementary of a a�ne half subspace.
De�nition 2.13. Let u 2 S and S 2 S with @S 6= �. The complementary of S isthe re
exion of S with respect to @S. It is denoted by S�.

As a straightforward consequence of the de�nitions, one has
Proposition 2.14. Let S 2 S and u : 
! �R. If (u; S) and (�u; S�) are admissi-
ble, then (�u)S� = �(uS) :
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2.2. Polarizations. We recall brie
y some facts about the simplest symmetriza-tions, the polarizations.De�nition 2.15. The symmetrization with respect to H 2 S is a polarization if@H is a hyperplane, or, equivalently, dimH = N . The re
exion of x 2 RN withrespect to @H is denoted by xH . The set of H 2 S such that dimH = N is denotedby H.Proposition 2.16. Let H 2 H, 
 � RN and u : 
 ! �R. If (u;H) is admissible,
then

uH(x) = (max(u(x); u(xH)) if x 2 H ;min(u(x); u(xH)) if x 62 H :
Remark 2.17. The characterization of Proposition 2.16 is the classical de�nition ofthe polarization of a function [6].Proposition 2.18. Let H 2 H, 
 � RN be open and u : 
! �R be measurable. If(u;H) is admissible, f : 
� �R! R+ is a Borel measurable function, and for everyt 2 �R and x 2 
 such that xH 2 
, f(xH ; t) = f(x; t), thenZ


 f(x; uH(x)) dx = Z

 f(x; u(x)) dx :

Furthermore, if 1 6 p < 1, u 2 W 1;p0 (
) (resp. (�u;H) is admissible andu 2W 1;p(
)) then uH 2W 1;p0 (
) (resp. uH 2W 1;p(
)) andZ

jruH jp dx = Z


jrujp dx :
If u 2 K(
), then uH 2 K(
) and for any � > 0,!uH (�) 6 !u(�) :

Proof. See [6, 30]. �2.3. Approximating symmetrization. In order to study the approximations ofa symmetrization by other symmetrizations we introduce a partial order � on thesymmetrizations such that S � T if the symmetrization with respect to T can beused to approximate the symmetrization with respect to S.De�nition 2.19. Let S; T 2 S. We write S � T if S � T and @S � @T . ForS 2 S, let SS = fT 2 S : S � Tgand HS = fH 2 H : S � Hg :This de�nition is justi�ed by the next proposition.Proposition 2.20. Let S; T 2 S and suppose S � T . If A is Borel measurable,
then AST = ATS = AS.

If 
 � RN and u : 
 ! �R are Borel measurable, and (u; S) is admissible, then(u; T ), (uT ; S) and (uS ; T ) are admissible and uST = uTS = uS.
Proof. The de�nitions yields ATS = AST = AS for any Borel measurable set A �RN . The conclusion follows from the de�nitions of the admissibility and of thesymmetrization of a function. �
Remark 2.21. By Proposition 2.11, if S � T , thenkuT � uSkp 6 ku� uSkp;i.e. T does not increase the distance between u and uS and T 0can be used toapproximate S.
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Remark 2.22. If A is merely measurable, its intersection with some a�ne subspacecould be Hk-non-measurable, resulting in ATS ) AS = AST . However, one canstill conclude that AS � ATS and that LN (ATS nAS) = 0.

Many properties of the symmetrizations can be deduced from the next
Theorem 2.23. Let S 2 S. There exists a sequence (Hn)n>1 � HS such that if
 � RN is open, u 2 K(
) and (u; S) is admissible, then

kuH1:::Hn � uSk1 ! 0:
Proof. See [31]. �
Remark 2.24. Weaker forms of Theorem 2.23, where the sequence could depend onthe function to symmetrize were proved by Brock and Solynin [6] and by Smetsand Willem [23].
Corollary 2.25. Let S 2 S and u 2 K(
). If (u; S) is admissible, then uS 2 K(
)
and for any � > 0, !uS (�) 6 !u(�):
Proof. This follows from Proposition 2.18 and Theorem 2.23. �

Among the consequences, there is the compactness of the set of functions ob-tained by symmetrizations compatible with a given symmetrization:
Proposition 2.26. Let S 2 S, 
 � RN and u 2 K(
). If (u; S) is admissible,
then U = �uT1:::Tn : n > 1, Ti 2 SS for each 1 6 i 6 n	
is totally bounded in L1(
).
Proof. By Proposition 2.11, if v 2 U , then kvk1 = kuk1. Since u is compactlysupported, there exists x 2 @S (x 2 S if u > 0) and r > 0 such that suppu �B(x; r). Since S � T , B(x; r)T = B(x; r)ST = B(x; r)S = B(x; r). By Proposition2.6, for each v 2 U , one has supp v � B(x; r). Finally, by Corollary 2.25, for everyv 2 U , we have v 2 K(
) and

!v(�) 6 !u(�):
The conclusion comes from the Ascoli-Arzela Theorem. �
Remark 2.27. In fact, U is totally bounded in Lp(RN ) for every 1 6 p 61.

Proposition 2.26 is one of the ingredients of
Theorem 2.28. Let S 2 S and T � SS. If for every H 2 HS, there exists T 2 T
such that T � H, then there exists a sequence (Tn)n>1 � T such that if 
 � RN is
open, u 2 K(
) and (u; S) is admissible, then

kuT1:::Tn � uSk1 ! 0:
Proof. See [31]. �
Remark 2.29. For every 1 6 p < 1, the convergence happens for any u 2 Lp(
)such that (u; S) is admissible.
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2.4. The metric structure of S. In order to construct other sequences of sym-metrizations approximating a symmetrization by some kind of perturbation, wegive a metric structure to the set S. Since the de�nition of the metric on S relieson isometries of RN , we brie
y investigate the relationship between symmetriza-tions and isometries. We call i : RN ! RN an isometry provided that for everyx; y 2 RN , one has ji(x)� i(y)j = jx� yj.
Proposition 2.30. Let i : RN ! RN be an isometry and S 2 S. If A � RN ,
then i(AS) = i(A)i(S). If (u; i(S)) is admissible, then (u � i; S) is admissible, andui(S) � i = (u � i)S.
Proof. Since the de�nitions of the symmetrizations are invariant by isometry, thisis straightforward. �
Remark 2.31. The isometries is the largest class of transformations of RN for whichProposition 2.30 holds for every S 2 S.

We need also some information about elements of S which are identical in a ball.
Proposition 2.32. There exist constants K1 > 1 and K2 > 0 that depend only on
the dimension of the space N such that the following holds: Let r > 0, R > K1r,S; T 2 S, x 2 S, and u 2 K+(
). If (u; S) and (u; T ) are admissible, suppu �B(x; r) and B(x;R) \ S = B(x;R) \ T , thenkuS � uT k1 6 !u(K2r2=R) :
Proof. This follows from the next Lemma applied to ujB(x;r) and from Proposition2.10, since uS and uT are the extensions by 0 outside of B(x; r) of (ujB(x;r))S and(ujB(x;r))T . �
Lemma 2.33. There exist constants K1 > 1 and K2 > 0 that depend only on
the dimension of the space N such that the following holds: Let r > 0, R > K1r,S; T 2 S, and x 2 S. If B(x;R) \ S = B(x;R) \ T then there exists an injective
map g : B(0; r) ! RN such that for each x 2 B(x; r), jg(x)� xj 6 K2r2=R.
Furthermore, for any A � B(x; r), g(AS) = g(A)T and if 
 � B(x; r), u : 
 ! R
and (u; T ) is admissible, then (u � g; S) is admissible and uT � g = (u � g)S.
Remark 2.34. This was proved by Sarvas when dimS = N � 1 [21].
Proof. If @S \B(x;R) = @T \B(x;R) 6= � the proposition is trivial. The result isalso trivial when dimS = dimT = N . Assume thus @S\B(x;R) = @T \B(x;R) =� and dimS < N . For any y, let CSy denote the circle that contains y, whose centeris in @S and that is contained in an a�ne (two-dimensional) plane perpendicular to@S. If @S = �, de�ne CSy to be the straight line perpendicular to S that containsy. De�ne CTy analogously.The mapping g is the unique mapping such that if y 2 S \ B(x; r), g(CSy \B(x; r)) � CTx, and if A � CSy \ B(x; r) is Borel measurable, then HN�k(A) =HN�k(g(A)), where k is the dimension of S and of T . A direct computation showsthat for su�ciently large K1 and K2, the map g has the required properties. �

Now we de�ne a distance on S.
De�nition 2.35. Let S; T 2 S and
%(S; T ) = infnln�1 + supx2RN jx� i(x)j1 + jxj + supx2i(S)�T 11 + jxj� :

i : RN ! RN is an isometryo:
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The distance between S; T isd(S; T ) = %(S; T ) + %(T; S):Proposition 2.36. The pair (S; d) is a separable metric space.

Remark 2.37. The metric space (S; d) is not complete, but it is locally compact.The symmetrization is continuous with respect to this distance. More precisely,Proposition 2.38. Let 
 � RN be open. The mapping

f(u; S) 2 (K(
); k � k1)� (S;d) : (u; S) is admissibleg! (K(
); k � k1) : (u; S) 7! uS
is continuous.

Proof. Let (u; S) 2 (K(
); k � k1)� (S; d) be admissible, and let " > 0. By Propo-sition 2.10, we can assume 
 = RN .First suppose u > 0. Let (u; S) 2 K+(RN )�S be admissible. Let K1 and K2 begiven by Proposition 2.32. Fix x 2 S and r > "K1=K2 such that suppu 2 B(x; r).There exists � > 0, depending only on ", x and r, such that if T 2 S and d(S; T ) 6 �,then there is an isometry i : RN ! RN with jy � i(y)j 6 " for each y 2 B(x; r) andi(T )\B(x;K2r2=") = S\B(x;K2r2="). By Proposition 2.32, since K2r2=" > K1r,kuS � ui(T )k1 6 !u("). Moreover, since by Proposition 2.30, ui(T ) � i = (u � i)T ,
kui(T ) � uT k1 = kui(T ) � i� uT � ik1 = k(u � i)T � uT � ik16 k(u � i)T � uT k1 + kuT � uT � ik1:Since by Proposition 2.11 the symmetrization is non-expansive in L1(RN ),k(u � i)T � uT k1 6 ku � i� uk1 6 !u("):By Corollary 2.25, the modulus of continuity does not increase by symmetrization:kuT � uT � ik1 6 !Tu(") 6 !u("):For any (v; T ) 2 K+(RN ) � S, if d(T; S) 6 � and ku � vk1 6 ", then, by thenon-expansiveness of the symmetrizations,kuS � vT k1 6 kuS � uT k1 + kuT � vT k1 6 3!u(") + ":Since " > 0 is arbitrary, our claim is proved.If u 6> 0, then by de�nition of admissibility, @S 6= �. Let x 2 @S and chooser > 0 such that suppu � B(x; r). By de�nition of d, there is � > 0 such that ifd(S; T ) 6 �, there exists an isometry i : RN ! RN such that jy � i(y)j 6 " fory 2 B(x; r) and i(T ) \ B(x; r) = S \ B(x; r). Since x 2 @S, S and T are closeda�ne half subspaces, and i is an isometry, i(T ) = S. By Proposition 2.30,kuS � uT k1 = kui(T ) � i� uT � ik1 = k(u � i)T � uT � ik1:The end of the proof is similar to the case when u > 0. �

Corollary 2.39. Let 
 � RN be open and 1 6 p <1. The mappingn(u; S) 2 (Lp(
); k � kp)� (S; d) : (u; S) is admissible
o

! (Lp(
); k � kp) : (u; S) 7! uS
is continuous.
This remains true if p =1, provided Lp(
) is replaced by C0(
).As in [30], we can obtain the
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Corollary 2.40. Let 
 � RN be open and 1 < p <1. The mappingn(u;H) 2W 1;p(
)� (H; d) : (u;H) and (�u;H) are admissible

o
!W 1;p(
) : (u;H) 7! uH

is continuous.

Proof. This is a consequence of Proposition 2.18, of Corollary 2.39 and of theuniform convexity of the norm krukp. �
3. Constructing approximating sequences3.1. A su�cient condition. Since the result of a symmetrization is stable undersmall perturbations on the symmetrization (Proposition 2.38), we can prove thatsome perturbations of an approximating sequence are approximating sequences.Proposition 3.1. Let S 2 S, (Sn)n>1 � SS and (Tn)n>1 � SS. If for each open

set 
 � RN and u 2 K(
) such that (u; S) is admissible,kuS1:::Sn � uSk ! 0; as n!1;
and if for every � > 0 and m > 1, there exists k > 0 such that for each 1 6 i 6 m,d(Si; Tk+i) 6 �;
then for each open set 
 � RN and u 2 K(
) such that (u; S) is admissible,kuT1:::Tn � uSk ! 0; as n!1:
Proof. Let u 2 K(
) and " > 0. Since by Proposition 2.26, the sequence (uT1:::Tn)n>1is totally bounded in L1(
) and since by hypothesisuT1:::TnS1:::Sm ! uS ; as m!1;there exists m > 1 such that for every n > 0,kuT1:::TnS1:::Sm � uSk1 6 ":By the continuity of symmetrization (Proposition 2.38) and the fact that (uT1:::Tn)n>1is totally bounded, there exists � > 0 such that for each 1 6 i 6 m, for each n > 0and for each T 2 SS , if d(Si; T ) 6 �, thenkuT1:::TnSi � uT1:::TnT k1 6 "=m:By hypothesis, there is k > 0 such that for each 1 6 i 6 m, d(Si; Tk+i) 6 �. Wecan then use the non-expansiveness of symmetrizations (Proposition 2.11) and thepreceding estimates to obtain, for every ` > m+ k,
kuS � uT1:::T`k1 6 kuS � uT1:::Tm+kk1

6 kuS � uT1:::TkS1:::Smk1 + mX
i=1 kuT1:::Tk+i�1Si:::Sm � uT1:::Tk+iSi+1:::Smk

6 kuS � uT1:::TkS1:::Smk1 + mX
i=1 kuT1:::Tk+i�1Si � uT1:::Tk+ik 6 2": �

Theorem 3.2. Let S 2 S, T � SS and (Tn)n>1 � SS be such that

a) for every H 2 HS, there exists T 2 T such that T � H,
b) for each m > 1 and S1; : : : ; Sm 2 T , there exists k > 0 such that for every1 6 i 6 m, d(Si; Tk+i) 6 �,
Then for each open set 
 � RN and u 2 K(
) such that (u; S) is admissible,kuT1:::Tn � uSk1 ! 0; as n!1:
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Remark 3.3. Since (S; d) is separable, (T ;d) is also separable so that given a count-able dense set of T it is possible to construct explicitly a sequence (Tn)n>1 satisfyingthe hypotheses of Theorem 3.2.
Proof. This follows from Theorem 2.28 and Proposition 3.1. �3.2. Random sequences of symmetrizations. As a �rst application of Theorem3.2, we prove that symmetrizations can be approximated by random sequences ofsymmetrizations.Recall that if (E;�; P ) is a probability space, (M;d) is a metric space andX : E ! M is measurable, then X is called a random variable. The sequence(Xn)n>1 is a sequence of independent random variables if for any n > 1 and forany open sets U1; : : : ; Un �M ,
P (fe 2 E : (X1(e); : : : ; Xn(e)) 2 U1 � � � � � Ung)

= nY
i=1P (fe 2 E : Xi(e) 2 Uig):

(See e.g. Stromberg [24].)Theorem 3.4. Let S 2 S, T � SS, (E;�; P ) be probability space and Tn : E ! T ,n > 1, be independent random variables. If for every H 2 HS, there exists T 2 T
such that T � H and if for each T 2 T and � > 0,limn!1P �fe 2 E : d(Tn(e); T ) 6 � g� > 0;
then

P ��e 2 E : 8 open set 
 � RN ;8u 2 K(
) such that (u; S) is admissible;limn!1 kuT1(e):::Tn(e) � uSk = 0	� = 1:
Proof. This follows from Theorem 3.2 and from the next Lemma, since (T ;d) is aseparable metric spaces by Proposition 2.36. �Lemma 3.5. Let (E;�; P ) be a probability space, (M;d) be a separable metric
space and Xn : E ! M , n > 1, be independent random variables. If for eachx 2M and � > 0, limn!1P (fe 2 E : d(Xn(e); x) 6 �g) > 0;
then

P ��e 2 E : 8m > 1; 8r > 1; 8x1; : : : ; xm 2M;9k > 0; 81 6 i 6 m; d(Xk+i(e); xi) 6 1=r	� = 1:
Proof. Since M is separable, there exists a countable dense subset D � M . SinceD is dense,
P ��e 2 E : 8m > 1; 8r > 1; 8x1; : : : ; xm 2M;9k > 0; 81 6 i 6 m; d(Xk+i(e); xi) 6 1=r	�= P ��e 2 E : 8m > 1; 8r > 1;8x1; : : : ; xm 2 D;9k > 0; 81 6 i 6 m; d(Xk+i(e); xi) 6 1=r	�= 1� P ��e 2 E : 9m > 1;9r > 1; 9x1; : : : ; xm 2 D;8k > 0; 91 6 i 6 m; d(Xk+i(e); xi) > 1=r	�:
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Since D is countable,
P ��e 2 E : 9m > 1; 9r > 1; 9x1; : : : ; xm 2 D;8k > 0;91 6 i 6 m; d(Xk+i(e); xi) > 1=r	�

6 X
m>1r>1

X
x1;:::;xn2DP (fe 2 E : 8k > 0; 91 6 i 6 m; d(Xk+i(e); xi) > 1=rg):

Let now m, r and x1; : : : ; xm 2 D be �xed. Since the random variables (Xn)n>1are independent,
P (fe 2 E : 8k > 0; 91 6 i 6 m; d(Xk+i(e); xi) > 1=rg)6 P (fe 2 E : 8` > 0; 91 6 i 6 m; d(X`m+i(e); xi) > 1=rg)

=Y
`>0P (fe 2 E : 91 6 i 6 m; d(X`m+i(e); xi) > 1=rg):

Since by hypothesis
lim`!1P (fe 2 E : 91 6 i 6 m; d(X`m+i(e); xi) > 1=rg)

= 1� lim`!1
mY
i=1P (fe 2 E : d(X`m+i(e); xi) 6 1=rg)

6 1� mY
i=1 lim`!1P (fe 2 E : d(X`m+i(e); xi) 6 1=rg)

6 1� mY
i=1 limn!1P (fe 2 E : d(Xn(e); xi) 6 1=rg) < 1;

the conclusion follows. �3.3. Approximation of the symmetrization of sets.Proposition 3.6. Let u; v 2 C(
), S 2 S, c > 0. If (u; S) and (v; S) are admis-
sible and fx 2 
 : u(x) > cg = fx 2 
 : v(x) > cg ;
then �x 2 
 : uS(x) > c	 = �x 2 
 : vS(x) > c	 :
De�nition 3.7. Let K � RN be compact and S. The compact symmetrization ofK with respect to S is the set fx : u(x) > 1gfor any function u 2 K(RN ), such that u 6 1 and u(x) = 1 if and only if x 2 K.This de�nition is equivalent to the classical de�nitions of symmetrization ofcompact sets [6, 19]. By an abuse of notation, throughout this section, if K iscompact, then KS denotes the compact symmetrization of K. We recall somebasic facts about the Hausdor� distance [14,15].De�nition 3.8. Let K1; K2 � RN be compact sets. The Hausdor� distancebetween K1 and K2 isdH(K1;K2) = inf fr > 0 : K1 � K2 +B(0; r) and K2 � K1 +B(0; r)g :The set of compact subsets of RN is denoted by K(RN ). The metric space(K(RN ); dH) is complete. One hasProposition 3.9. Let A � K(RN ). The following are equivalent
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(1) A is totally bounded,
(2) [K2AK is bounded,
(3) A is bounded.We are now in measure to prove how approximation of symmetrizations of func-tions yields approximations of the symmetrizations of sets.Proposition 3.10. Let S 2 S, (Tn)n>1 � SS, u 2 K+(RN ) such that kuk1 = 1

and K = �x 2 RN : u(x) = 1	. If kuT1:::Tn � uSk1 ! 0 as n!1, thendH(KT1:::Tn ;KS)! 0; as n!1:
Remark 3.11. By Tietze's extension Theorem, for every K 2 K(RN ), there existsu 2 K+(RN ) such that kuk1 = 1 and K = �x 2 RN : u(x) = 1	.
Proof. Since u is compactly supported, there exists x 2 S and r > 0 such thatsuppu � B(x; r). Hence KT1:::Tn � suppuT1:::Tn � B(x; r). By Proposition 3.9 thesequence (KT1:::Tn)n>1 is conditionally compact in (K(RN ); dH).Let ~K be an accumulation point of the sequence (KT1:::Tn)n>1, let (Km)m>1be a subsequence of (KT1:::Tn)n>1 converging to ~K and let (um)m>1 denote thecorresponding subsequence of (uT1:::Tn)n>1. We are going to show that ~K = KS :Let % > 0. Since by Corollary 2.25, uS 2 K(RN ), there exists " > 0 suchthat if uS(x) > 1 � ", there is y 2 KS with jx� yj < %. Since um ! uS inL1(RN ), for su�ciently large m, kum � uSk 6 ". By de�nition of Km, one hasKm � KS +B(0; %). Since this is valid for any % > 0, we conclude that ~K � KS :For every x 2 S n @S, let Cx denote the (N � k){dimensional sphere that hasits center on @S, is contained in an a�ne plane orthogonal to @S and contains thepoint x. (If @S = �, then Cx is the (N�k){dimensional plane orthogonal to S thatcontains the point x.) If K \Cx = �, then KS \Cx = � � ~K \Cx. If K \Cx 6= �,then ~K \ Cx 6= �, the set KS \ Cx is a closed geodesic ball (possibly degenerateto a point), and, since the N � k-dimensional Hausdor� measure restricted toCx is a Radon measure, it is upper semicontinuous with respect to the Hausdor�distance [4]HN�k( ~K \ Cx) > limm!1HN�k(Km \ Cx) = HN�k(K \ Cx) = HN�k(KS \ Cx):
Since ~K \ Cx � KS \ Cx, one concludes that ~K \ Cx = KS \ Cx.Since Km \ @S = K \ @S = KS \ @S, one has KS \ @S � ~K \ @S. In view ofRN = @S \ [x2Sn@SCx, one has ~K = KS :This proves that the set KS is the unique accumulation point of the sequence(KT1:::Tn)n>1: �
Remark 3.12. The proof of Proposition 3.10 is a simpli�cation of a proof of Brockand Solynin [6], who did not use the compactness of the sequence (KT1:::Tn)n>1 in
K(RN ). In particular, the proof of the inclusion ~K � KS is directly inspired bytheir proof.As an easy consequence of Theorem 3.4 and Proposition 3.10, we haveTheorem 3.13. Let S 2 S with @S = � and let (E;�; P ) be a probability space.
Let ` > dimS and TS̀ = fT 2 SS : @T = � and dimT = `g :
If (Tn)n>1 are independent random variables with values in TS̀ whose distribution
functions are invariant under isometries that preserve S, then

P �sete 2 E : 8K 2 K(RN ); limn!1 dH(KT1(e):::Tn(e);KS) = 0� = 1:
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This solves a conjecture of Mani-Levitska. He proved Theorem 3.13 under theadditional assumptions that K should be convex, S = f0g and ` = N � 1 [17].One can obtain similar theorems for the approximation by polarizations or spher-ical cap symmetrizations.

4. Symmetry of critical pointsThis section is devoted to the proof of a symmetry result concerning criticalpoints obtained by a minimax theorem of Struwe based on the Krasnoselskii genus[26]. First we recall the de�nition and basic properties of the Krasnoselskii genus(section 4.1). Then we symmetrize approximately sets of small Krasnoselskii genus(section 4.2) before going on to a minimax theorem with symmetry informationand an application (section 4.3).
4.1. Krasnoselskii genus. Let V be a Banach space. De�neA = fA � V : A is closed, A = �Ag :
De�nition 4.1. For A 2 A; A 6= �, let
(A) = inf �m : there exists h 2 C(A;Sm�1) : h(�u) = h(u)	 ;with 
(A) =1 if the set on the right-hand side is empty and 
(�) = 0.

The genus has the following properties
Proposition 4.2 (Krasnoselskii [13]). Let A; A1; A2 2 A, and let h 2 C(V; V ) be
an odd map. Then the following hold

(1) 
(A) > 0, 
(A) = 0 if and only if A = �,
(2) if A1 � A2, then 
(A1) 6 
(A2),
(3) 
(A1 [A2) 6 
(A1) + 
(A2),
(4) 
(A) 6 
(h(A)),
(5) if A 2 A is compact and 0 62 A, then 
(A) <1 and there is a neighborhoodN of A such that �N 2 A and 
(A) = 
( �N).
It will be only possible to symmetrize sets with a small Krasnoselskii genus.In the following proposition it is shown that any set contains a subset of lowerKrasnoselskii genus that contains some prescribed points.

Lemma 4.3. If A 2 A and if Y � A is �nite, there exists A0 2 A such thatY � A0 � A and 
(A0) = 
(A)� 1.
Proof. Let k = 
(A). By de�nition of 
(A), there exists an odd mapping h 2C(A;Sk�1). Take m 2 Sk�1 nh(Y ) and let � = maxy2Y jm �h(y)j. Since m 62 h(Y ),one has � < 1. De�ne A0 = fx 2 A : jm � h(x)j 6 �g :Since h is odd and continuous, A0 2 A. For x 2 A0, let �(x) = h(x)� (m � h(x))mand ĥ(x) = �(x)=j�(x)j. It is clear that ĥ is odd and continuous on A0 and thatĥ(A0) � Sk�2. Hence, 
(A0) 6 
(A)� 1.Let l = 
(A0). By de�nition of 
(A0), there exists an even mapping h0 2C(A0; Sl�1). For x 2 A, let

~h(x) = (((� � jm � h(x)j)h0(x);m � h(x)) if x 2 A0;(0;m � h(x)) if x 62 A0:
Then ~h : A! Rl+1 is continuous and odd on A. The function �h = ~h=j~hj : A! Slis also continuous and odd. Hence 
(A) 6 
(A0) + 1. �
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4.2. Almost-symmetrization of sets. Throughout this section we assume that
 = 
0�
00, where 
0 � Rk is invariant under the action of the group of isometriesO(k). To every any x 2 Sk�1, we associate the closed a�ne half subspace Sx =Rx� RN�k and a closed a�ne halfspace �(x) = �y 2 RN : x � y > 0	.
Proposition 4.4. The map � : Sk�1 ! �H 2 H : f0g � RN�k � @H	 is a homeo-
morphism.
For every x; y 2 Sk�1, �(x) 2 HSx if and only if x � y > 0.
Lemma 4.5. There exists �� 2 C(W 1;p(
)� Sk�1 � R+;W 1;p(
)) such that

(1) for every u 2 W 1;p(
), ��(u; x; t) ! uSx in Lp(
) as t ! 1, uniformly inx 2 Sk�1,
(2) for every (x; t) 2 Sk�1 � R+, there exists H1; : : : ;Hbtc+1 2 HSx such that,

for each u 2W 1;p(
),��(u; x; t) = uH1:::Hbtc+1 ;
(3) for every (u; x; t) 2W 1;p(
)� Sk�1 � R+,��(�u;�x; t) = ���(u; x; t):

Proof. Let R = �R 2 SO(k) : 8x 2 Rk; x �R(x) > 0	. With the operator norm,R is a separable metric space. Consider a sequence (Rn)n>1 � R such that forevery � > 0, m > 1 and Q1; : : : ; Qm 2 R, there exists k > 0 such that for each1 6 i 6 m, kQi �Rk+ik 6 �:This construction is possible because R is separable. Since R is path-connected itis possible to extend the de�nition of Rt for t 2 R+ so that t 7! Rt is continuous.For (u; x; t) 2W 1;p(
)� Sk�1 � R+, let��(u; x; t) = u�(R1(x)):::�(Rbtc(x))�(Rt(x)):The map �� is continuous by construction of Rt, by Proposition 4.4 and by Corollary2.40.Fix x 2 Sk�1. Let � > 0, m > 1 and y1; : : : ; ym 2 Sk�1 such that x � yi > 0 foreach 1 6 i 6 m. For every 1 6 i 6 m, there exists Qi 2 R such that Qi(x) = yi. Byconstruction of the sequence (Rn)n>1 there is k > 0 such that for every 1 6 i 6 m,jyi �Rk+i(x)j 6 kQi �Rk+ik 6 �:Since � is continuous and �(Rn(x)) 2 SSx , Theorem 3.2 is applicable and for every(u; x) 2W 1;p(
)� Sk, we obtaink��(u; x; n)� uSxkp ! 0; as n!1:Since k��(u; x; n)�uSxkp is decreasing with respect to n (Remark 2.21), k��(u; x; n)�uSxkp is continuous with respect to x (Corollary 2.39) and Sk�1 is compact, byDini's Lemma [25], for every u 2W 1;p(
), we obtaink��(u; x; n)� uSxkp ! 0; as n!1, uniformly in x 2 Sk�1.Finally by Proposition 2.11, we concludek��(u; x; t)� uSxkp 6 k��(u; x; btc)� uSxkp ! 0;as t!1, uniformly in x 2 Sk�1.The last conclusion is a consequence of Proposition 2.14. �
Lemma 4.6. For every " > 0, there exists ~� 2 C(W 1;p(
)� Sk�1;W 1;p(
)) such
that for every (u; x) 2W 1;p(
)� Sk�1

(1) k~�(u; x)� uSxk < ",
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(2) there exists m > 1 and H1; : : : ;Hm 2 HSx such that

~�(u; x) = uH1:::Hm ;
(3) ~�(�u;�x) = �~�(u; x):

Proof. By the previous lemma, for any u 2 W 1;p(
), there exists tu > 0 such thatfor every t > tu and x 2 Sk�1,
k��(u; t; x)� uSxk 6 "=3:

The spaceW 1;p(
) with the norm of Lp(
) is a metric space. It is thus paracompactand there is a locally �nite partition of the unity (%v)v2W 1;p subordinate to thecovering fB(u; "=3)gu2W 1;p(
) [22]. For every u 2W 1;p(
), let
�(u) = 12 X

v2W 1;p(
)(%v(u) + %v(�u))tv:
It is clear that � is continuous and even. For (u; x) 2W 1;p(
)� Sk, let

~�(u; x) = ��(u; x; �(u)):
For every u 2 W 1;p(
), there exists v 2 W 1;p such that tv 6 �(u) and eitherkv�ukp 6 "=3, or kv�(�u)kp 6 "=3. If kv�(�u)kp 6 "=3, then using successivelyProposition 2.14, Proposition 2.11 and the properties of v, we obtain
k~�(u; x)� uSxkp = k��(u; x; �(u))� uSxkp = k��(�u;�x; �(u))� (�u)S�xkp6 k��(�u;�x; �(u))� ��(v;�x; �(u))kp+ k��(v;�x; �(u))� vS�xkp + kvS�x � (�u)S�x)kp 6 ":

Similarly k~�(u; x)� uSxkp 6 " whenever kv � ukp 6 "=3.The other conclusions follow easily from the properties of ��. �
Proposition 4.7. Let A �W 1;p(
). If there exists an odd mapping h 2 C(A;Sk�1),
then for every " > 0, there exists � 2 C(A;W 1;p(
)) such that for every u 2 A

(1) k�(u)� uSh(x)k < ",
(2) there exists m > 1 and H1; : : : ;Hm 2 HSx such that

�(u) = uH1:::Hm ;
(3) �(�u) = ��(u).

Proof. For every u 2 A, let �(u) = ~�(u; h(u)), where ~� is given by the previouslemma. The properties of � follow from the properties of ~� and h. �
4.3. Minimax theorem with symmetry information. If ' is an even func-tional of class C1 on a closed symmetric C1;1-submanifold M of the Banach spaceV . For any ` 6 
(M),

F` = fA 2 A : A �M;
(A) > `g :
Consider the values �` = infA2F` supu2A'(u):If the functional ' satis�es the Palais-Smale condition at the level �` and1 6 ` 6 
̂(M) = sup f
(K) : K �M is compact and symmetricg
then there is a critical point u 2M such that '(u) = �` [26].
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Theorem 4.8. Let 
 = 
0 � 
00 � RN be open, with 
0 � Rk invariant underO(k). Let ` 6 k. Let M � W 1;p(
) n f0g be a complete symmetric C1;1-manifold.
Suppose ' 2 C1(M) is an even functional that satis�es the Palais-Smale condition
at the level �`, and is bounded from below on M . Also suppose that if H 2 H,f0g � RN�k � @H and u 2 M , then uH 2 M and '(uH) 6 '(u). If ` 6 k, then
there is a critical point u 2M and x 2 Sk�1 such that '(u) = �` and uSx = u.
Proof. The theorem is proved by Struwe without the conclusion uSx = u [26].By a close inspection of his proof, for each sequence (An)n>1 of F` such thatsupu2An '(u) ! �`, up to a subsequence of the sequence (An)n>1, there exists asequence (un)n>1 in M such that un 2 An, un ! �u, '(un)! �` and �u is a criticalpoint.By Proposition 4.3, we can �nd a sequence (An)n>1 � F` such that 
(An) = `and supu2An '(u) ! �`. Since ' decreases by polarization, by Proposition 4.7,we can take A0n = �(An) with " = 1=n, so that for each u 2 A0n, there existsxn 2 Sk�1 such that ku � uSxnkp < 1=n: Since supu2A0n '(u) 6 supu2An '(u) and
(A0n) > 
(An), there exists a sequence (un)n>1 such that un 2 A0n, un ! u,'(un) ! �` and u is a critical point of '. Moreover, for each n there exists xnsuch thatkun � uSxnkp < 1=n: Up to a subsequence, xn ! x 2 Sk�1, so thatku� uSxkp = 0. �For an application, let f 2 C(
� R) such that(f1) there is C > 0 and 1 6 p 6 (N+2)=(N�2) such that for every (x; s) 2 
�R,f(x; s) 6 C(1 + jsjp),(f2) for every (x; t) 2 
� R, f(x; s)s < 0,(f3) for every (x; t) 2 
� R, f(x;�s) = �f(x; s).Let F (x; s) = R s0 f(x; �) d�.First consider the functional

' :W 1;20 (
)! R : u 7! 12
Z

 F (x; u) dxrestricted to the set M = fu 2W 1;20 (
) : kruk22 + �kuk22 = 1g. Let �0 denote the�rst eigenvalue of �� with Dirichlet boundary conditions.Theorem 4.9. Let 
 be as before. For 0 6 ` 6 k and � > ��0(
), the func-

tional ' has a critical point u` such that '(u`) = �` and u` is invariant by the
symmetrization with respect to Sx, for some x 2 Sk�1.
Proof. Since � > ��0(
), M is a C1;1 manifold in W 1;20 (
). The functional ' iseven, satis�es the Palais-Smale condition at any level c 6= 0 and is bounded frombelow (see Rabinowitz [20]). Since by (f3), '(u) < 0 for u 6= 0, then �` < 0.Furthermore, if u 2 M , then uH 2 W 1;20 (
) and kuHkLp(
) = kukLp(
) = 1.Therefore, the conclusion follows from Theorem 4.8. �Since uSx = u for some x 2 Sk�1, the function u depends on N�k+2, variables:u(y; z) = u(jyj; x � y; z). In particular, when k = N , 
 is a ball or an annulus, udepends on two variables. (Similar results were proved by Smets and Willem [23].)Similarly we can consider the functional associated to a Neumann problem

' :W 1;2(
)! R : u 7! Z

 F (x; u) dxrestricted to the set M = fu 2W 1;2(
) : kruk22 + �kuk22 = 1g.Theorem 4.10. Let 
 be as before. For 0 6 ` 6 k and � > 0, the functional' has a critical point u` 2 M such that '(u`) = �` and u` is invariant by the

symmetrization with respect to Sx, for x 2 Sk�1.
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The restriction ` 6 k of Theorems 4.9, and 4.10 seems natural when one considersthe particular case f(x; s) = �s. If 
 is a su�ciently thin annulus, then the criticalpoints associated to �N+1 are of the form u(jxj)H(x=jxj), where u is a �xed functionand H is a spherical harmonic of order two. Among the spherical harmonics, thereare the zonal harmonics, which are invariant under O(N � 1), but there is also thefunction H(x) =PN�1i=1 ix2i �N(N � 1)x2N=2. The latter has a discrete symmetrygroup. Since some of the critical points associated to �N+1 are nonsymmetric inthe linear case, it is quite possible that for some nonlinear problems the criticalpoints at the level �N+1 are not invariant under any N � 1-dimensional sphericalcap symmetrization. The same kind of heuristic arguments can be developed for�k+1 when k < N . (The analysis of the symmetry of critical points obtained bythe linking theorem lead to similar considerations [30].)
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