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ABNING Log-returns ING and ABN AMRO
Description

Daily log-returns of stock prices ING and ABN AMRO for the period 1991-2003.

Usage

data (ABN)
data (ING)

Format

Numeric vectors of length 3283.

Source

Casper de Vries (Erasmus University Rotterdam), private communication.

Examples

data (ABN, ING)
plot (ABN, ING)

AngularMeasure Angular Measure

Description

Computes an estimate of the Pickands dependence function of the extreme-value attractor of a
bivariate distribution based on a bivariate sample (X1,Y7),. .., (X,,Y},) from that distribution.

Usage

AngularMeasure (data.x, data.y, data = NULL, k,
method = "u", plot = TRUE)
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Arguments

data.x, data.y

Numeric vectors containing the data X, ..., X, and Y7, ..., Y, respectively.

data Alternatively, the data may be provided in the form of a n-by-2 matrix. If pro-
vided, then the arguments data . x and data .y are ignored.

k An numeric vector of values for k in the definition of the empirical tail depen-
dence function; see ‘Details’.

method A character vector specifying the estimation method; possible choices are "u"
for unconstrained and "c" for constrained. See ‘Details’.

plot If TRUE (the default), the estimated distribution functions will be plotted.

Details

This function is an implementation of the following nonparametric estimator for the angular or
spectral measure ® (de Haan and Resnick, 1977) of the extreme-value attractor of an unknown
distribution. For data (X1,Y7),...,(X,,Y,), let R; be the rank of X; among X1, ..., X, and let
S; be the rank of ¥; among Y7, ...,Y,,. Define X =n/(n+1—R;)and Y* =n/(n+1—5;).
Write (X/,Y*) = (p; cosb;, p;sinb;) in polecoordinates. For 0 < k < n, let J be the set of
i =1,...,nsuch that p; > n/k. Then the estimate ® is the discrete measure with an atom of mass
p; at @; for all ¢ in J. The masses or weights p; depend on the method:

method = "u" unconstrained Then p, = 1/k for every i in J. This is called the empirical
spectral measure and is a variant of the estimator considered for instance in Einmahl et al.
(2001).

method = "c" constrained Then the weights p; are determined by a variant of maximum em-

pirical likelihood taking into account the moment constraints that a spectral measure should
satisfy (Einmahl and Segers 2007).

The argument k& may be a vector, in which case, provided plot = TRUE, the corresponding dis-
tribution function ®(]0, §]) will be drawn for every element of k. However, the value returned by
the function corresponds only to the final element of k.

Value

A list with the class attribute "AngularMeasure", which is a list containing the following

components:
angles The angles 6, for i in .J.
weights The corresponding weights p;.
radii The full vector of radii p; fori =1,...,n.
indices The set J.
References

Einmabhl, J.H.J., de Haan, L. and Piterbarg, V.I. (2001). Nonparametric estimation of the spectral
measure of an extreme value distribution. The Annals of Statistics 29, 1401-1423.

Einmahl, J.H.J. and Segers, J. (2007). Maximum empirical likelihood estimation of the spectral
measure of an extreme value distribution. In preparation.

de Haan, L. and Resnick, S.I. (1977). Limit theory for multivariate sample extremes. Zeitschrift
fuer Wahrscheinlichkeitstheorie und Verwandte Gebiete 40, 317-337.
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See Also

ETDF, PickandsDF

Examples

# For the bivariate Cauchy distribution on the positive quadrant,

# the angular measure is known to be Phi ([0, theta]) = theta.
AngularMeasure (data = rbivcauchy (1000), k = c (20, 50), method = "c")
abline(a = 0, b =1, col = "red")
AoE-package Analysis of Extremes
Description

The package provides functions for some selected procedures in univariate and multivariate extreme
value analysis. It has grown over a number of years as a complement to executive courses for the
Dutch and Belgian Actuarial Associations. Its aim is mainly pedagogical, and no aim whatsoever
is made to provide a comprehensive toolset for extreme value analysis.

Details

Package: AoE

Type: Package
Version:  1.0.1
Date: 2008-04-11

License:  Gnu General Public License version 2

The functions can be divided into a number of different categories; see below. Moreover, the pack-
age provides some data-sets as well.

Diagnostic plots
Hill.diagnostic
MEplot

Estimators of tail parameters
GPD_par

Hill

ML

Moment

Parametric distribution fitting
fitGPD
fitPareto

Estimators of tail-related risk measures
Burr.empirical

Burr.Weissman
EconomicCapital

ExcessLoss

Expectation
ExpectedShortfall
PHtransform
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RiskMeasure
TailQuantile
Variance
Weissman.q

Threshold selection
ChooseK
TQ_ChooseK

Bivariate tail dependence
AngularMeasure
ETDF

PickandsDF
TailProb_sum
TailQuantile_sum

Temporal dependence of extremes
ExtremalIndex

Data-sets
ABN, ING
Loss, ALAE
norwegian
soa

top40

Random number generation
rbivcauchy

rbivnorm

rburr

UvT_Cat

Author(s)

Johan Segers (johan.segers@uclouvain.be), gratefully acknowledging valuable input and patient
bug checking from John H.J. Einmahl (Tilburg University) as well as stimulating comments from
course participants of the Actuarieel Instituut (the Netherlands) and the ARAB-KVBA (Belgium).

References

Beirlant, J., Goegebeur, Y., Segers, J., and Teugels, J. (2004). Statistics of Extremes. Wiley, Chich-
ester. http://lstat.kuleuven.be/Wiley/index.html

Embrechts, P., Klueppelberg, C., and Mikosch, T. (1997). Modelling Extremal Events For Insurance
And Finance. Springer.

de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction. Springer.

Examples

# Hill estimator

X <= 1/runif (100)

Hill(1/runif (100), CI.p = 0.95)
abline(h = 1, col = "blue")

# tail quantile and excess-of-loss net premium
data (Loss)

TailQuantile (Loss, p
ExcessLoss (Loss, a =

25:200)

0.001, k =
= 25:200)

1.2e6, k


http://lstat.kuleuven.be/Wiley/index.html
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# empirical tail dependence function
data (Loss, ALAE)
ETDF (data.x = Loss, data.y = ALAE, k = 10:100)

# angular measure
AngularMeasure (data = rbivcauchy (1000), k = c (20, 50), method = "c")
abline(a = 0, b =1, col = "red")

# extremal index
data (ABN)
ExtremalIndex (-ABN[2000:2500], threshold = 0.05, plot = TRUE)

BurrTailQuantile Tail Quantile Estimation for the Burr Distribution

Description

The functions implement a small simulation study in order to assess the performance of tail quantile
estimators based on random samples of the Burr distribution. The implemented estimators are the
sample quantile and the Weissman estimator based on the moment estimator for the extreme-value
index.

Usage

Burr.empirical (beta = 1, tau = 1, lambda = 1, n = 1000, p = 1/n,
samples = 500, plot = TRUE)

Burr.Weissman (beta = 1, tau = 1, lambda = 1, n = 1000, p = 1/n,
samples = 500, k = 20, plot = TRUE)

Arguments

beta, tau, lambda
Parameters of the Burr distribution. See ‘Details’.

n Sample size.
jo) Tail probability of the quantile to be estimated.
samples Number of samples.
k Determines the thresholds at which the Weissman estimator will be computed.
plot If TRUE, the results will be plotted.
Details

The Burr distribution is defined here by its distribution function

Flay=1- <ﬂ+ﬁx7)A

for x > 0, with shape parameters A, 7 > 0 and scale parameter § > 0. The distribution is heavy-
tailed with extreme-value index v = 1/(7)). The quantile with excess probability 0 < p < 1 is
given by

QU —p) ={Bp Y —1)}/"



BurrTailQuantile 7

Interest is in estimating this tail quantile for small p, say of the order O(1/n), with n the sample
size.

Let X;., < ... < X,., be the ascending order statistics of the sample. The aim of the functions
Burr.empirical and Burr.Weissman is to compare the performance of the following two
estimators of Q(1 — p):

1. The empirical tail quantile X;.,, with ¢ equal to n(1 — p) rounded up.

2. The Weissman estimate X,, ., {k/(np)}?, where k = 1,...,n— 1 is such that X,, 5., > 0,
and with 4 an estimator of the extreme-value index -y, assumed to be positive. The estimator
implemented here is the Moment estimator of Dekkers et al. (1989).

If plot = TRUE, the function Burr.empirical produces a kernel density estimate of the
sampling distribution of the empirical quantile estimator. For Burr.Weissman, the produced
plot depends on whether k is a single number or a vector:

* If k is a single number, the plot shows a kernel density estimate of the sampling distribution
of the Weissman quantile estimator.

 If k is a vector, the plot shows the estimated 5/50/95 percentiles of the sampling distribution
of the Weissman quantile estimator as a function of k. For comparison, the corresponding
percentiles for the empirical quantile estimator are shown as well.

The use of the functions is mainly pedagogical. The following points stand out:

1. Purely nonparametric estimation of tail quantiles is not a good idea, especially not for heavy-
tailed distributions, for which tail quantiles lie “far apart”.

2. Extreme value theory provides estimators which work reasonably well under very general
assumptions, even for out-of-sample quantiles.

3. The performance of extreme-value estimators depends on the choice of the threshold. Their
sampling variance decreases but their bias increases as the number of upper order statistics
used increases.

4. The estimation uncertainty for these type of problems is quite large. Indeed, if one is not
willing to rely on a parametric model, then one cannot reasonably expect a precise estimate in
aregion where there are no data.

Value

The functions are called mainly for their side-effect, which is to produce the plots described above.
The function Burr.empirical silently returns a list with two components: Q, the true quan-
tile, and Quantile.empirical, a vector of length samples with the estimates. The list
Burr.Weissman silently returns a list with three components: the ones already mentioned and
the additional component Quantile.Weissman, a matrix with at position (, j) the Weissman
quantile estimate for sample ¢ and for k£ equal to k [ j].

References

Dekkers, A.L.M., Einmahl, J.H.J. and de Haan, L. (1989). A moment estimator for the index of an
extreme-value distribution. The Annals of Statistics 17, 1833-1855.

See Also

Moment, TailQuantile, Weissman.q
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Examples

# sampling distribution of empirical quantile estimator
Burr.empirical (beta = 2, tau = 2, lambda = 0.8,
n = 1000, p = 0.001, samples = 500)

# sampling distribution of the

# Weissman quantile estimator

# based on the moment estimator

# for the extreme-value index
Burr.Weissman (beta = 2, tau = 2, lambda = 0.

[ee]
~

n = 1000, p = 0.001, samples = 500, k = 200)
# sampling distribution of the
# Weissman quantile estimator
# as a function of the threshold
Burr.Weissman (beta = 2, tau = 2, lambda = 0.8,
n = 1000, p = 0.001, samples = 500, k = 50:400)
ChoosekK Automated Threshold Selection for Univariate Tail Estimation

Description

The function is an implementation of an experimental method by the package author for the auto-
mated threshold selection (choice of k) for univariate tail estimation.

Usage
ChooseK(data = x, k = 10: (length(data) - 1), test = "s", alpha = 0.5,
approx = "GPD", method = "ML", plot = TRUE)
Arguments
data A numeric vector containing the data.
k Vector of values of £ = 1,...,n — 1, with n the sample size, among which to
choose.
test A character string specifying the test with which the goodness-of-fit of the ex-
ponential distribution to the residuals will be tested. See ‘Details’.
alpha The nominal level « of the test.
approx A character string specifying the model which is fitted to the tail: the "Weissman"
approximation or the "GPD". See ‘Details’.
method In case approx = "GPD", a character string specifying the estimators for

the parameters of the generalized Pareto distribution fitted to high-threshold ex-
cesses: "Hill", "ML", or "Moment". See Hill.

plot If TRUE (the default), the results will be plotted. See ‘Details’.
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Details

Let X;., < ... < X,,., be the ascending order statistics of the sample. The residuals Z1.; < ... <
Zy..i are defined as follows:

o If approx = "Weissman", then Z;, = log X,,_g+tin — log X,,—g.n. This approach is
suitable only for heavy-tailed distributions, that is, with extreme-value index v > 0.
» If approx = "GPD", then Z;.; = log{1 + v(Xn—k+imn — Xn—kmn)/0c}/o, with v and o
the estimates of the parameters of the generalized Pareto distribution.
To this sample of k residuals, a goodness-of-fit test of the exponential distribution is performed.
The largest k£ for which the null hypothesis is not rejected at level « is the selected value for k.

The argument test specifies which test will be used: "Cox-Oakes", "Gini", "Anderson—
Darling", "Cramer—-von Mises", "correlation", "score". See Henze and Mein-
tanis (2005) and Stephens (1974) for more details on all of these tests but "score". The test
corresponding to "score™" is the score test for ¢ = 0 in the mixture model

F(z)=1- (1 —c¢)exp(—ax) — cexp(—2ax)
Essentially this is a test for the presence for a bias term of the form predicted by the theory of
second-order regular variation.
If plot = TRUE, then two graphs are shown:

 Left: the p-values of the goodness-of-fit test as a function of k.

* Right: an exponential quantile-quantile plot of the residuals Z;.;; at the selected value of k.

If in the functions Hi11, ML or Moment the argument choose .k is set to TRUE, then a value of
k is selected by a call to ChooseK. This is the main use of this function.

Simulation experience shows that the "score™" test works best and that a should be chosen much
larger than the usual values for the type-I error, lest the selected value for & is too large. This is why
the default value is alpha = 0.5, which seems to give good results overall. But see ‘Notes’.

Value

A list with the following components:

P A numeric vector of the same lengths as k with the p-values of the test at the
corresponding threshold.

k0, i0 The selected value of k, specified in two ways: kO = k[i0].

g0, sO The estimated parameters of the generalized Pareto distribution at the selected
threshold (only if method = "GPD").

z0 The residuals at the selected value of k.

test The name of the goodness-of-fit test.

alpha The nominal level of the test.

Note

This method is still experimental. No theory is existing yet. For questions or suggestions, please
feel free to write to (johan.segers @uclouvain.be).

Author(s)

Johan Segers
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References

Henze, N. and Meintanis, S.G. (2005). Recent and classical tests for exponentiality: a partial review
with comparisons. Metrika 61, 29-45.

Stephens, M.A. (1974). EDF statistics for goodness of fit and some comparisons. Journal of the
American Statistical Association 69, 730-737.

Weissman, 1. (1978). Estimation of parameters and large quantiles based on the & largest observa-
tions. Journal of the American Statistical Association 73, 812-815.

See Also

Hill, ML, Moment

Examples
x <= rburr(n = 1000, gamma = 0.5, rho = -0.5)
Hill(x, k = 10:500, log = "x", choose.k = TRUE)
ETDF Empirical Tail Dependence Function
Description
Computes the empirical tail dependence function based on a bivariate sample (X1,Y7), ..., (X,, Ys).
Usage
ETDF (data.x, data.y, data = NULL, v = c(1, 1), Kk,
method = "empirical", plot = TRUE)
Arguments
data.x, data.y
Numeric vectors containing the data X1, ..., X,, and Y1, ...,Y,, respectively.
data Alternatively, the data may be provided in the form of a n-by-2 matrix. If pro-
vided, then the arguments data.x and data .y are ignored.
s The point in which the empirical tail dependence function is to be computed.
k An numeric vector of values for k in the definition of the empirical tail depen-

dence function; see ‘Details’.

method The estimation method, specified by a string. Currently, this argument is ignored
since only the empirical method "empirical" is implemented.

plot If TRUE (the default), the result will be plotted.
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Details

The empirical tail dependence function for a bivariate sample (X1,Y7),. .., (X,,Y,) is defined by

I(x,y) = ZI(Rizn—i—l—kxorSizn—&—l—ky)
i=1

T =

where x,y > 0, where R; and S; are the ranks of the data, and where 0 < k < n is a tuning
parameter. The elements of the input vector v correspond to the values of x and y.

The function is an estimate of the (stable) tail dependence function

1-C0(1 —sz,1—

where C' is the copula of the underlying distribution. In order for the estimator to be consistent, we
need k = k(n) with k to infinity and k/n to zero.

A useful special case is when (z,y) = (1, 1), for A = 2—1(1, 1) is the coefficient of tail dependence:

A= lim P{Fx(X) > 1—s| Fy(Y) > 1-s)}

In particular, [(1,1) = 1 corresponds to asymptotic complete dependence, while I(1,1) = 2 cor-
responds to asymptotic independence. More generally, low (high) values of [(1, 1) indicate strong
(weak) tail dependence.

Another special case is when y = 1 — z, yielding the Pickands dependence function
A(z) =l(z,1 —x)

for0 <z < 1.

Value

A numeric vector of length 1ength (k) , the elements being the corresponding estimates of the tail
dependence function at the point specified by v. The result is returned invisibly.

References

Drees, H. and Huang, X. (1998). Best Attainable Rates of Convergence for Estimators of the Stable
Tail Dependence Function. Journal of Multivariate Analysis 64, 25-47.

See Also

AngularMeasure, PickandsDF

Examples

# The bivariate normal distribution

# with arbitrary correlation not equal to one

# has an asymptotically independent upper tail:
ETDF (data = rbivnorm(le5, cor = 0.9), k = 10:100)

# The Loss—-ALAE data seem to exhibit asymptotic dependence:
data (Loss, ALAE)
ETDF (data.x = Loss, data.y = ALAE, k = 10:100)
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ExtremalIndex Intervals Estimator for the Extremal Index

Description

This function is an implementation of the intervals estimator of Ferro and Segers (2003).

Usage

ExtremalIndex (data, threshold = NULL, k = NULL, plot = TRUE)

Arguments

data A numeric vector containing the data.

threshold The threshold above which excesses will be counted.

k Alternatively, the threshold may be specified as the (k+ 1)th largest order statis-
tic, so that in the abscence of ties there are exactly k excesses. If threshold
is provided, then k is ignored.

plot If TRUE (the default), the result will be plotted.

Details

The extremal index 0 < 6 < 1 of a strictly stationary time series is a measure for tendency of
high-threshold excesses to appear in clusters (Leadbetter, 1988). The extremal index can be thought
of as the reciprocal of the mean of the number of excesses in such a cluster. In particular, § = 1
corresponds to no clustering, that is, asymptotic independence.

For a time series X1, ..., X, and a threshold u, let

1<5<...<S5 <n

be the ordered collection of random time instants ¢ = 1, ..., n such that X; > wu. The inter-arrival
times are defined as

T; = Sit1— 5
for: = 1,..., N — 1. Provided max; T; > 3, the intervals estimator for the extremal index is

defined as the minimum of 1 and

5 (32 (T = 1))?
(N =1)>(T; = 1)(T; - 2)

If the assumptions motivating the estimator are fulfilled, then the distribution of the inter-arrival
times is a mixture of a point mass at zero and an exponential distribution. In an exponential quantile-
quantile plot, the interarrival times should follow a broken-stick model, the location of the knot
being determined by the extremal index. All inter-arrival times to the left of this knot correspond
to intra-cluster inter-arrival times, that is, inter-arrival times within clusters of excesses; similarly,
all inter-arrival times to the right of this knot correspond to inter-cluster inter-arrival times, that
is, inter-arrival times between cluster of excesses. This heuristic also gives an automated way of
partitioning high-threshold excesses into clusters.

If plot = TRUE, then two plots are being shown:

» Top: a time series plot with the high-threshold excesses being partitioned into clusters, the
clusters being shown alternatingly by a red ‘x’ or a green ‘0’.

* Bottom: an exponential quantile-quantile plot with the fitted broken-stick model.
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Value

The extremal index estimate.

References

Ferro, C.A.T. and Segers, J. (2003). Inference for clusters of extreme values. Journal of the Royal
Statistical Society, Series B 65, 545-556.

Leadbetter, M.R. (1983). Extremes and local dependence in stationary sequences. Zeitschrift fuer
Wabhrscheinlichkeitstheorie und Verwandte Gebiete 65, 291-306.

Examples

data (ABN)
ExtremalIndex (-ABN[2000:2500], threshold = 0.05, plot = TRUE)

fitGPD Maximum likelihood estimation of the parameters of the (generalized)
Pareto distribution

Description

Given a sample of positive observations, the functions £itGPD and fitPareto compute the
maximum likelihood estimators of the parameters of the (generalized) Pareto distributions.

Usage

fitGPD (z)
fitPareto(z)

Arguments

z A numeric vector with positive elements.

Details

The generalized Pareto distribution with shape parameter vy and scale parameter o > 0 is defined
by its distribution function
F(z) =1—(1+7z/0)"/"

for all z > 0 such that o + vz > 0.

The Pareto distribution with shape parameter o« > 0 and scale parameter 7 > 0 is defined by its
distribution function
Fz)y=1-(Q1+z/7)7¢

for all z > 0. It is a reparametrization of the generalized Pareto distribution with positive shape
parameter v = 1/« and scale parameter o = 7/a.

Value

For £1t GPD, alist with components gamma and sigma. For fitPareto, alist with components
alpha and tau.
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Note
The function £itGPD is called within the function GPD_par if its argument method is set to
"w ML "w .

References

Smith, R.L. (1987). Estimating tails of probability distributions. The Annals of Statistics 15, 1174-
1207.

See Also

GPD_par, ML

Examples

# order statistics of random sample of size 100

# from the unit Frechet distribution:

x <- sort (- 1/log(runif(100)), decreasing = TRUE)

# fit GPD to sample of excesses over 21th largest observation:
fitGPD(x[1:20] - x[211])

GPD_par Estimate GPD Parameters

Description
Computes estimates of the parameters (-, o) of the generalized Pareto distribution fitted to excesses
over a high threshold.

Usage

GPD_par (data, method = "ML", k = 5:(length(data) - 1))

Arguments

data A numeric vector.

method A character string determining which method will be used: "Hi11", "ML", or
"Moment".

k Integer vector. For each element of k, the parameter estimates will be computed
based on the sample of excesses over the threshold u defined as the (k + 1)th
largest order statistic.

Details
Let X;., < ... < X,., be a the increasing order statistics of the sample. Let k = 1,...,n — 1.

The function fits the generalized Pareto distribution
H(z)=1—(1+7z/0)" /"

to the sample of excesses Xy, —k+in — Xn—km, ¢ = 1,..., Kk over the threshold u = X,,_j.p.

In case method is "Hi11" or "Moment", only those elements of k will be retained for which
the corresponding order statistic is positive.
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Value

A list with the class attribute "GPD_par", which is a list containing the following components:

gamma Numeric vector with the same length as k containing the estimates for .
sigma Numeric vector with the same length as k containing the estimates for o.
threshold Numeric vector of thresholds corresponding to k.
k Vector of k-values that have been used effectively.
n The sample size.

References

Dekkers, A.L.M., Einmahl, J.H.J. and de Haan, L. (1989). A moment estimator for the index of an
extreme-value distribution. The Annals of Statistics 17, 1833-1855.

Hill, B.M. (1975). A simple general approach to inference about the tail of a distribution. The
Annals of Statistics 3, 1163-1174.

Smith, R.L. (1987). Estimating tails of probability distributions. The Annals of Statistics 15, 1174-
1207.

See Also

fitGPD, Hill, ML, Moment

Examples

random sample of size 100

from the unit Frechet distribution:

<- - 1/log(runif (100))

fit GPD to sample of excesses over 21th largest observation:

out <- GPD_par (x)

# plot estimates of gamma as a function of k (on logarithmic scale)

e

# together with the true gamma (= 1)
plot (out$k, out$Sgamma, type = "1", log = "x"); abline(h = 1)
Hill.diagnostic Diagnostic Plot for the Hill Estimator
Description

Computes the Hill estimator at a certain threshold and shows a quantile-quantile plot of the log-
excesses over the threshold versus the exponential distribution.

Usage

Hill.diagnostic (data, k)

Arguments
data A numeric vector containing the observations.
k An integer between 1 and n — 1, where n is the sample size, that is, the length

of the data vector.
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Details
For a sample X1,..., X, with order statistics X;., < ... < X,,., and for the given value of
k=1,...,n— 1, ascatterplot is shown of the points
(log(k + 1) —log(i),log Xp—it1:n — 10g X gn)
fori = 1,...,k. This is in fact a quantile-quantile plot of the excesses of the log-data over the

threshold log X,,_.,, versus the standard exponential distribution.

The Hill estimator is defined as the mean of these log-excesses and is an estimator of the positive
extreme-value index; see Hi11. If the assumptions that justify the Hill estimator are justified, the
points in the above scatterplot should be scattered around the line with intercept zero and slope
equal to the Hill estimator. This heuristic can be transformed into an (experimental) method for
automated threshold selection: see ChooseK.

Value

The function is primarily called for its side-effect, which is to show the above diagnostic plot. It
silently returns a list with the following components:
X The z-coordinates of the points in the scatterplot.

The y-coordinates of the points in the scatterplot.

The Hill estimate.

References

Hill, B.M. (1975). A simple general approach to inference about the tail of a distribution. The
Annals of Statistics 3, 1163-1174.

See Also

ChooseK, GPD_par,Hill

Examples

X <- rburr(n = 1000, gamma = 0.5, rho = -0.5)
Hill.diagnostic(x, k = 20) # high threshold, good fit
Hill.diagnostic(x, k 200) # low threshold, bad fit

extremevalueindex Estimators for the extreme-value index

Description

Implementation of the Hill (1975) estimator, the moment estimator of Dekkers, Einmahl and de
Haan (1989), and the maximum likelihood estimator of Smith (1987) of the extreme-value index.
Allows for computation of confidence intervals and an experimental way to choose the threshold.
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Usage
Hill (data, k = 5:(sum(data > 0) - 1), plot = TRUE,
CIl.type = c("wald", "score", "none"), CI.p = NULL,
choose.k = FALSE, test = "s", alpha = 0.5, ...)
Moment (data, k = 5:(sum(data > 0) - 1), plot = TRUE,
CIl.type = "Wald", CI.p = NULL,
choose.k = FALSE, test = "s", alpha = 0.5, ...)
ML ( data, k = 5:(length(data) - 1), plot = TRUE,
CIl.type = "Wald", CI.p = NULL,
choose.k = FALSE, test = "s", alpha = 0.5, ...)
Arguments
data The data vector
k Vector of k values.
plot Whether or not the results will be plotted. Defaults to TRUE.
CI.type Type of confidence interval. For the functions Moment and ML, only the "Wald"
symmetric confidence intervals are implemented.
CI.p Nominal coverage probability of the confidence interval. If NULL, no confidence
interval will be computed.
choose.k Whether or not a choice for k will be suggested. Defaults to FALSE. See
ChooseK.
test If choose.k = TRUE, determines the test with which the goodness-of-fit of
the exponential distribution to the residuals will be tested. See ChooseK.
alpha If choose.k = TRUE, determines the nominal size of the test with which the
goodness-of-fit of the exponential distribution to the log-excesses will be tested.
See ChooseK.
Further arguments passed on to plot.
Details

By definition, the Hi11 estimator always returns a positive estimate, whereas the Moment and ML
estimates can have either sign.

The Wald confidence interval is the usual symmetric interval centered around the estimator and
based upon the estimated standard error and the normal approximation. In case of the Hi11 esti-
mator, one can also choose the more accurate, asymmetric score confidence intervals (Haeusler
and Segers, 2007).

For the Hi 11 estimator and Moment estimator, values for k for which the k + 1th order statistic is
nonpositive will be ignored.

If plot = TRUE, the estimates are displayed as a function of k. Add the extra argument 1og =
"x" to display the horizontal axis on a log-scale, as in the altHill plot (Resnick and Starica 1997,
Drees et al. 2000).

If choose.k = TRUE, a value of k is selected using the function ChooseK with arguments
test and alpha, and with argument approx = Weissman for the function Hi1l1l and with
the arguments approx = "GPD", method = "ML" and approx = "GPD", method =
"Moment " for the functions ML and Moment, respectively. In addition, if plot = TRUE, three
plots are shown:

* Top: The estimates as a function of k.
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* Bottom left: the p-values of the goodness-of-fit test as a function of k. See ChooseK.

* Bottom right: an exponential quantile-quantile plot of the residuals Z;.; at the selected value
of k. See ChooseK.

Value

A list with the class attribute "EVI". If choose.k = TRUE, then the list gets the extra class
attribute "ChooseK" and a number of extra fields related to the choice of £ as in ChooseK.

n
k
threshold
estimate
CI
CI.type
CIl.p
std.err
data
quantity

method

References

The sample size.

Vector of values of & for which the Hill estimator has been computed.
Vector of thresholds corresponding to k.

Vector of corresponding Hill estimates.

Matrix of upper and lower bounds of corresponding corresponding intervals.
The type of confidence interval.

Nominal coverage probability of the confidence intervals.

Vector of estimated standard errors.

The data

The string "gamma".

The name of the estimator used: "Hi11", "ML" or "Moment".

If choose.k = TRUE, then the fields as in the output of ChooseK are present
as well.

Dekkers, A.L.M., Einmahl, J.H.J. and de Haan, L. (1989). A moment estimator for the index of an
extreme-value distribution. The Annals of Statistics 17, 1833-1855.

Drees, H., de Haan, L., and Resnick, S. (2000). How to make a Hill plot. The Annals of Statistics

28, 254-274.

Haeusler, E. and Segers, J. (2007). Assessing confidence intervals for the tail index by Edgeworth
expansions for the Hill estimator. Bernoulli 13, 175-194.

Hill, B.M. (1975). A simple general approach to inference about the tail of a distribution. The
Annals of Statistics 3, 1163-1174.

Resnick, S. and Starica, C. (1997). Smoothing the Hill estimator. Advances in Applied Probability

29, 271-293.

Smith, R.L. (1987). Estimating tails of probability distributions. The Annals of Statistics 15, 1174-

1207.

See Also

ChooseK, GPD_par,Hill.diagnostic
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Examples

# 1. power law with gamma = 1
x <—= 1/runif (100)

Hill(x, CI.p = 0.95)

abline(h = 1, col = "blue")

# 2. altHill plot:

# display k on log-scale

# emphasise smaller k

X <- rburr(n = 1000, gamma = 0.5, rho = -0.75)
# linear scale

Hill(x, k = 10:500)

abline(h = 0.5, col = "blue")
# log scale

Hill(x, k = 10:500, log = "x")
abline(h = 0.5, col = "blue")

# 3. ML and Moment estimators
data (soa)

Moment (soa, k = 20:3000)

ML (soa, k = 20:3000)

# 4. choosing k

data (soa)

Moment (soa, k = 20:10000)

Moment (soa, k 20:10000, choose.k = TRUE)

LossALAE Liability Claims and Allocated Loss Adjustment Expenses

Description

General liability claims Loss and allocated loss adjustement expenses ALAE provided by Insurance
Services Office, Inc.

Usage

data (Loss)
data (ALAE)

Format

Numeric vectors of length 1500.

Details

Quoted from Frees and Valdez (1998), p. 12: “The data comprise 1500 general liability claims ran-
domly chosen from late settlement lags and were provided by Insurance Services Office, Inc. Each
claim consists of an indemnity payment Loss and an allocated loss adjustment expense ALAE.
Here, ALAE are types of insurance company expenses that are specifically attributable to the settle-
ment of individual claims such as lawyers’ fees and claims investigation expenses.”

Amongst others, the data are also analysed in Beirlant et al. (2004, chapter 9).
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Source

Frees, E.W. en Valdez, E.A. (1998) Understanding relationships using copulas. North American
Actuarial Journal 2, 1-15.

References

Beirlant, J., Goegebeur, Y., Segers, J., and Teugels, J. (2004). Statistics of Extremes. Wiley, Chich-
ester. http://lstat.kuleuven.be/Wiley/index.html

Examples

data (Loss, ALAE)
plot (Loss, ALAE, xlog = TRUE, ylog = TRUE)

MEplot Mean-Excess Plot

Description

Draws the mean-excess plot for a given sample.

Usage
MEplot (data, omit = 0, ...)
Arguments
data The sample.
omit Number of largest observations for which the mean-excess function will not be
plotted.
Further arguments passed on to plot.
Details

The mean-excess function of the distribution of the random variable X is defined as
m(z) = E[X —z | X > z]

Its empirical counterpart, the empirical mean-excess function r(x), is defined by taking expecta-
tions with respect to the empirical distribution: for z < maz;(X;),

~ >o;max(X; —x,0)

) = SSTx s )
The mean-excess plot is the plot of the pairs
(X5, M (X))
fort =1,...,n— 1. Often, the points corresponding to the largest order statistics are omitted from

the plot; this is the purpose of the argument omit.
For a distribution with extreme-value index v < 1,
m(z)  max(v,0)

lim =
T—o0 I 1—7

As a consequence, if the empirical mean-excess function is increasing for large x, then this is an
indication that the underlying distribution has a heavy tail.


http://lstat.kuleuven.be/Wiley/index.html
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Value

The function is mainly used for its side-effect, which is to plot the mean-excess function. The
function invisibly returns a list with two components:

X The x-coordinates of the points in the mean-excess plot.
me The y-coordinates of the points in the mean-excess plot.
Examples
# for exponential data, the mean-excess function is approx. constant:
X <— rexp(n = 100, rate = 1)
MEplot (x)

# for heavy-tailed data, the mean-excess function is increasing:
x <- rburr(n = 100, gamma = 0.5, rho = -1)
MEplot (x, omit = 5)

# the Loss data look heavy-tailed:
data (Loss)
MEplot (Loss)

norwegian Norwegian Fire Insurance Data

Description

Norwegian fire insurance data treated in Beirlant et al. (1996a) and in Beirlant et al. (2004, Example
1.2). The data consists of fire insurance claims (times 1000 NOK) of the claims for the period 1972-
1992. A priority of 500 units was in force.

Usage

data (norwegian)

Format

The data is a 11 st with components y72, ..., y92. Each component is a numeric vector contain-
ing the claim values in increasing order. The number of claims may vary per year.

Source

Beirlant, J., Teugels, J.L., and Vynckier, P. (1996). Practical Analysis of Extreme Values. Leuven
University Press.

References

Beirlant, J., Goegebeur, Y., Segers, J., and Teugels, J. (2004). Statistics of Extremes. Wiley, Chich-
ester. http://lstat.kuleuven.be/Wiley/index.html

Examples

data (norwegian)
hist (norwegians$y81)
Hill (norwegian$y81)


http://lstat.kuleuven.be/Wiley/index.html
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PickandsDF Pickands Dependence Function

Description
Computes an estimate of the Pickands dependence function of the extreme-value attractor of a
bivariate distribution based on a bivariate sample (X1,Y7),. .., (X,,Y},) from that distribution.
Usage
PickandsDF (data.x, data.y, data = NULL, w = (0:20)/20, k,

method = "empirical", plot = TRUE)

Arguments

data.x, data.y

Numeric vectors containing the data X, ..., X, and Y7, ...,Y,,, respectively.

data Alternatively, the data may be provided in the form of a n-by-2 matrix. If pro-
vided, then the arguments data . x and data .y are ignored.

w A numeric vector giving the points in which the estimate of the Pickands de-
pendence function will be computed. All the elements should be between 0 and
1.

k A number specifying the tuning parameter k at which the estimate will be com-
puted. See ‘Details’.

method A string specifying the estimation method; possible choices are "empirical™"
and "angulazr". See ‘Details’.

plot If TRUE (the default), the result will be plotted.

Details

The Pickands dependence function of a bivariate extreme-value distribution is defined by
A(w) = l(w,1 —w)

for 0 < w < 1, where [ is the (stable) tail dependence function; see ETDF for more details.
Conversely,

lz,y) = (z + y)A(z/(z +y))
forx,y > 0andx +y > 0.

A function A from [0, 1] to [0, 1/2] is a Pickands dependence function if and only if (i) it is convex
and (i) max(w,1 — w) < A(w) < 1forall 0 < w < 1. The lower bound corresponds to
asymptotic complete dependence, the upper bound to asymptotic independence. The coefficient of
tail dependence is given by A = 2 — [(1,1) = 2(1 — A(0.5)).

If method = "empirical", the estimate is computed by

A(w) = l(w,1 —w)

where [ is the empirical tail dependence function computed by ETDF at k = k. In general, the
estimator does not satisfy any of the two requirements above.
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Ifmethod = "angular", the estimate is computed by

/2 .
A(w) = /0 max(w cos @, (1 — w) sin 6)dP(0)

where & is an estimate of the angular measure; the estimator used is the estimator as implemented in
AngularMeasure with k = k and method = "c". In this way, the estimator is guaranteed
to satisfy the two constraints mentioned above. By exploiting the above relations between A and [,
a nonparametric estimator of [ is obtained that is itself a stable tail dependence function.

Value
A length (w)-by-length (methods) matrix containing at position (¢, j) the point estimate at
w[1] computed by method methods [ j]. The result is returned invisibly.

References
Pickands, J. (1981) Multivariate extreme value distributions. In: Bulletin of the International Sta-
tistical Institute, Proceedings of the 43rd Session, Buenos Aires, pp. 859-878.

See Also

ETDF, AngularMeasure

Examples

x <- rbivcauchy (1000)
w <- seq(from = 0, to =1, by = 0.02)

PickandsDF (data = x, w = w, k = 20, method = c("empirical", "angular"))
lines(w, sqgrt(w*2 + (l-w)”"2), col = "red")
rbivcauchy Random Number Generation for the Bivariate Cauchy Distribution

Description

Generates a random sample of the bivariate Cauchy distribution on the positive quadrant.

Usage

rbivcauchy (n)

Arguments

n Sample size.
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Details
The density of the bivariate Cauchy distribution on the positive quadrant is given by

2
(14 22 4 y2)3/2

f(z,y)

for z,y > 0. Its marginal distributions are the standard Cauchy distribution restricted to the positive
half-line.

The bivariate Cauchy distribution is elliptic: a random pair (X,Y") with this distribution can be
represented as
(X,Y) =(Rcos©,RsinO)

where R > 0 and 0 < © < 7/2 are independent random variables, P(R > r) = (1 + r2)~/2 for
r > 0, and © is uniformly distributed on the interval [0, 7/2].

The bivariate Cauchy distribution is in the bivariate max-domain of attraction of the bivariate
extreme-value distribution with unit Frechet margins and with stable tail dependence function

la,y) = (% + )2

for z,y > 0; see Einmahl et al. (2001). The angular or spectral measure with respect to the
Euclidean norm is simply
@([0,0]) = 0

for0 <60 < x/2.

Value

An n-by-2 matrix containing the generated data.

References

Einmabhl, J.H.J., de Haan, L. and Piterbarg, V.I. (2001). Nonparametric estimation of the spectral
measure of an extreme value distribution. The Annals of Statistics 29, 1401-1423.

Examples

x <- rbivcauchy (1000)
AngularMeasure (data = x

, k = c(20, 30, 50))
abline(a = 0, b =1, col =

"red")

rbivnorm Random Number Generation for the Bivariate Normal Distribution

Description
Generates a random sample of the bivariate Normal distribution with given means, variances, and
correlation.

Usage

rbivnorm(n, mean.x = 0, sd.x = 1, mean.y = 0, sd.y = 1, cor = 0)
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Arguments

n Sample size.
mean.x, mean.y
Means of the two components. Default value is 0.

sd.x, sd.y Standard deviations of the two components. Should be positive. Default value
is 1.

cor Linear correlation between the two components. Should be between —1 and 1.
Default value is 0.

Value

An n-by-2 matrix containing the generated data.

Examples

Even for high correlation,

the bivariate normal distribution has
asymptotic independence in the tails:
<— rbivnorm (10000, cor = 0.9)
plot(xI[,1], x[,2])

plot (rank (x[,1]), rank(x[,2]))

X e

rburr Random number generation of the Burr distribution

Description

Generates a random sample from the Burr distribution with parameters v > 0 and p < 0, defined
by its distribution function
F(z)=1— (=" +1)°

for z > 0.

Usage

rburr (n, gamma, rho)

Arguments

n Sample size.

gamma, rho Parameters of the Burr distribution.

Details

The parametrization is chosen such that v and p are the extreme-value index and second-order
parameter of the distribution, respectively.

Value

A numeric vector of length n.
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Examples

# rho far away from zero

# ==> fast convergence in domain-of-attraction asymptotics
# ==> estimates are stable as a function of the threshold
X <- rburr(n = le4, gamma = 0.5, rho = -1)
Hill(x, k = 10:1e3, ylim = c(0,1), log = "x")
abline(h = 0.5, col = "red")
# rho close to zero
# ==> slow convergence in domain-of-attraction asymptotics
# ==> only the highest thresholds can be used
x <-= rburr(n = le4, gamma = 0.5, rho = -0.25)
Hill(x, k = 10:1e3, ylim = c¢(0,1), log = "x")
abline(h = 0.5, col = "red")
RiskMeasure Risk Measure
Description

Computes a number of (tail-related) risk measures for a number of distributions.

Usage

RiskMeasure (dist, par, rm, a = 0, b = Inf, eta =1, p = 1)

Arguments
dist A character string indicating the distribution. See Details below.
par A numeric vector containing the parameters of the distribution. Parameters of
the distribution. See Details below.
rm A character string containing the parameter of the distribution.
a, b Lower and upper level of an excess-of-loss contract; will be ignored unless rm
n XL n .
eta Shape parameter in proportional hazards transform; will be ignored unless rm
= "py",
jo) Tail probability in case of expected shortfall, tail quantile, or economic capital.
Will be ignored unless rm takes one of the values "EC", "ES", or "TQ".
Details

The purpose of this function is primarily to investigate the performance of various estimators of
tail-related risk measures implemented by providing the true values for a number of heavy-tailed
distributions.

The arguments dist and par determine for which distribution the desired risk measure will be

computed:

"abs_t" Distribution of the absolute value of a Student-f random variable with degrees of free-
dom nu determined by par.

"Pareto" The Pareto distribution with shape parameter alpha determined by par.
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The risk measure to be computed is determined by the value of the argument rm and, if relevant,
the values of the arguments a, b, nu, and p:

"E" Expectation E(X).
"EC" Economic Capital, defined as Q(1 — p) — E(X), with tail probability p.

"ES" Expected Shortfall, defined as E[X|X > u], the threshold u = Q(1 — p) being determined
by the tail probability p.

"PH" Proportional Hazards transform, defined as fOOO{P(X > x)}"dx with shape parameter
eta.

"TQ" Tail Quantile Q(1 — p) with tail probability p.

"Var" Variance var(X).

"XL" Excess-of-Loss net premium E[max(min(X,b) — a)] with lower limit a and upper limit b.
Setb = Inf in case of no upper limit.

Value

A number.

See Also

EconomicCapital,ExcessLoss,Expectation, ExpectedShortfall,PHtransform,
Variance

Examples

# absolute values of random numbers from the t-distribution:
X <= abs(rt(n = 1000, df = 2))
# estimated tail quantile

TailQuantile(X, p = 0.001, k = (1:20)%*5)
# true tail quantile
RiskMeasure (dist = "abs_t", par = 2, rm = "IQ", p = 0.001)

RiskMeasureEstimators
Risk Measure Estimators

Description

Estimators of various of tail-related risk measures.

Usage

EconomicCapital(y, p, k = 5:(length(y) - 1),

approx = "GPD", method = "ML", plot = TRUE, ...)
ExcessLoss(y, a, b = Inf, k = 5:(length(y) - 1),

approx = "GPD", method = "ML", plot = TRUE, ...)
Expectation(y, k = 5:(length(y) - 1),

approx = "GPD", method = "ML", plot = TRUE, ...)
ExpectedShortfall(y, p, k = 5:(length(y) - 1),

approx = "GPD", method = "ML", plot = TRUE, ...)

PHtransform(y, eta = 1, k = 5:(length(y) - 1),
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approx = "GPD", method = "ML", plot = TRUE, ...)
TailQuantile(y, p, k = 5:(length(y) - 1),
approx = "GPD", method = "Moment",

choose.k = FALSE, B = 1000, leave.out = 20,
k_rho = ceiling(length(y)~0.95),

test = "s", alpha = 0.5, plot = TRUE, ...)
Variance(y, k = 5:(length(y) - 1),
approx = "GPD", method = "ML", plot = TRUE, ...)
Arguments
y A numeric vector containing the data.
o) Tail probability.
a,b Upper and lower limits of the excess-of-loss reinsurance contract.
eta Exponent 7 in the definition of the PH-transform.
k Vector of k values, determining at which threshold(s) the estimator will be com-
puted.
approx Approximation method for the tail: "GPD" (default) or "Weissman". The
latter method is suitable only for heavy-tailed distributions, that is, with extreme-
value index v > 0.
method Estimation method for the tail parameters: "Hill", "ML", or "Moment".
Will be passed on to the function GPD_par.
plot Whether or not the results will be plotted. Defaults to TRUE.
choose.k If FALSE (the default), no automated threshold selection will be attempted. The

other two possibilities are:

* "Bootstrap", in which case £ will be chosen according to the bootstrap
method of Ferreira et al. (2003);
* "Test", in which case k will be chosen according to an experimental
method described in ChoosekK.
B, leave.out, k_rho
If choose.k = "Bootstrap", these parameters are passed on to the boos-
trap procedure to select k; see ‘Details’.

test, alpha Ifchoose.k = "Test",these arguments are passed on to ChooseK for the
selection of k. If plot = TRUE, then the choice of k is illustrated through a
number of extra graphs, see ChooseK.

Further arguments passed on to plot. For instance, 1log = "x" puts the hor-
izontal axis on a logarithmic scale, which sometimes facilitates the choice of the
threshold via k.

Details

See RiskMeasure of a description of the risk measures above.

The risk measures are estimated as functionals of the estimated distribution. The latter is estimated
in two pieces:

1. Nonparametrically up to the threshold X, .., the (k+1)-largest order statistic of the sample.
2. With extreme-value theory beyond X,, .y, .

The argument approx determines which approximation is used for the tail beyond X, _j.,:
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e If approx

as

= "Weissman", the tail probability 1 — F'(z) at x > X,,_j., > 0 is estimated

(k/n) (x/Xn—k:n):Y

with v a positive estimator of the extreme-value index.

* If approx = "GPD", the tail probability 1 — F'(z) at x > X,,_.,, is estimated as

(k/n)(1 +4(z — Xp_pn) /6) 77

with v and o estimators of the generalized Pareto distribution fitted to the excesses over the
threshold X,,_..,.

In both cases, the tail parameters are estimated by a call to the function GPD_par with arguments
approx and method.

For the function TailQuantile, two methods for automated threshold selection are imple-

mented:

* For choose.k = "Bootstrap", the bootstrap method of Ferreira et al. (2003). This
method is implemented in the function TQ_ ChooseK [help file under construction], to which
the additional arguments are passed on:

— B, the number of bootstrap samples;

— leave.out, the number of lowest and highest k-values to leave out in the search for
the k that minimizes the estimated asymptotic mean squared error;

— k_rho, determining the threshold at which to estimate the second-order parameter \ rho.

* Forchoose.k = "Test",anexperimental method implemented in the function ChooseK
and with arguments test and alpha.

Value

An object with class attribute "EVI", that is, a list with the following components:

n
k
threshold
estimate
CI

data
quantity
method

gamma

References

Sample size.

Number of threshold excesses.
Vector of thresholds.

Vector of point estimates.

NULL (Confidence intervals are still to be implemented; however, for tail quan-
tiles, see Weissman.q.)

A character string indicating the name of the data.

A character string describing the quantity being estimated.
A character string describing the estimator.

Vector of estimates of the extreme-value index.

If choose.k is "Bootstrap" or "Test", the list contains a number of
additional component providing diagnostics related to the choice of k [help file
under construction].

A. Ferreira, L. de Haan and L. Peng (2003). On optimizing the estimation of high quantiles of a
probability distribution. Statistics 37, 401-434.

Wang, S. (1995). Insurance Pricing and Increased Limits Ratemaking by Proportional Hazards
Transforms. Insurance: Mathematics and Economics 17, 43-54.

Weissman, 1. (1978). Estimation of parameters and large quantiles based on the k largest observa-
tions. Journal of the American Statistical Association 73, 812-815.
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See Also

Hill, ML, Moment, GPD_par, RiskMeasure, Weissman.q

Examples

# tail quantile and excess-of-loss net premium
# for Loss data of Frees and Valdez (1998)
data (Loss)

TailQuantile(Loss, p = 0.001, k = 25:200)
ExcessLoss (Loss, a = 1.2e6, k = 25:200)
soa SOA Group Medical Insurance Large Claims Database

Description

Claim data for 1991 of the Society of Actuaries’ Group Medical Insurance Large Claims Database.
Only claims over 25000 USD are in the database.

Usage

data (soa)

Format

Numeric vector of length 75789.

Details

See Grazier and G’Sell Associates (1997) for a thorough description of the data.

Amongst others, the data are also analysed in Cebrian et al. (2003) and in Beirlant et al. (2004,
chapter 9).

Source

Grazier, K.L. and G’Sell Associates (1997). Group Medical Insurance Large Claims Database and
Collection. SOA Monograph M-HB97-1, Society of Actuaries, Schaumburg.

http://www.soa.org

References

Beirlant, J., Goegebeur, Y., Segers, J., and Teugels, J. (2004). Statistics of Extremes. Wiley, Chich-
ester. http://lstat.kuleuven.be/Wiley/index.html

Cebrian, A., Denuit, M., and Lambert, Ph. (2003). Generalized Pareto fit to the society of Actuaries’
large claims database. North American Actuarial Journal 7, 18-36.

Examples

data (soa)
Hill (soca, k = (1:100)%20)


http://www.soa.org
http://lstat.kuleuven.be/Wiley/index.html
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TailProb_sum

Tail Probability Estimation for a Sum of Random Variables

Description

Computes an estimate of the probability that w, X + wyY > s, where s is large.

Usage
TailProb_sum/(
tail.
Arguments

S

w.X

w.y
tail.x

tail.y
Phi

plot

Details

Iftail.x$k and

s, w.x =1, w.y =1,
x, tail.y, Phi, plot = TRUE)

The level for which the probability of excess is to be estimated.
A positive number; the weight w,, of X.
A positive number; the weight w,, of X.

An object with class attribute "GPD_par", i.e. the output of a call to the
function GPD_par applied to the X data.

Idem, now for the Y data.

An object with class attribute "AngularMeasure™", i.e. the output of a call
to the function AngularMeasure applied to the data.

If TRUE (the default), the results will be plotted.

tail.ys$k are vectors, the tail probability will be estimated for every possible

combination of choices of k for X and Y.

If plot is TRUE, the tail probability estimates are plotted as a surface in function of tail.x$k

and tail.y$k.

Value

The function invisibly returns a matrix with at position (4, j) the estimated tail probability when the
tails of X and Y are estimated for k equalto tail.x$k[i] and tail.x$k[]].

See Also

AngularMeasure, GPD_par, TailQuantile_sum

Examples

# estimate probability that the daily logreturn
# of a balanced portfolio of stocks ABN AMRO and ING

# is less than
# of more than
data (ABN, ING)

-0.10, i.e. a loss on the portfolio
about 10 percent

GPD.x <- GPD_par (-ABN, method = "Moment", k = (2:30)%x10)
GPD.y <- GPD_par (-ING, method = "Moment", k = (2:30)%x10)
Phi <- AngularMeasure (data.x = -ABN, data.y = -ING, k = 100)

TailProb_sum(s =

tail.x

0.10, w.x = 0.5, w.y = 0.5,
= GPD.x, tail.y = GPD.y, Phi = Phi)
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TailQuantile_sum Tail Quantile Estimation for a Sum of Random Variables

Description

Computes an estimate of a tail quantile of a weighted sum w, X + w, Y.

Usage

TailQuantile_sum(p, w.x = NULL, w.y = NULL, lambda = NULL,
tail.x, tail.y, Phi, lower, upper, plot = TRUE)

Arguments
) Tail probability.
W.X, W.y Weights w, > 0 and w, > 0 for X and Y, respectively; can be vectors (of the
same length).
lambda The weights may also be specified in the form w, = A and wy, = 1 — A.
tail.x An object with class attribute "GPD_par", i.e. the output of a call to the
function GPD_par applied to the X data with a single value for k.
tail.y Similarly for Y.
Phi An object with class attribute "AngularMeasure", i.e. the output of a call
to the function AngularMeasure applied to the data.
lower A priori lower bound for the tail quantiles.
upper A priori upper bound for the tail quantiles.
plot If TRUE (the default), the results will be plotted.
Details

A search is performed to find the value of s so that the tail probability estimated by Tai1Prob_sum
is equal to p.

If plot is TRUE, the estimated tail probabilities are plotted as a function of w. x or Lambda.

Value

The function silently returns the vector of tail quantile estimates.

See Also

AngularMeasure, GPD_par, TailProb_sum

Examples
# determine a level s such that
# the probability that
# a portfolio of stocks ABN AMRO and ING
# has a daily logreturn of less than -s
# is equal to 0.001

data (ABN, ING)
GPD.x <- GPD_par (-ABN, method = "Moment", k = 100)
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print (GPD.x)

GPD.y <- GPD_par (-ING, method = "Moment", k = 100)

print (GPD.y)

Phi <- AngularMeasure (data.x = -ABN, data.y = -ING, k = 100)
TailQuantile_sum(p = 0.001, lambda = (0:10)/10,

lower = 0.05, upper = 0.15,
tail.x = GPD.x, tail.y = GPD.y, Phi = Phi)

top40 The 40 Most Costly Insurance Losses

Description

The 40 most costly insurance losses (property and business interruption, excluding liability and life
insurance losses) as provided in Sigma (2006, No. 2, p. 35). The amounts are indexed to 2005 and
are expressed in million USD.

Usage

data (top40)

Format

A numeric vector of length 40.

Source

Sigma (2006, No. 2). Swiss Reinsurance Company, Zuerich. http://www.swissre.com/
sigma.

Examples

data (top40)

top40

summary (top40)

hist (top40)

plot (top40, type = "h")
Hill (top40)

UvT_Cat Random Number Generation from a Heavy-Tailed Distribution

Description

Generates random samples of the convolution ' = G * H of the generalized Pareto distribution G
with parameters v = 0.75 and 0 = 1 on the one hand and the Gamma(3, 1) distribution H on the
other hand.

Usage

UvT_Cat (n)


http://www.swissre.com/sigma
http://www.swissre.com/sigma
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Arguments

n Sample size.

Value

A numeric vector of length n.

See Also

rgamma

Examples

x <= UvT_Cat (1000)
Hill (x)

Weissman.q Weissman Quantile Estimator

Description

This function is an implementation of the Weissman (1978) estimator for a high tail quantile of a
heavy-tailed distribution based on an estimate of the (positive) extreme-value index.

Usage
Weissman.qg(EVI, p, plot = TRUE, ...)
Arguments
EVI An object with class attribute "EVI", i.e. the output of one of the functions
Hill, ML, or Moment. See ‘Examples’ below.
P Tail probability of the quantile to be estimated.
plot If TRUE (the default), the result will be plotted.
Further arguments passed on to plot provided plot = TRUE. For instance,
log = "x",log = "y",and log = "xy" draw the horizontal and/or the
vertical axis on logarithmic scale. The former is useful for selecting %, the latter
is useful for estimating extreme quantiles of very heavy-tailed distributions.
Details

Let Xy, < ... < X,,.,, be the ascending order statistics of a sample and let k = 1,...,n — 1
be such that X,, ., > 0. For 0 < p < k/n, the Weissman (1978) estimator of the tail quantile
Q(1 — p) is defined as A

Xn—kn(k/(np))”
where ¥ is a positive estimate of the extreme-value index.

For random samples from a distribution with positive extreme-value index and if

* k =k, is an intermediate sequence, i.e., k/n — 0 and k — oo,

* 0 < p=p, < k/ntends to zero at a certain speed,
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* 4, is a consistent estimator sequence of the extreme-value index,

the Weissman quantile estimator is consistent in the sense that the relative error tends to zero. Under
additional assumptions, the estimator is also asymptotically normal; see for instance Beirlant et al.
(2004, section 4.6.1).

Value
An object with class attribute "EVI", that is, a list with the following components:
n Sample size.

k Number of threshold excesses.

threshold Vector of thresholds.

estimate Vector of point estimates.
CI Matrix with upper and lower endpoints of confidence intervals.
CI.type A character string indicating the type of confidence interval.
CIl.p Nominal coverage probability of confidence interval.
data A character string indicating the name of the data.
quantity A list with two components: name, equal to "Q", and par, equal to 1-p.
method A character string describing the estimator.
References

Beirlant, J., Goegebeur, Y., Segers, J., and Teugels, J. (2004). Statistics of Extremes. Wiley, Chich-
ester.

Weissman, 1. (1978). Estimation of parameters and large quantiles based on the & largest observa-
tions. Journal of the American Statistical Association 73, 812-815.

See Also

Burr.Weissman, Hill, ML, Moment, TailQuantile

Examples

# norwegian fire insurance data:

data (norwegian)

# estimate gamma by the moment estimator:

gamma .M <- Moment (norwegian$y81, CI.p = 0.9, k = 10:100)
# use output gamma.M as input for the Weissman estimator:
Q.M <- Weissman.g(gamma.M, p = 0.01)
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