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Abstract— We discuss an old distributed algorithm for reach-
ing consensus that has received a fair amount of recent
attention. In this algorithm, a number of agents exchange
their values asynchronously and form weighted averages with
(possibly outdated) values possessed by their neighbors. We
overview existing convergence results, and establish some new
ones, for the case of unbounded intercommunication intervals.

I. INTRODUCTION

We consider a set N = {1, . . . , n} of agents that try to
reach agreement on a common scalar value by exchanging
tentative values and combining them by forming convex
combinations. The motivation for such a scheme comes from
a variety of contexts involving distributed systems. For ex-
ample, a number of sensors may wish to combine individual
estimates of a certain variable or form an aggregate statistic;
or a number of vehicles may wish to align their directions
of motion through interaction with their neighbors.

The “agreement algorithm” considered here and its orig-
inal analysis is due to Tsitsiklis et al. [14]. The complete
proof is in [13], and a simplified version is presented in the
text [3]. A related algorithm was later proposed by Vicsek et
al. [15], as a model of cooperative behavior. The subject has
attracted considerable recent interest, within the context of
flocking and multiagent coordination ([8], [4], [11], [9], [1],
[12], [10]). A further special case, concerns the computation
of the exact average of the agents’ values (as opposed to
reaching consensus on some intermediate value); see, e.g.,
[5] and references therein.

The remainder of this paper is organized as follows. In
Section 2, we present the basic model of interest. In Section
3, we present convergence results in the absence of commu-
nication delays. In Section 4, we allow for communication
delays and establish a new result: convergence, even with
unbounded intercommunication intervals, as long as some
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weak form of symmetry is present. Section 5 provides some
brief concluding comments.

II. THE AGREEMENT ALGORITHM.

In the absence of communication delays, the algorithm is
as follows. Each agent i starts with a scalar value xi(0).
The vector x(t) = (x1(t), . . . , xn(t)) with the values held
by the agents at time t, is updated according to the equation
x(t+ 1) = A(t)x(t), or

xi(t+ 1) =

n∑
j=1

aij(t)xj(t),

where A(t) is a nonnegative matrix with entries aij(t), and
and where the updates are carried out at some discrete
set of times which we will take, for simplicity, to be the
nonnegative integers. We will assume that the row-sums of
A(t) are equal to 1, so that A(t) is a stochastic matrix. In
particular, xi(t+1) is a weighted average of the values xj(t)
held by the agents at time t. We are interested in conditions
that guarantee the convergence of each xi(t) to a constant,
independent of i.

Throughout, we assume the following.

Assumption 1. There exists a positive constant α such that:
(a) aii(t) ≥ α, for all i, t.
(b) aij(t) ∈ {0} ∪ [α, 1], for all i, j, t.
(c)
∑n
j=1 aij(t) = 1, for all i, t.

Intuitively, whenever aij(t) > 0, agent j communicates
its current value xj(t) to agent i. Each agent i updates its
own value, by forming a weighted average of its own value
and the values it has just received from other agents.

The communication pattern at each time step can be
described in terms of a directed graph G(t) = (N,E(t)),
where (j, i) ∈ E(t) if and only if aij(t) > 0. A minimal
assumption, which is necessary for consensus to be reached,
requires that following an arbitrary time t, and for any i,
j, there is a sequence of communications through which
agent i will influence (directly or indirectly) the value held
by agent j.

Assumption 2. (Connectivity) The graph (N,∪s≥tE(s)) is
strongly connected for all t ≥ 0.

We note various special cases of possible interest.

Fixed coefficients: There is a fixed matrix A, with entries
aij such that, for each t, we have aij(t) ∈ {0} ∪ {aij}
(depending on whether there is a communication from j to
i at that time). This is the case presented in [3].



Symmetric model: If (i, j) ∈ E(t) then (j, i) ∈ E(t). That
is, whenever i communicates to j, there is a simultaneous
communication from j to i.

Equal neighbor model: Here,

aij(t) =

{
1/ni(t), if j ∈ Ni(t),
0, if j /∈ Ni(t),

where Ni(t) = {j | (j, i) ∈ E(t)} is the set of agents j
whose value is taken into account by i at time t, and ni(t)
is its cardinality.

This model is a linear version of a model considered
by Vicsek et al. [15]. Note that here the constant α of
Assumption 1 is equal to 1/n.

Pairwise averaging model ([5]): This is the special case of
both the symmetric model and of the equal neighbor model
in which, at each time, there is a set of disjoint pairs of
agents who communicate (bidirectionally) with each other.
If i communicates with j, then xi(t + 1) = xj(t + 1) =
(xi(t) + xj(t))/2. Note that the sum x1(t) + · · ·+ xn(t) is
conserved; therefore, if consensus is reached, it has to be on
the average of the initial values of the nodes.

The assumption below is referred to as “partial asynchro-
nism” in [3]. We will see that it is sometimes necessary for
convergence.

Assumption 3. (Bounded intercommunication intervals)
If i communicates to j an infinite number of times [that is,
if (i, j) ∈ E(t) infinitely often], then there is some B such
that, for all t, (i, j) ∈ E(t)∪E(t+1)∪ · · · ∪E(t+B− 1).

III. CONVERGENCE RESULTS IN THE ABSENCE OF
DELAYS.

We say that the agreement algorithm guarantees asymp-
totic consensus if the following holds: for every x(0),
and for every sequence {A(t)} allowed by whatever as-
sumptions have been placed, there exists some c such that
limt→∞ xi(t) = c, for all i.

Theorem 1. Under Assumptions 1, 2 (connectivity), and
3 (bounded intercommunication intervals), the agreement
algorithm guarantees asymptotic consensus.

Theorem 1 subsumes the special cases of symmetry or of
the equal neighbor model, and therefore subsequent conver-
gence results and proofs for those cases.

Theorem 1 is presented in [14] and is proved in [13]; a
simplified proof, for the special case of fixed coefficients
can be found in [3]. The main idea, which applies to most
results of this type, is as follows. Let m(t) = mini xi(t)
and M(t) = maxi xi(t). Since each A(t) is stochastic, it is
straightforward to verify that m(t) and M(t) are nondecreas-
ing and nonincreasing, respectively. It then suffices to verify
that the difference M(t) − m(t) is reduced by a constant
factor over a sufficiently large time interval; the interval is
chosen so that every agent gets to influence (indirectly) every
other agent; by tracing the chain of such influences, and
using the assumption that each influence has a nontrivial

“strength” (our assumption that whenever aij(t) is nonzero,
it is bounded below by α > 0), the result follows.

In the absence of the bounded intercommunication interval
assumption, the algorithm does not guarantee asymptotic
consensus, as shown by Example 1 below (Exercise 3.1,
in p. 517 of [3]). In particular, convergence to consensus
fails even in the special case of the equal neighbor model.
The main idea is that the agreement algorithm can closely
emulate a nonconvergent algorithm that keeps executing the
three instructions x1 := x3, x3 := x2, x2 := x1, one after
the other.

Example 1. Let n = 3, and suppose that x(0) = (0, 0, 1).
Let ε1 be a small positive constant. Consider the following
sequence of events. Agent 3 communicates to agent 1; agent
1 forms the average of its own value and the received value.
This is repeated t1 times, where t1 is large enough so that
x1(t1) ≥ 1− ε1. Thus, x(t1) ≈ (1, 0, 1). We now let agent 2
communicates to agent 3, t2 times, where t2 is large enough
so that x3(t1+ t2) ≤ ε1. In particular, x(t1+ t2) ≈ (1, 0, 0).
We now repeat the above two processes, infinitely many
times. During the kth repetition, ε1 is replaced by εk (and
t1, t2 get adjusted accordingly). Furthermore, by permuting
the agents at each repetition, we can ensure that Assumption
2 is satisfied. After k repetitions, it can be checked that x(t)
will be within 1− ε1 − · · · − εk of a unit vector. thus, if we
choose the εk so that

∑∞
k=1 εk < 1/2, asymptotic consensus

will not be obtained.

On the other hand, in the presence of symmetry, the
bounded intercommunication interval assumption is unnec-
essary. This result is proved in [9] and [4] for the special
case of the symmetric equal neighbor model and in [11],
[7], for the more general symmetric model. A more general
result will be established in Theorem 4 below.

Theorem 2. Under Assumptions 1 and 2, and for the sym-
metric model, the agreement algorithm guarantees asymp-
totic consensus.

IV. PRODUCTS OF STOCHASTIC MATRICES AND
CONVERGENCE RATE

Theorem 1 and 2 can be reformulated as results on the
convergence of products of stochastic matrices.

Corollary 1. Consider an infinite sequence of stochastic
matrices A(0), A(1), A(2), . . ., that satisfies Assumptions 1
and 2. If either Assumption 3 (bounded intercommunication
intervals) is satisfied, or if we have a symmetric model, then
there exists a nonnegative vector d such that

lim
t→∞

A(t)A(t− 1) · · ·A(1)A(0) = 1dT .

(Here, 1 is a column vector whose elements are all equal to
one.)

According to Wolfowitz’s Theorem ([16]) convergence
occurs whenever the matrices are all taken from a finite set
of ergodic matrices, and the finite set is such that any finite
product of matrices in that set is again ergodic. Corollary 1
extends Wolfowitz’ theorem by not requiring the matrices



A(t) to be ergodic, though it is limited to matrices with
positive diagonal entries.

The presence of long matrix products suggests that con-
vergence to consensus in the linear iteration

x(t+ 1) = A(t)x(t),

with A(t) stochastic, might be characterized in terms of a
joint spectral radius. The joint spectral radius ρ(M) of a
set of matrices M is a scalar that measures the maximal
asymptotic growth rate that can be obtained by forming long
products of matrices taken from the set M:

ρ(M) = lim sup
k→∞

sup
Mi1

,Mi2
,...,Mik

∈M
||Mi1Mi2 . . .Mik ||

1
k .

This quantity does not depend on the norm used. Moreover,
for any q > ρ(M) there exists a C for which

||Mik . . .Mi1y|| ≤ Cqk ||y||
for all y and Mij ∈M.

Stochastic matrices satisfy ||Ax||∞ ≤ ||x||∞ and A1 = 1,
and so they have a spectral radius equal to one. The product
of two stochastic matrices is again stochastic and so the
joint spectral radius of any set of stochastic matrices is
equal to one. To analyze the convergence rate of products
of stochastic matrices, we consider the dynamics induced by
the matrices on a space of smaller dimension.

Consider a matrix P ∈ <(n−1)×n defining an orthogonal
projection on the space orthogonal to span{1}. We have
P1 = 0, and ||Px||2 = ||x||2 whenever xT 1 = 0. Associated
to any A(t), there is a unique matrix A′(t) ∈ <(n−1)×(n−1)

that satisfies PA(t) = A′(t)P . The spectrum of A′(t) is
the spectrum of A(t) after removing one multiplicity of the
eigenvalue 1. Let M′ be the set of all matrices A′(t).

Let γ = 1Tx(t)/n be the mean value of the entries of
x(t), then

Px(t)− Pγ1 = Px(t)
= PA(t)A(t− 1) . . . A(0)x(0)
= A′(t)A′(t− 1) . . . A′(0)Px(0).

Since (x(t)− γ1)T 1 = 0, we have

||x(t)− γ1||2 = ||P (x(t)− γ1)||2 ≤ Cq
t ||x(0)||2

for some C and for any q > ρ(M′).
Assume now that limt→∞ x(t) = c1 for some scalar c.

Because all matrices are stochastic, c must belong to the
convex hull of the entries of x(t) for all t. We therefore
have

||x(t)− c1||∞ ≤ 2 ||x(t)− γ1||∞ ≤ 2 ||Px(t)− Pγ1||2 ,
and we may then conclude that

||x(t)− c1||∞ ≤ 2Cqt ||x(0)||2 .
The joint spectral radius ρ(M′) therefore gives a measure

of the convergence rate of x(t) towards its limit value c1.
However, for this bound to be nontrivial, all of the matrices in
M need to be ergodic; indeed, in the absence of an ergodicity
condition, the convergence of x(t) need not be geometric,
and will depend in general on the particular sequence of
elements of M.

V. CONVERGENCE IN THE PRESENCE OF DELAYS.

The model considered so far assumes that messages from
one agent to another are immediately delivered. However, in
a distributed environment, and in the presence of commu-
nication delays, it is conceivable that an agent will end up
averaging its own value with an outdated value of another
processor. A situation of this type falls within the framework
of distributed asynchronous computation developed in [3].

Communication delays are incorporated into the model as
follows: when agent i, at time t, uses the value xj from
another agent, that value is not necessarily the most recent
one, xj(t), but rather an outdated one, xj(τ ij(t)), where 0 ≤
τ ij(t) ≤ t, and where t−τ ij(t)) represents communication and
possibly other types of delay. In particular, xi(t) is updated
according to the following formula:

xi(t+ 1) =

n∑
j=1

aij(t)xj(τ
i
j(t)). (1)

We make the following assumption on the τ ij(t).

Assumption 4. (Bounded delays) (a) If aij(t) = 0, then
τ ij(t) = t.
(b) limt→∞ τ ij(t) =∞, for all i, j.
(c) τ ii (t) = t, for all i, t.
(d) There exists some B > 0 such that t−B+1 ≤ τ ij(t) ≤ t,
for all i, j, t.

Assumption 4(a) is just a convention: when aij(t) = 0, the
value of τ ij(t) has no effect on the update. Assumption 4(b)
is necessary for any convergence result: it requires that newer
values of xj(t) get eventually incorporated in the updates of
other agents. Assumption 4(c) is quite natural, since an agent
generally has access to its own most recent value. Finally,
Assumption 4(d) requires delays to be bounded by some
constant B,

The next result, from [13], [14], is a generalization
of Theorem 1. The idea of the proof is similar to the
one outlined for Theorem 1, except that we now de-
fine m(t) = minimins=t,t−1,...,t−B+1 xi(s) and M(t) =
maximaxs=t,t−1,...,t−B+1 xi(s). For convenience, we will
adopt the definition that xi(t) = xi(0) for all negative t.
Once more, one shows that the difference M(t) − m(t)
decreases by a constant factor after a bounded amount of
time.

Theorem 3. Under Assumptions 1-4 (connectivity, bounded
intercommunication intervals, and bounded delays), the
agreement algorithm with delays [cf. Eq. (1)] guarantees
asymptotic consensus.

Theorem 3 assumes bounded intercommunication intervals
and bounded delays. The example that follows (Example
1.2, in p. 485 of [3]) shows that Assumption 4(d) (bounded
delays) cannot be relaxed. This is the case even for a
symmetric model, or the further special case where E(t) has
exactly four arcs (i, i), (j, j), (i, j), and (j, i) at any given
time t, and these satisfy aij(t) = aji(t) = 1/2, as in the
pairwise averaging model.



Example 2. We have two agents who initially hold the
values x1(0) = 0 and x2(0) = 1, respectively. Let tk be an
increasing sequence of times, with t0 = 0 and tk+1 − tk →
∞. If tk ≤ t < tk+1, the agents update according to

x1(t+ 1) = (x1(t) + x2(tk))/2,

x2(t+ 1) = (x1(tk) + x2(t))/2.

We will then have x1(t1) = 1 − ε1 and x2(t1) = ε1,
where ε1 > 0 can be made arbitrarily small, by choosing
t1 large enough. More generally, between time tk and tk+1,
the absolute difference |x1(t)−x2(t)| contracts by a factor of
1−2εk, where the corresponding contraction factors 1−2εk
approach 1. If the εk are chosen so that

∑
k εk < ∞, then∏∞

k=1(1 − 2εk) > 0, and the disagreement |x1(t) − x2(t)|
does not converge to zero.

According to the preceding example, the assumption of
bounded delays cannot be relaxed. On the other hand, the
assumption of bounded intercommunication intervals can be
relaxed, in the presence of symmetry, leading to the following
generalization of Theorem 2, which is a new result.

Theorem 4. Under Assumptions 1, 2 (connectivity), and
4 (bounded delays), and for the symmetric model, the
agreement algorithm with delays [cf. Eq. (1)] guarantees
asymptotic consensus.

Proof. Let

Mi(t) = max{xi(t), xi(t− 1), . . . , xi(t−B + 1)},
M(t) = max

i
Mi(t),

mi(t) = min{xi(t), xi(t− 1), . . . , xi(t−B + 1)},
m(t) = min

i
mi(t).

Recall that we are using the convention that xi(t) = xi(0)
for all negative t. An easy inductive argument, as in p. 512
of [3], shows that the sequences m(t) and M(t) are are non-
decreasing and nonincreasing, respectively. The convergence
proof rests on the following lemma.

Lemma 1: If m(τ−B) = 0 and M(τ) = 1, then there exists
a time τ ′ ≥ τ such that M(τ ′)−m(τ ′ −B) ≤ 1− αnB .

Given Lemma 1, the convergence proof is completed as
follows. Using the linearity of the algorithm, there exists a
time τ1 such that M(τ1)−m(τ1−B) ≤ (1−αnB)(M(B)−
m(0)). By applying Lemma 1, with τ replaced by τ1, and
using induction, we see that for every k there exists a time
τk such that M(τk) −m(τk − B) ≤ (1 − αnB)k(M(B) −
m(0)), which converges to zero. This, together with the
monotonicity properties of m(t) and M(t), implies that m(t)
and M(t) converge to a common limit, which is equivalent
to asymptotic consensus.

Proof of Lemma 1: For k = 1, . . . , n, we say that “Property
Pk holds at time t” if there exist at least k indices i for which
mi(t) ≥ αkB .

Since m(τ − B) = 0, it follows that m(t) ≥ 0 for all
t ≥ τ −B by the monotonicity of m(t). In turn, this implies
that xi(t+ 1) ≥ αxi(t) for all i and all t ≥ τ −B.

Since M(τ) = 1, there exists some i and some t′ ∈ {τ −
B + 1, τ − B + 2, . . . , τ} such that xi(t′) = 1. Using the
inequality xi(t+ 1) ≥ αxi(t), we obtain mi(t

′ +B) ≥ αB .
This shows that there exists a time at which property P1

holds.
We continue inductively. Suppose that k < n and that

Property Pk holds at some time t. Let S be a set of cardinality
k containing indices i for which mi(t) ≥ αkB , and let Sc be
the complement of S. Let t′ be the first time, greater than or
equal to t, at which aij(t′) 6= 0, for some j ∈ S and i ∈ Sc

(i.e., an node j in S gets to influence the value of an node
i in Sc). Such a time exists by the connectivity assumption
(Assumption 2).

Note that between times t and t′, the nodes ` in the set
S only form convex combinations between the values of the
nodes in the set S (this is a consequence of the symmetry
assumption). Since all of these values are bounded below by
αkB , it follows that this lower bound remains in effect, and
that m`(t

′) ≥ αkB , for all ` ∈ S.
For times s ≥ t′, and for every ` ∈ S, we have x`(s +

1) ≥ αx`(s), which implies that x`(s) ≥ αkBαB , for s ∈
{t′ + 1, . . . , t′ +B}. Therefore, m`(t

′ +B) ≥ α(k+1)B , for
all ` ∈ S.

Consider now an node i ∈ Sc for which aij(t′) 6= 0. We
have

xi(t
′ + 1) ≥ aij(t′)xj(τ ij(t′)) ≥ αmj(t

′) ≥ αkB+1.

Using also the fact xi(s+1) ≥ αxi(s), we obtain that mi(t
′+

B) ≥ α(k+1)B . Therefore, at time t′ + B, we have k + 1
nodes with m`(t

′ + B) ≥ α(k+1)B (namely, the nodes in
S, together with node i). It follows that Property Pk+1 is
satisfied at time t′ +B.

This inductive argument shows that there is a time τ ′ at
which Property Pn is satisfied. At that time mi(τ

′) ≥ αnB

for all i, which implies that m(τ ′) ≥ αnB . On the other
hand, M(τ ′ + B) ≤ M(0) = 1, which proves that M(τ ′ +
B)−m(τ ′) ≤ 1− αnB . q.e.d.

The symmetry condition [(i, j) ∈ E(t) iff (j, i) ∈ E(t)]
used in Theorem 4 is somewhat unnatural in the presence of
communication delays, as it requires perfect synchronization
of the update times. A looser and more natural assumption
is the following.

Assumption 5. There exists some B > 0 such that whenever
(i, j) ∈ E(t), then there exists some τ that satisfies |t−τ | <
B and (j, i) ∈ E(τ).

Assumption 5 allows for protocols such as the following.
Agent i sends its value to agent j. Agent j responds by
sending its own value to agent i. Both agents update their
values (taking into account the received messages), within
a bounded time from receiving other agent’s value. In a
realistic setting, with unreliable communications, even this
loose symmetry condition may be impossible to enforce
with absolute certainty. One can imagine more complicated
protocols based on an exchange of acknowledgments, but
fundamental obstacles remain (see the discussion of the



“two-army problem” in pp. 32-34 of [2]). A more realistic
model would introduce a positive probability that some of
the updates are never carried out. (A simple possibility is to
assume that each aij(t), with i 6= j, is changed to a zero,
independently, and with a fixed probability.) The convergence
result that follows remains valid in such a probabilistic
setting (with probability 1). Since no essential new insights
are provided, we only sketch a proof for the deterministic
case.

Theorem 5. Under Assumptions 1, 2 (connectivity), 4
(bounded delays), and 5, the agreement algorithm with delays
[cf. Eq. (1)] guarantees asymptotic consensus.

Proof. (Outline) A minor change is needed in the proof of
Lemma 1. In particular, we define Pk as the event that there
exist at least k indices l for which ml(t) ≥ α2kB . It follows
that P1 holds at time t = 2B.

By induction, let Pk hold at time t, and let S be the set of
cardinality k containing indices l for which ml(t) ≥ α2kB .
Furthermore, let τ be the first time after time t that aij(τ) 6=
0 where exactly one of i, j is in S. Along the same lines as
in the proof of Lemma 1, ml(τ) ≥ α2kB for l ∈ S; since
xl(t+ 1) ≥ αxl(t), it follows that ml(τ + 2B) ≥ α2(k+1)B

for each l ∈ S. By our assumptions, exactly one of i,j is in
Sc. If i ∈ Sc, then xi(τ + 1) ≥ aij(τ)xj(τ

i
j(τ)) ≥ α2kB+1

and consequently xi(τ +2B) ≥ α2B−1α2kB+1 = α2(k+1)B .
If j ∈ Sc, then there must exist a time τj ∈ {τ + 1, τ +
2, . . . , τ +B − 1} with aji(τj) > 0. It follows that:

mj(τ + 2B) ≥ ατ+2B−(τj+1)xj(τj + 1)

≥ ατ+2B−τj−1αxi(τj)

≥ ατ+2B−τj−1αατj−τα2kB

= α2(k+1)B

Therefore, Pk+1 holds at time τ + 2B and the induction is
complete. q.e.d.

VI. CONCLUDING REMARKS

Many variations of the available convergence results and
of the new ones presented here are possible, by considering
additional sources of asynchronism, as well as probabilistic
(rather than deterministic) assumptions. The proof technique
introduced in [3] (based on the contraction of the difference
M(t)−m(t)) has so far been able to handle such variations.

One particular variation that has been investigated in the
recent literature is one where strong connectivity is relaxed:
some agents act as “leaders” and influence the values of the
other agents (the “followers”) but not vice versa. This is
similar to the setting considered in Chapter 6 of [3] where
leaders and followers correspond to the “computing” and
“noncomputing” processors of [3].

Let us also note that there is a related algorithm for
distributed load balancing [6], for which similar convergence
results are available (see Section 7.4 of [3]). The latter algo-
rithm has some commonalities with the pairwise averaging
model: the sum of the agents’ entries/loads is a long-term
invariant, although in the load balancing algorithm, some

of the load can be temporarily “in transit.” In particular,
the load balancing algorithm guarantees convergence to the
exact average of the initial values, even in the presence of
asynchronism, time delays, and dynamic topology changes.
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