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Abstract— Motivated by [1], [2] and [3], we consider here
formations of autonomous agents in a 2-dimensional space.
Each agent tries to maintain its distances toward a pre-specified
group of other agents constant, and the problem is to determine
if one can guarantee that the structure of the formation will
persist, i.e., if the distance between any pair of agents will
remain constant. A natural way to represent such a formation
is to use a directed graph. We provide a theoretical framework
for this problem, and give a formal definition of persistent
graphs (a graph is persistent if almost all corresponding agents
formations persist). Note that although persistence is related to
rigidity (concerning which much is known [4]), these are two
distinct notions. We then derive various properties of persistent
graphs, and give a combinatorial criterion to decide persistence.
We also define the notion of minimal persistence (persistence
with least number of edges), and eventually, we apply these
notion to the interesting special case of cycle-free graphs.

I. INTRODUCTION

From the recent increasing development of autonomous
agents systems arise new questions in graph theory. Consider
a formation of n agents able to move in a 2-dimensional
space. To each agent, one assigns a set of distance con-
straints: Agent i has to maintain its distance dij from agent
j. It is important to understand that this is a constraint
for i but not for j, which will a priori not be required to
do anything in order to maintain its distance from agent i

constant. Moreover, as long as a particular agent satisfies all
its distance constraints, no other hypothesis is made about its
movement. Agent 4 in Figure 1(a) can thus move freely on a
circle of radius d41 centered on agent 1. We are interested in
knowing if one can guarantee that, provided that each agent
is trying to satisfy all its distance constraints, the structure
of the formation will be conserved. In other words, we want
to know if the distance in either direction between any pair
of agents (whether or not there is a distance constraint in
either direction between the pair) will remain constant along
any continuous move. As shown in Figure 1, this kind of
system can be represented by a directed graph: To each agent
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corresponds a vertex, and there is a directed edge from i to j

if i has a constraint on the distance it must maintain from j.
Note that double edges are allowed and represent a situation
where both i and j have to maintain the distance between
them constant.
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Fig. 1. Examples of autonomous agents systems; each arrow represents a
distance constraint. In (a) for example, agents 2, 3 and 4 try to maintain
their respective distances toward agent 1 constant. We will show that only
(b) is persistent.

This issue is evidently related to the notion of rigidity
of frameworks and graphs: A framework is represented
by a graph G = (V,E), where V is the set of vertices
representing the articulations, and E is the set of undirected
edges representing the beams or any other type of links.
Suppose now that we assign arbitrary positions in1 <2 to
all the vertices, and consider all the continuous moves such
that the distance between the positions of any two vertices
connected by an edge remains constant. The graph is called
rigid if for almost all positions assignments, every such
move preserves the distance between the positions of any
pair of vertices, as shown in the examples in Figures 2(a)
and 2(b). Note that Figures 1(a) and 2(c) present non rigid
graphs. A graph is said to be minimally rigid if it is rigid
and if there is no rigid graph having the same vertices but
less edges, as shown in the example in Figure 2(b) (we will
discuss this notion more extensively in Section IV). This
class of graphs is interesting to study, not only because it
provides an optimally efficient number of edges, but also
because every rigid graph contains a minimally rigid graph.

However, the graphs that represent our autonomous
agents-systems are directed. And although the definition
of rigidity can be applied to directed graphs, it essentially
remains an undirected notion and is thus inadequate to
handle our problem. Consider indeed the system represented
in Figure 1(c). Although the undirected graph is rigid, the

1This could be done in any other space, but in the sequel we will always
work in <2.
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Fig. 2. (a) is rigid, (b) is minimally rigid, and (c) is not rigid.

structure of the formation may not be preserved: Agent
4 has an out-degree 1 and has thus only one distance
constraint. If it moves on a circle of radius d43 centered on
the position of agent 3, this constraint will remain satisfied.
But, if agents 3 and 1 remain at the same position (and
none of their constraints would force them to move) there
will then (for almost all of the possible positions of agent
4) be no position for agent 2 where it could satisfy its three
distance constraints, which implies that the structure of the
formation is in some way ill-posed.

In the control literature, the characterization of such
autonomous agents-systems has started to be attempted using
the notion of rigidity of a directed graph [1], [2]: a directed
graph is called rigid if the structure of the corresponding
formation is conserved along any continuous move. Since
this does not correspond to a simple transposition of the
definition of rigidity for undirected graphs over to directed
graphs, we prefer here to call this notion persistence of
a graph in order to avoid confusion. Some results and
conjectures concerning persistence are already used in
the literature, especially for minimally persistent graphs
(these can be defined similarly to minimally rigid graphs,
see Section IV) or sufficient conditions for a graph to be
(minimally) persistent [1], [2]. We propose here a formal
definition of persistence that would provide a theoretical
framework for this issue and allow us to prove these results.
We will also derive some new properties of persistent graphs
and give an operational criterion to determine if a graph is
persistent.

The definition, which we provide in Section II, has
the following intuitive meaning: a graph is persistent if,
provided that all the agents are trying to satisfy their
distance constraints, the global structure of the agent
formation is preserved. We will see that rigidity of the
underlying undirected graph is a necessary but not sufficient
condition. This will lead us to the notion of constraint
consistence of a graph, which is the additional condition
for a rigid graph to be persistent. Intuitively, a graph is
constraint consistent if every agent is able to satisfy its
distance constraints provided that all the others are trying
to do so. We will then show that a graph is persistent
if and only if it is rigid and constraint consistent. So, in
Figure 1, (a) is not rigid and (c) is not constraint consistent.
The only persistent graph is thus (b). Note that all the
proofs are omitted due to space limitations; a fuller version
of the work is available in preprint form from the authors [5].

In Section III, we give some of the main properties of
persistent graphs and the following criterion: A graph is
persistent if and only if all those subgraphs are rigid which
are obtained by removing outgoing edges from vertices with
out-degree larger than 2 until all the vertices have an out-
degree smaller than or equal to 2. We define then in Section
IV minimal persistence analogously to minimal rigidity. We
discuss some differences and similarities between the two
notions, and give a characterization of minimally persistent
graphs. Finally, we turn our attention to cycle-free graphs in
Section V and give some more powerful results that exist
in this special case, such as a polynomial time criterion to
decide persistence.

II. PERSISTENCE OF DIRECTED GRAPHS

A representation of a graph G = (V,E) is a function
p : V → <2. We say that p(i) ∈ <2 is the position of the
vertex i, and define the distance between two representations
p1 and p2 of the same graph by

d(p1, p2) = max
i∈V

||p1(i) − p2(i)|| . (1)

A distance set d for G is a set of distances dij > 0,
defined for all edges (i, j) ∈ E. A distance set is
realizable if there exists a representation p of the graph
for which ||p(i) − p(j)|| = dij for all (i, j) ∈ E. Such
a representation is then called a realization. Note that
any representation p of a graph is always a realization
of the distance set defined by dij = ||p(i) − p(j)|| ,∀ij ∈ E.

A realization p of a distance set d is rigid if there
exists ε > 0 such that for all realizations p′ of d satisfying
d(p, p′) < ε, there holds ||p′(i) − p′(j)|| = ||p(i) − p(j)||
for all i, j ∈ V . (We say in this case that p and p′ are
congruent). A graph is said to be rigid2 if almost all its
realizations are rigid. Note that we could have said “almost
all representations”, since as explained above, a realization is
a representation and a representation is always a realization
of a certain distance set. Although this definition is given
here for directed graphs, rigidity is essentially an undirected
notion. It is indeed not affected by modification of the edges
directions.

Our definition of rigidity is slightly different from those
usually given in the literature, but we have the following
equivalence:

Theorem 1: The following conditions are equivalent for a
graph G = (V,E).

• G is (generically) rigid.
• There exists a realization of a certain distance set d

for which any continuous displacement of the positions
(such that at all time the positions of the vertices remain
a realization of d) is a rigid motion, i.e., is such that
all these realizations are congruent to each other. (This

2For simplicity we use the term rigidity but this notion is known in the
literature as generic rigidity [1], [4].
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Fig. 3. Suppose that d41 = d42 = d43 = c. The position of 4 in (a) is not
fitting because it only makes (4, 1) active while there exists a position that
would make both (4, 1) and (4, 3) active. On the other hand, its position
in (b) is fitting because no point can be at the same time at a distance c

from 1, 2 and 3.

is equivalent to the usual definition of generic rigidity
[8]).

• Laman’s criterion: There is a subset E ′ ⊆ E satisfying
the following two conditions:
(1) |E′| = 2 |V | − 3.
(2) For all non empty E′′ ⊆ E′, the number |V (E′′)|
of vertices that are end-vertices of the edges in E ′′

satisfies |E′′| ≤ 2 |V (E′′)| − 3.

As already mentioned, rigidity is an undirected notion,
and is therefore insufficient to characterize persistence.
The rigidity of a realization only means that if an external
observer (or some physical properties) makes sure that
the distance between the positions of any pair of vertices
connected by an edge remains dij , then all the sufficiently
close realizations of the same graph are congruent to each
other. But, in our system of autonomous agents, there is
no such external observer. Each agent is only aware of its
own distance constraints, and can “move freely” as long as
these particular constraints are satisfied. In order to have
a more formal definition of persistence, we first need to
characterize the fact that each agent is trying to keep the
distances from its neighbors constant.

Let us thus fix a directed graph G, distances dij > 0
∀(i, j) ∈ E , and a representation p. We say that the edge
(i, j) ∈ E is active if ||p(i) − p(j)|| = dij . We also say
that the position of the vertex i ∈ V is fitting for d if it is
not possible to increase the set of active edges leaving i

by modifying the position of i while keeping the positions
of the other vertices unchanged. This condition intuitively
means that the agent i cannot satisfy additional distance
constraints without breaking some that it already satisfies,
as shown in the example in Figure 3. A representation of a
graph is a fitting representation for a certain distance set d

if all the vertices are at fitting positions for d. Note that any
realization is a fitting representation for its distance set.

We can now give a formal definition of persistence: A
realization p of a distance set d is persistent if there exists
ε > 0 such that every representation p′ fitting for d and
satisfying d(p, p′) < ε is congruent to p. A graph is then
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Fig. 4. The graph represented in (a) is constraint consistent. Each of 1, 3
and 4 can indeed always satisfy its unique distance constraint. On the other
hand, the one represented in (b) is not constraint consistent because there
always exists a configuration of positions of 1, 2 and 3 such that 4 is unable
to satisfy its three distance constraints.

persistent if almost all its realizations are persistent.

This definition is similar to the one of rigidity, and it is
thus natural to ask if there is a relation between the two
notions. Actually, a persistent graph is always rigid, and we
will now define constraint consistence, which is a necessary
and sufficient condition for a rigid graph to be persistent.
A realization p of a distance set d is constraint consistent
if there exists ε > 0 such that any representation p′ fitting
for d and satisfying d(p, p′) < ε is a realization of d.
Intuitively, the constraint consistence of a realization means
that if each agent tries to satisfy its distance constraints
(i.e., is at a fitting position), then all the distance constraints
will be satisfied, or equivalently, no agent will be in a
situation where it cannot satisfy some constraint, as shown
in the example in Figure 4. Again, we say that a graph
is constraint consistent if almost all its realizations are
constraint consistent. We have then the following useful
equivalence:

Theorem 2: A graph is persistent if and only if it is rigid
and constraint consistent.

III. CHARACTERIZATION OF PERSISTENT GRAPHS

In this section, we discuss properties of persistent graphs
and give a combinatorial criterion to decide persistence.
We begin by giving a lower bound on the number of
active edges, and a first sufficient condition for a graph
to be constraint consistent. In the sequel, d−(i) and d+(i)
designate respectively the in- and out-degree of the vertex i.

Lemma 1: Let i be a vertex of a graph G = (V,E). For
almost all realizations p, there exists ε > 0 such that in every
representation p′ fitting for the distance set corresponding
to p and satisfying d(p, p′) < ε, the number of active edges
leaving i is at least min (2, d+(i)). Consequently, a graph
in which all the vertices have an out-degree smaller than or
equal to 2 is always constraint consistent.

The next proposition allows us to delete edges in a
persistence graph and maintain persistence.



Fig. 5. All the vertices of this rigid graph have an out-degree 2. By Lemma
1 it is thus constraint consistent and therefore persistent, but the number of
degrees of freedom of each vertex is 0.

Proposition 1: A persistent (resp. constraint consistent)
graph remains persistent (resp. constraint consistent) after
deletion of any edge (i, j) for which d+(i) ≥ 3.

An interesting corollary of Proposition 1 concerns the
total number of degrees of freedom in the graph. The
number of degrees of freedom of a vertex is the maximal
dimension, over all representations of the graph, of the set of
possible fitting positions for this vertex. In a 2-dimensional
space, the vertices with zero out-degrees have 2 degrees of
freedom, the vertices with out-degrees 1 have one degree of
freedom, and the other have none. Note that a vertex with no
degree of freedom can have more than one possible fitting
position. Observe indeed that there is in almost all situations
two possible fitting positions for a vertex with out-degree 2.
However, since this set contains a finite number of points,
its dimension is still 0. The following result provides a
natural bound on their sum on a persistent graph.

Corollary 1: The sum of the degrees of freedom on all
the vertices of a persistent graph cannot exceed 3.

Note that the total of three degrees of freedom is an upper
bound. There are persistent graphs whose vertices do not
have any degree of freedom, as shown in Figure 5.

Proposition 1 guarantees that a persistent graph remains
persistent after deletion of any edge (i, j) for which
d+(i) ≥ 3. After successive deletions, we can thus reach
in this way a persistent graph whose vertices all have an
outgoing degree that is smaller than or equal to 2. The next
theorem states that a graph is persistent if and only if all
the graphs obtained in this way are rigid.

Theorem 3: A graph is persistent if and only if all those
subgraphs are rigid which are obtained by removing outgoing
edges from vertices with out-degree larger than 2 until
all the vertices have an out-degree smaller than or equal to 2.

The above result provides a non-polynomial time algo-
rithm to check the persistence of a graph: it suffices to
check the rigidity of all subgraphs obtained by deleting edges
leaving vertices with out-degree larger or equal to 3 until all
vertices have an out-degree smaller to or equal to 2. An
algorithm with a smaller complexity would be useful in the

case of large graphs, especially if there is a high number
of vertices with a high out-degree, but no such algorithm
has been found yet and at the time of writing it is still
unclear if the problem of determining if a directed graph
is persistent can be solved in a polynomial time. Notice
that such an algorithm is known to determine if a graph
is rigid [9]. However, better results exist in some particular
cases. In Section V, we will see that for cycle-free graphs,
persistence can be checked in polynomial time, and in the
next section we introduce the related notion of minimal
persistence and give a decision criterion that can also be
checked in a polynomial time.

IV. MINIMAL PERSISTENCE

In this section we define the notion of minimal persistence,
analogously to minimal rigidity. We then discuss the main
properties of these minimally persistent graphs, and
show some similarities and difference between minimal
persistence and minimal rigidity.

But first, we recall a few facts about minimal rigidity.
One way to define it is to say that a graph is minimally rigid
if it is rigid and if there exists no rigid graph with the same
number of vertices and a smaller number of edges. Another
way is to say that a graph is minimally rigid if it is rigid and
if no single edge can be removed without losing rigidity.
These two definitions are provably equivalent and lead to
the following criterion: A graph G = (V,E) is minimally
rigid if it is rigid and if |E| = 2 |V | − 3 (with an exception
if |V | = 1). Moreover, a necessary and sufficient condition
for a graph to be rigid is the presence of a minimally rigid
(edge) subgraph. This can be seen using for example the
Laman’s criterion (Theorem 1). A Henneberg sequence is
a sequence of graphs G2, G3, . . . , G|V | such that G2 is the
complete (undirected) graph with two vertices, and Gi+1

(i ≥ 2) can be obtain from Gi by performing either a vertex
addition or an edge splitting (see [1], [7]). These operations
are defined in Figure 6, and one can show that they preserve
minimal rigidity. Moreover, every minimally rigid graph can
be obtained as the result of a Henneberg sequence [4].

We now define minimal persistence as follows: A
persistent graph is called minimally persistent if no edge
can be removed without losing persistence. Note that a
first important and surprising difference with the concept
of minimal rigidity is that a graph having a minimally
persistent (edge) subgraph is not necessarily persistent, as
shown in the example in Figure 7. More generally, unlike
the case of rigidity, it is possible to obtain a non-persistent
graph by adding edges to a persistent graph. A necessary
condition for a persistent graph to be minimally persistent
is immediate from Proposition 1: the absence of a vertex
with an out-degree exceeding 2. On the other hand, a
sufficient condition is minimal rigidity. Suppose indeed that
one removes an edge to a persistent minimally rigid graph.
The obtained graph would by definition not be rigid and
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Fig. 6. (a) vertex addition: One adds a vertex and two incident edges. (b)
edge splitting: One replaces an edge (j, k) by a vertex i and three edges
(i, j), (i, k) and (i, l) where l is another vertex of the original graph. Both
operations preserve (minimal) rigidity [6], [4].

(a) (b) (c)
Fig. 7. The graph represented in (a) has a minimally persistent subgraph (b).
However, by Theorem 3, it is not persistent because the subgraph represented
in (c) is not rigid. In the corresponding multi-agent system, this could be
seen as arising from a combination of unfortunate selections among the
various possible information architectures available to the three agents of
the cycle.

therefore not persistent.

As explained above, every minimally rigid graph can
be obtained from an initial seed of two vertices and one
edge by a sequence of vertex additions and edge splittings.
We define here the directed version of these operations as
in [1] by giving a direction to the added arrows in a way
such that the out-degrees of the already existing vertices
are not affected, as represented in Figure 8. To perform a
(directed) vertex addition on a graph G = (V,E), one adds
a vertex and two edges from this vertex to different vertices
of V . The (directed) edge splitting consists in removing
one edge (j, k) ∈ E and adding a vertex i and three edges
(j, i), (i, k) and (i, l) for some l ∈ V, l 6= j, k. In the
sequel, these operations will always be considered with the
directed meaning. A Henneberg sequence (directed case)
is then a sequence of graphs G2, G3, ..., G|V |, such that
each graph Gi+1 (i ≥ 2) can be obtained by implementing
a vertex addition or an edge splitting on Gi, and G2 is a
graph of two vertices connected by one directed edge. As
in the undirected case, all the graphs of such a sequence
are minimally rigid. Moreover, since the out-degree of
each of their vertices is always smaller or equal to two,
Lemma 1 guarantees that they are also constraint consistent
and thus minimally persistent. This implies that one can
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Fig. 8. Directed version of the vertex addition (a) and the edge splitting
(b).

always assign a direction to all the edges of a minimally
rigid undirected graph such that the resulting graph is
minimally persistent. It is indeed possible to obtain every
minimally rigid undirected graph by performing a sequence
of (undirected) vertex additions and edge splitting on an
initial seed of two vertices and one edge. [In order to
obtain a minimally persistent graph, one can then simply
perform the same sequence of the directed version of these
operations]. However, it is still an open question as to
whether, given an undirected rigid graph, there exists an
assignment of directions to the edges such that the resulting
directed graph is persistent.

Since every undirected minimally rigid graph can be
obtained as the result of a Henneberg sequence, and since
there always exists a minimally persistent graph resulting
from the same sequence, it is natural to ask if every
minimally persistent graph can be obtained in that way.
Unfortunately, the existence of counterexamples force us
to answer negatively to this question. Consider indeed the
cycle of length 3 or any minimally persistent graph for
which all the vertices have a positive out-degree: Both
vertex addition and edge splitting conserve the out-degree
of all the already existing vertices, and the first graph (G2)
of a Henneberg sequence contains a vertex with a zero
out-degree. A graph having no vertex with a zero out-degree
can thus never result from a Henneberg sequence. Actually,
there also exist some graphs having a vertex with a zero
out-degree and that still cannot be built using a Henneberg
sequence.

As we already explained, minimal rigidity is a sufficient
condition for a persistent graph to be minimally persistent.
The next proposition states that it is also a necessary
condition.

Proposition 2: A graph G = (V,E) is minimally
persistent if and only if it is persistent and satisfies
|E| = 2 |V | − 3.

Using the criterion provided by Proposition 2 and
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Fig. 9. Example of cycle-free persistent graph. The numbers correspond
to an order in which the vertices can be added.

Corollary 1 about the number of degrees of freedom, it is
possible to give a more specific characterization of minimal
persistence that relies on the vertex out-degrees.

Theorem 4: A rigid graph with more than one vertex is
minimally persistent if and only if one of the following two
conditions is satisfied:

• Three vertices have an out-degree 1 and all the others
have an out-degree 2.

• One vertex has an out-degree 0, one vertex has an
out-degree 1, and all the others have an out-degree 2.

V. CYCLE-FREE GRAPHS

In this section, we provide a simple criterion to decide the
persistence of cycle-free graphs and an explicit way to build
all the persistent cycle-free graphs. Using the properties of
the undirected vertex additions (see [6]) and Theorem 3,
one can prove the following proposition.

Proposition 3: A graph obtained by adding one vertex
to a graph G = (V,E) and at least two edges leaving this
vertex is persistent if and only if G is persistent.

We thus know that a cycle-free graph obtained by
successively adding vertices all with out-degree larger
than or equal to 2 to an initial seed of one directed edge
connecting two vertices is persistent. The next theorem states
that every persistent cycle-free graph can be obtained in such
a way as shown in Figure 9. It also gives a simple criterion to
decide persistence in the particular case of cycle-free graphs.

Theorem 5: A cycle-free graph having more than one
vertex is persistent if and only if

• One vertex (called the leader) has an out-degree 0;
• One vertex (called the first follower) has an out-degree

1 and the corresponding edge is incident to the leader;
• Every other vertex has an out-degree larger or equal to

2.
Moreover, every such graph can be obtained from an
original seed composed by the leader and first follower
by adding vertices one by one in the way described in
Proposition 3.

This result provides an algorithm with a low complexity
to decide the persistence of a cycle-free graph. Moreover,

if we apply it to a minimally persistent graph, we get the
following corollary.

Corollary 2: A minimally persistent cycle-free graph with
more than one vertex always has a leader-follower structure
(see Theorem 5) and is always the result of Henneberg
sequence containing only vertex additions.

VI. CONCLUSIONS AND FURTHER WORKS

As mentioned in the previous sections, several questions
remain open; namely, the existence of a polynomial time
criterion to decide if a graph is persistent, and an algorithm
to assign directions to the edges of rigid graph in order to
obtain a persistent graph. Among the possible extensions of
this work, one can remark that we always assumed that the
graph representations lie in <2. From a practical point of
view, it would be desirable to extend the results to <3. How-
ever, this could give rise to new difficulties. For undirected
graphs, there is no known equivalent of Laman’s theorem
in three dimensions, and not all minimally rigid graphs can
be obtained by Henneberg sequences. Since we showed in
Figure 7 that one cannot generally add edges indefinitely
to a persistent graph without losing persistence, we could
also define and characterize maximally persistent graphs.
Finally, another issue would be to consider the robustness
of a persistent graph. One could assign to each edge a
probability of breakdown and to each unconnected pair of
vertices a probability of parasite edge appearance. There
might be in this case a maximally robust persistent graph,
i.e., a graph for which the probability of losing persistence
is minimal. It is evident that if there is a finite probability of
losing an edge, it would be desirable to have persistence both
with and without it. This observation emphasizes the need to
understand better the circumstances under which edges can
be added to a persistent graph without losing the persistence
property.
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