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Abstract— This paper reviews a number of concepts and
results relevant to the design of architectures to maintain
the shape of a formation of autonomous agents. The paper
begins with motivating examples from nature and the man-
made world, and emphasises the task of providing satisfactory
sensing, communication and control architectures within a
formation of autonomous agents. Then some technical tools
for characterising and designing architectures are described,
largely resting on graph theoretic considerations.

I. I NTRODUCTION

For millennia if not millions of years, nature has presented
examples of collective behaviour by groups of insects, birds,
fish, etc. Such behaviour has arisen to permit sophisticated
behaviour of the group that would never be achievable by
individual members of the group [19], [22]. The behaviour
may serve the needs of foraging for food, of defence against
predators, of aggression against prey, of mating, etc. Fish
and birds particularly, as part of their group behaviour, often
display formation type behaviour; in this sort of behaviour
the relative positions of the fish or birds are preserved, at
least more or less, and the whole formation moves as a
cohesive whole. Of course, from time to time, a formation
may split, rearrange itself in a minor way perhaps to remove
a burden on one or members of the formation, rearrange itself
in a major way, perhaps for obstacle avoidance or predator
avoidance, merge with another formation, etc.

Whether nature has been a conscious or unconscious
motivator for human kind, formations of robots, underwater
vehicles and autonomous airborne vehicles are now slowly
being deployed to tackle problems in both civilian and
military spheres-bush fire control, surveillance, underwater
exploration and the like. A formation of vehicles may con-
stitute a much more effective sensor than a single vehicle,
for various reasons. First, having many vehicles allows ef-
fective synthesis of a large dimension antenna, for receiving
electromagnetic or acoustic signals, and large antennas allow
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better source localization, or simply have higher sensitivity;
accurate knowledge and control of the relative positions of
the agents of the formation is of course essential for this
application. A second reason is that some tasks inherently
require multiple sensors of known relative positions; for
example, in three dimensions, if one can measure distances
to an object of interest, and if one wants to determine the
position of that object, one needs four separate distance
measurements from sensors with known positions to deter-
mine that object’s position (otherwise termed localizing the
object). A third reason is that multiple sensors may have indi-
vidually differing functionalities, which in aggregate gives a
new functionality for the formation of sensors. Small mobile
sensors are much cheaper to deploy, but then weight and
other considerations will set upper bounds on the on-board
functionality of any one sensor.

Sometimes these factors apply at the same time. For exam-
ple, in one application with which the authors are familiar,
the agents of the formation are localizing by determining
angle information, but issues of sensor noise, limited cone of
visibility and the like, mean that more agents need to be used
in the formation that might be at first thought. Formations
in naturally or artificially hazardous environments also may
require larger numbers of agents, to cope with outages.

From a control point of view, it is clear that there are
tasks at both the level of the whole formation, determining
for example waypoints for a path which the centre of gravity
of the formation should follow, as well as control tasks for
the individual agents of the formation, such as maintaining
their relative positions, or shifting from one formation shape
to another formation shape. Certainly in formations occurring
in nature, and commonly in man made formations, there is
no single all-powerful master agent exercising control over
every other agent. Control tasks in some way have to be
handled on a decentralized basis.

In fact many systems problems arise, and standing at
the apex of these problems is the task of defining practical
architectures for control, communications and sensing. Such
architectures of course cannot be defined independently of
one another. An overarching requirement is that architectures
be scalable. The scalability requirement imposes a need
for significant decentralization of information and control
structures, and, just as in a formation of birds, no one bird
can be expected to watch all other birds and compute its own
trajectory using even partial knowledge of the trajectories
of all other individual birds, so the amount of sensing,
communication and control computation by any one agent
has to be limited.

We have sketched a vast problem domain above. This



paper will not traverse the whole problem domain, but only
one corner, albeit an important corner. Most of this paper
will describe what sort of sensing and control architectures
are needed to maintain the shape of a formation, while the
formation moves as a cohesive whole. As already intimated,
in many situations, it is desirable that the formation maintain
its shape while executing an overall change of location,
or change from one shape to another, perhaps to avoid an
obstacle; again, on occasions a formation may need to split,
or merge with a different formation. The architectures need
to be able to sustain these tasks.

Within this limited domain, there is a further limitation
we will impose. Obviously, to maintain a formation shape,
agents have to sense some aspect of the formation geometry,
i.e. an agent will need to measure some geometrically-
relevant variable involving some, at least, of some other
agents in the formation, in order to apply a control to correct
any error in formation shape. There are many things that can
be sensed, involving distances and angles, for example agent
j might sense
• The distance from agentj to agentk
• The difference in the distance from agentj to agent

k and the distance from agentj to agentm (“time
difference of arrival”)

• The bearing relative to north of agentk
• The declination/inclination relative to the horizon of

agentk
• The angle subtended at agentj by the lines joining agent

j to agentk and agentk to agentm
etc. We note that biological organisms may sense more

complicated things again than the above, and matters are
far from clear anyway. One of our colleagues conjectures
that birds effectively project angles within a cone onto a
hemisphere, and at the same time sense perhaps one distance
(so that the formation is not scale free, which would be the
case were angles alone to be sensed). In this paper, we shall
confine our attention to the use of distance measurements.

Many of our tools will be graph theoretic. We willnot be
presenting control laws for individual agents in a formation,
but focussing on the higher-level question of defining the
architecture behind these control laws. There has been con-
siderable work on control laws, see e.g. [2], [4], [11], [21],
[24], [25], [29]. Though not discussed here, it turns out that
the graph theoretic tools we describe can often be applied
to formations with other sensed variables than just distance,
including those with mixtures of angles and distances, see
e.g. [9].

II. OUTLINE OF THE PAPER

In the next two sections, we describe how aspects of
formation architecture can be described using graphs. There
is a clear dividing line between the two sections that is
associated with the sort of graphs we are using. Consider
two agents in a formation,j andk. Suppose that the distance
between these agents is to be actively maintained, and that
one or both of the agents in question can sense that distance.
Then the task of maintaining the distance might be one that

is given jointly to j andk (in which case both would have
to sense the distance). Alternatively, it might be given to
j alone, ork alone (in which case only one would need
to sense the distance); if it were given toj alone, thenk
would be unconscious ofj. In the former instance, with
joint responsibility, it turns out that undirected graphs are
an appropriate tool (and the graph will have an undirected
edge between vertices corresponding to agentsj andk). In
the latter case (responsibility given toj alone ork alone), the
graphs are directed, and the graph will have a directed edge
from j to k (whenj is responsible for maintaining distance)
or from k to j (when k is responsible for maintaining
distance).

These two sections describe conditions, in two and three
dimensions, that must be fulfilled by architectures that allow
preservation of formation shape during formation movement.

In Section V, we address operations with formations,
including merging, splitting and closing ranks. Closing ranks
is the task of repairing a formation when one or more agents
are lost; it is a task that obviously nature has solved in a
number of cases. Generally speaking, a minor rearrangement
of the architecture is needed.

Section VI develops these tasks in some more detail.
There are two very broad conceptual approaches that can be
adopted. Consider the merging problem. One can contem-
plate two formations, both capable of maintaining cohesive
motion, and ask the question, if they are brought into prox-
imity with one another and thought of as a single formation
with agent set the union of the agent sets of the individual
formations, what additional inter-agent distances might have
to be sensed and controlled (beyond those already being
sensed and controlled in the individual formations) in order
that the new single formation be capable of cohesive motion?
This is a very natural way to look at the problem. The
second conceptual approach says: think of each of the two
formations as a sort of super agent, or meta-agent, with an
internal structure that isnot fundamentally important. Then
we need to identify the rules for assigning edges between
two meta-agents in order that the combination be capable
of maintaining cohesive motion. This view is a much more
recent one.

In Section VII we offer some concluding remarks.

III. F ORMATIONS AND UNDIRECTED RIGID GRAPHS

In this section, we indicate the applicability of graph
theory to formations.

Rigid graph theory[18], [20], [31], [32] is a tool which
has been used to analyse the property of formation rigidity,
see [9], [25], [28], [37]. Agents are modelled as points.
Agent pairs for which the inter-agent distance is actively
constrained to be constant can be thought of as being
joined by bars with lengths enforcing the inter-agent distance
constraints. The system can be therefore modelled by a
graph where vertices represent point-like agents and inter-
agent distance constraints are abstracted as edges. (Naturally,
one can contemplate other constraints than distance, e.g.
those involving angle, or angle and distance; however the



theory begins with distance constraints, and we will restrict
discussion to this case). Rigid graph theory is concerned
with stating properties of graphs which ensure that the
formation being modelled by the graph will be rigid; formal
definitions are available of course, but roughly speaking, a
rigid formation is one in which the only smooth motions are
those corresponding to translation or rotation of the whole
formation.

Figure 1 shows several examples of two dimensional
graphs, two of which are rigid and one of which is not
rigid. In a nonrigid graph part of the graph can flex or move,
while the rest of the graph stays still. The notion of rigidity
conforms to one’s normal intuition.

A. Rigidity and Minimal Rigidity

Two key tools of analysis appear. The first is a tool of
linear algebra. Given knowledge of the positions of the
agents at any one time, one can construct a matrix, the so-
calledrigidity matrix [31], [32], and the dimensions and rank
of this matrix allow one to conclude that the formation is
or is not rigid. The dimensions and rank are the same for
almost all positions of the agents. This means that rigidity
matrices formed from two formations differing from each
other only in terms of the values for the constrained distances
will have the same rank, except for very special sets of the
agent positions. Appendix A contains more detail on the
rigidity matrix. The concept is valid in both two and three
dimensions.

The characterization of rigidity using the rigidity matrix
rests on using linear algebra ideas, and yet, since rigidity is
a property that will occur for almost all instantiations of a
graph, i.e. for almost all vertex positions, except those lying
in a nongeneric set, it is reasonable to conjecture that there
should be a test for rigidity in which the particular values of
the vertex positions need not appear. Indeed this is the case
for two dimensions, but not yet for three dimensions.

It proves possible in two dimensions to also characterize
rigidity in purely combinatorial terms, i.e. counting-type
conditions related to the graph (discarding therefore the agent
coordinates) can be used to conclude the rigidity or otherwise
of a generic formation corresponding to the graph. This is
the celebrated Laman’s Theorem [23], for which no three-
dimensional equivalent exists. In three dimensions, differing
necessity and sufficiency conditions are known for a graph
to correspond to a formation which will be rigid for generic
values of the constrained inter-agent distances [31]. For more
detail see Appendix B.

One major result concerns theconstructionof rigid forma-
tions. As for the characterisation of rigidity, the theory for
two-dimensional formations is better developed than that for
three-dimensional formations. Before describing the result,
we flag the concept ofminimal rigidity. A formation is
minimally rigid if it is rigid and if no single inter-agent
distance constraint can be removed without losing rigidity. A
graph is minimally rigid if almost all formations to which the
graph corresponds are minimally rigid. Minimal rigidity is
easily described in two and three dimensions with the rigidity
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Fig. 1. Illustration of (a) non-rigid formation, (b) (minimally) rigid
formation, and (c) non-minimally but rigid formation

matrix, characterisable in two dimensions with Laman’s
Theorem, and the subject of some necessary conditions in
three dimensions on the graph determined by a formation.
Necessary conditions in two and three dimensions are that
|E| = 2|V | − 3 and |E| = 3|V | − 6 respectively, where|E|
and |V | are the numbers of edges and vertices of the graph.
See Figure 1 for an illustration.

The two-dimensional construction result referred to above
is this. Suppose a minimally rigid graph corresponding to a
two-dimensional formation exists. Then there are two opera-
tions on rigid formation construction known as the vertex
addition operation and the edge-splitting operation which
can be used to build another minimally rigid graphwith
one more vertex. Obviously, bigger and bigger minimally
rigid graphs can be built this way, with the process being
known asHenneberg sequenceconstruction [7], [31]. What
is important are the following two additional properties:
• All two-dimensional minimally rigid graphs with any

number of vertices are constructible from a primitive
comprising a two-vertex single-edge graph by an ap-
propriate sequence of these operations, see Appendix
C.

• Any two-dimensional minimally rigid graph can be
“deconstructed” by the inverse operations, to yield a
sequence of minimally rigid graphs each with one
less vertex than its predecessor in the sequence, and
terminating with a two-vertex, single-edge graph.

Figure 2 illustrates a Henneberg construction.
In three dimensions, the results are not so complete and it

is still a matter of conjecture that a certain set of operations
is necessary and sufficient to build and “deconstruct” all
minimally rigid graphs. Some conjectures are provided in
[31].

B. Extension to the concept of Global Rigidity

Before introducing the works reflecting the title of the
paper, we need to digress to introduce another important
graph theoretic concept,global rigidity. Consider a formation
in which agents are labelled, and certain inter-agent distances
are prescribed but the Euclidean positions of the agents are
not known. One can then ask: what Euclidean positions of the
agents would correspond to the data? Obviously translations
and rotations must be allowed. Almost as obviously, reflec-
tions must be allowed. Thus if the agents were so located
as to correspond to the data, and if then the signs of all
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Fig. 2. Illustration of (a) growing a four agent formation to include agent
5, by (b) vertex addition operation, OR, (c) edge splitting operation, where
edge{1,4} is the removed edge.

 
 

B 

C 

D 
A 

A’ 

B 

D 
A 

A’ 

C 

E 

B’ 

D 

C 

E 

(a) (b) 

Fig. 3. Illustration of (a) Flip ambiguity: Vertex A can be flipped over the
edge (B,C) to a symmetric position A’ and the distances constraints remain
the same. (b) Discontinuous flex ambiguity: Temporarily removing the edge
(A,D), the edge triple (A,E), (A,B), (B,C) can be flexed to obtain positions
A’ and B’, such that the edge length (A’,D) equals the edge length (A,D),
therefore all the distance constraints are the same.

the coordinates of every agent were changed and new agents
placed at the new positions, another formation corresponding
to the distance data would result, and in general it would not
be obtainable from the first by translation and rotation.

A two-dimensional or three-dimensional formation (and
by extension its graph) is termedglobally rigid if and only
if any two formations corresponding to the distance data
differ by at most translation, rotation and reflection. It is
perhaps not immediately obvious, but global rigidity is a
more demanding concept than rigidity, i.e. there exist rigid
formations which are not globally rigid, and such formations
can only be converted to globally rigid formations by the
addition of more distance constraints. Figure 3 gives two
examples of two dimensional formations which are rigid but
not globally rigid, and yet correspond to the same set of
distance constraints.

The notion of flip ambiguity is transparent. Not every
minimally rigid graph contains a flip ambiguity. The notion
of flex ambiguity needs more explanation. The two graphs
of Figure 3(b) satisfy the same distance constraints, but are
clearly quite different.Every minimally rigid graph with
four or more vertices at generic positions can exhibit flex
ambiguity (for the graph of Figure 3(a), the flex ambiguity
happens to be the same as the flip ambiguity). This means

that where there are only enough distance constraints to
ensure minimal rigidity, the shape of an associated formation
is not uniquely specified by those constraints, though if
a formation assumes one of the allowed shapes, it cannot
deform smoothly from that shape. Minimal rigidity allows
retention of shape, but does not of itself specify what shape
is retained. Global rigidity instead is required.

Appendix D contains some more remarks on global rigid-
ity.

Henneberg sequence construction is also possible for two-
dimensional globally rigid graphs. Two different sets of
operations have been advanced, see [7] and [20]. Recent
unpublished work of some of the authors has shown that
both sets of operations lead to the same graphs, in fact all
globally rigid graphs can be grown this way.

The definition of global rigidity for two-dimensional for-
mations extends obviously to three dimensions. However,
though global rigidity is a generic concept in two dimen-
sions, and thus is a concept that can be associated with a
graph, it is not known whether it is a generic concept in
three dimensions, although certainly some three-dimensional
graphs can legitimately be termed globally rigid. What this
means is that there may be two three dimensional formations
with the same graph, but with different specified inter-agent
distances, such that one of these formations has a shapenot
uniquely determined by the specified inter-agent distances
(i.e. is rigid but not globally rigid) while the other formation
has a shape that is uniquely determined by the specified inter-
agent distances (i.e. it is globally rigid).

Global rigidity is of interest in various application areas,
including sensor network localization[8], [12], [26]. In
sensor networks, there is given a set of points (like the agents
in a formation but corresponding to sensors), and a set of
distances between pairs of points (obtained by exchange of
information between points in the network); the distances
are typically available for pairs of points which are within
a Euclidean distance of one another that is less than some
threshold. The associated graph is termed aunit disk graph.
The sensor network localization problem is to pass from the
distance set to a set of Euclidean coordinates for the sensors
consistent with the distance set. In the absence of further
information, the Euclidean coordinates are only specified up
to translation, rotation or reflection. That further information
is normally obtained from so-called anchor nodes or sensors,
the position of which are known absolutely.

It turns out that a number of current applications of
formations involve localization of objects whose position is
unknown. Recently for example, the following applications
problem (in<2) was posed to us: Suppose there are the
agentsA,B andC at known positions, and three agentsD, E
and F at unknown positions. Suppose that the interagent
distances are known forA, B and C, and separately for
D,E and F . Suppose further that the distancesAD, BE,
and CF are known. Can one localizeD,E and F , and if
so, how? While we mention this problem simply to motivate
the importance of studying localization, its solution being
unimportant for the overall message of the paper, we can



nevertheless record what the solution is: the associated graph
can be shown to be minimally rigid, and so not globally
rigid. Generically therefore,D,E andF cannot be localized,
though a finite set of positions for each ofD, E andF can
be determined, the positions differing by flex ambiguities.

C. Nonminimally rigid formations

Globally rigid formations are nonminimally rigid. But are
there other reasons for using nonminimally rigid formations,
where more controls are imposed than are needed? And are
there any special problems in doing so?

There are indeed good reasons to use nonminimally rigid
graphs to underpin the shape of a formation. In a minimally
rigid formation, there is no protection against loss of a sensor,
a communication link or a control actuator, and in practice, it
will often be necessary to obtain robustness through the use
of some measure of redundancy. Measures of robustness are
needed to reflect ability to sustain loss of an edge (whether
from a sensing, communication or control failure), or the
loss of an agent, or indeed the loss of a multiplicity of
edges and/or agents. Loss of agents is in part covered by
the discussion subsequently of closing ranks.

Are there any special problems in handling nonminimally
rigid formations? There is one problem, but it can be over-
come. Imagine a two-dimensional physical structure that is
nonminimally rigid. If it were to be constructed from a plan,
it is clear that if mistakes are made in determining the lengths
of the members corresponding to the edges, then in some way
the assembly of the structure will not fit together properly.
Likewise, if distances between agents in a formation are
measured with some noise, there will be some inconsistency.
In <2, an agent in a formation with three neighbours from
which certain distances have to be maintained may not be
able to consistently position itself so that all measured values
are consistent with all the nominal values. This sort of
problem, i.e. having to cope with inconsistencies introduced
by inaccurate measurements, also arises in sensor network
localization problems, and techniques are slowly becoming
available to deal with this [3].

IV. FORMATIONS AND DIRECTED GRAPHS

The discussion to this point about formation information
and control architectures to secure rigidity has been sketchy.
Let us observe now that the task of maintaining a prescribed
distance between a nominated agent pair requires control
action, and one can conceive that the execution of the
task could be the “responsibility” of both agents, or one
nominated agent of the pair. Modelling using undirected
graphs is appropriate in the former case. However in the
latter case, it is important to recognise the distinction by
assigning a direction to all edges in the graph. A directed
edge from vertexu to vertexv appears when agentu has
the task of maintaining its distance constant from agentv,
and agentv is unconstrained in its own motions with respect
to the motion ofu, i.e. it is “unconscious” of the task that
agentu has to execute.
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Fig. 4. Illustration of a 4-agent directed formation that is not constraint
consistent

A. Constraint Consistence and Persistence of Formations

There is still interest in the basic question: what conditions
ensure that the motions of a formation are restricted to
translation or rotation? This question is examined in [13] for
two dimensions, and in [14], [36], [37] for three dimensions.
We will describe the two-dimensional result first. A notion
termedpersistenceis introduced, which is an amalgam of two
conditions, rigidity (as before) and a notion termedconstraint
consistence. The rigidity property says thatif certain inter-
agent distances are maintained, then all inter-agent distances
are maintained when the formation moves smoothly. The
new property,constraint consistence, is equivalent to the
requirement thatit is possible to maintain the nominated
inter-agent distances. To illustrate this further, consider Fig.
4 above.

Suppose agents 1 and 2 are fixed, with agent 2 at its correct
distance from 1. Suppose also that agent 3 is at its correct
distance from agent 2 and agent 4 at its correct distance from
1, 2 and 3. Now observe that agent 3 has only one distance
constraint, thus it can move, while maintaining its distance
from 2, on a circle centered at agent 2. It is unconscious
of the constraint which 4 is supposed to maintain on the
distance between agents 3 and 4. When agent 3 moves, agent
4 then has an impossible task. There are only two possible
positions where agent 4 can be in order to maintain its correct
distances from agents 1 and 2; for generic allowable positions
of agent 3, agent 4 will not be able to maintain the correct
distance from agent 3 from either of these two positions.
We describe such an arrangement as beingnot constraint
consistent. Evidently, too much is being asked of one agent.

Constraint consistent formations are those where no agent
is given potentially impossible constraints, in the manner
of agent 4 in Fig. 4. The notion of constraint consistence
can be applied and described with directed graphs. Formal
definitions of constraint consistence and persistence can be
found in [13], [37]. Let us simply note the following key
facts:

• Any two dimensional graph which has no more than two
outgoing edges from any vertex is constraint consistent
(though there are constraint consistent graphs where
some vertices have out-degree greater than two).

• A graph can be checked for persistence (i.e. rigidity plus
constraint consistence) by testing a certain collection of
subgraphs (in which the edge directions are neglected)
for rigidity. See Appendix E for further remarks.
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Fig. 5. Illustration of (a) a persistent wheel graph, and (b) a persistentC2

graph

B. Securing persistence: some examples

In the light of the above remarks, an important question
presents itself. Suppose that a two-dimensional undirected
graph is rigid. Can one assign edge directions so that it is
constraint consistent and thus persistent? At the time of writ-
ing, the question in its full generality remains open. However,
affirmative answers exist for minimally rigid graphs [13],
and graphs with certain structures, including wheel graphs,
trilateration graphs, complete graphs and power graphs of
circle graphs [10], [33].

The simplest algorithm for assigning directions in a min-
imally rigid graph is to consider the associated undirected
graph and determine the Henneberg sequence whereby it can
be grown. Then it is trivial to add directions at each step,
simply using the rule that any vertex can have no more than
two outgoing edges, see [13], [15] for details. We remark
that such a directed graph is termed minimally persistent;
minimally persistent graphs are precisely those which are
minimally rigid and constraint consistent.

Figure 5 shows some direction assignments for wheel
graphs and the graph known asC2, these being two struc-
tures that at times have been advanced as being useful
for autonomous agent formations. (The graphC2 is so
designated as it is the square in a graph theoretic sense of the
cycle graph, usually designated byC). The structures have
distinct robustness properties, i.e. tolerance of agent or link
loss in the formation (corresponding to vertex or edge loss
in the graph). A wheel graph with a total ofN vertices has
2N − 2 edges, and can tolerate the loss of any single edge
while still remaining persistent. Also it can tolerate the loss
of any single vertex other than the ’central’ vertex (together
with the associated edges leaving or entering the lost vertex),
and persistence will be retained for the remaining graph. For
the C2 graph withN vertices, there are2N edges, and one
can tolerate the loss of any three edges, or the loss of any
vertex and its incident edges, and still retain persistence.

C. Henneberg sequence theory and persistence graphs

Given the existence of Henneberg sequence theory for
undirected graphs in<2, it is logical to ask whether the
theory can be extended to directed graphs. The topic is
treated in [15] and [16]. The broad conclusion is that it
can be applied, so long as the primitive operations are
modified to allow directed edges in the graphs and also a
further primitive operation is introduced. There is more than
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Fig. 6. Illustration of a persistent but not structurally persistent formation

one possible operation, but the simplest possible operation
is edge-reversal, i.e., reversing the direction of one edge
arriving at a vertex with a degree of freedom (DOF)1.

D. Extension of the persistence concept to<3

In <3, many of the persistence ideas described above
will carry through. In particular, one can certainly define
constraint consistence and persistence. However, there is a
subtle twist. In effect, one needs the equivalent of constraint
consistence for all subsets of vertices, as opposed to just
each individual vertex considered one at a time. For three
and indeed higher dimensions, a concept termed structural
persistence is required [36], [37], and in three dimensions, it
is very easy to check structural persistence given persistence.
Before presenting more details on this concept, we present
an example. Figure 6 depicts a three-dimensional formation
with an underlying directed graph, and the associated graph
is persistent, this being a consequence of every agent having
no more than three out-going edges. However, it is evident
that agents 1 and 2 are unconstrained, having no out-going
edges, and so in principle can move apart, thus destroying
the shape of the formation. Hence despite the persistence
property, this formation does not have a sensing and control
architecture allowing retention of its shape. The reason is
that it is not structurally persistent.

Here are now some salient points on persistence and
structural persistence for graphs and formations in<3.
• Any three dimensional graph which has no more than

three outgoing edges from any vertex is constraint
consistent.

• A graph can be checked for persistence, (i.e. rigidity
plus constraint consistence) by testing a certain col-
lection of subgraphs (in which the edge directions are
neglected) for rigidity.

Next, if a directed graph is persistent,
• The graph can be checked forstructural persistence,

which is now the necessary and sufficient condition to
be able to provide enough interagent distance controls to
ensure the formation behaves as a cohesive whole; for
example, structural persistence of a three-dimensional
formation can be verified by checking its persistence

1In <2, a vertex has two, one or zero degree(s) of freedom if it has no,
one, or at least two outgoing edges; each outgoing edge uses up one DOF.
A minor variation applies in three dimensions.



and verifying there is at most one vertex of the graph
with no outwardly directed edges.

• A three-dimensional persistent graph is always struc-
turally persistent if it is cycle-free.

• It is provable that all persistent graphs inR2 and R1

are also structural persistent.
• A generalized check for structural persistence can be

executed based on the following theorem: a persistent
graph in<d (d ≥ 1) is structurally persistent if and only
if every one of its closed subgraphs2 with less thand
vertices is persistent.

V. OPERATIONS WITH FORMATIONS

In [6], several operations involving formations were in-
troduced. In particular, the concepts of splitting, merging
and closing ranks were defined, for formations which were
modelled using undirected graphs. We give more details:
• Splitting. Consider a single rigid formation. A splitting

literately means that its agents are divided into two
subsets, and that distance constraints between agents in
the different subsets are suppressed. Splitting may occur
because of a change of objective, or to avoid an obstacle
etc. See Figure 7 for an illustration of the problem.
In graph theory terms, after the split, there are two
separate (sub-)graphs, neither of which may be rigid.
How can one introduce additional distance constraints
in the separate subformations to ensure rigidity of
them both? Additionally, one can consider variations
assuming the starting formation is minimally rigid, one
can consider two and three dimensional versions, and
one can consider directed graph versions. One can also
consider questions of algorithm complexity, and the
possibility of posing computational constraints on indi-
vidual agents if there is a wish to perform calculations
on a decentralised basis.

• Merging. Consider two rigid formations. How can ad-
ditional distance constraints be determined, with one
agent in each formation, such that the union of the
agents of the two formations, and the union of the
distance constraints in the original formations and the
new distance constraints, will describe a single rigid
formation? Figure 8 illustrates the problem. Of course,
the problem can be expressed using graph theoretic
terms as well. Again, the problem can be cast in graph
theory language, and the same variations apply as for
splitting.

• Closing ranks. Consider a single rigid formation. Sup-
pose that one agent is removed, and, consequentially,
any distance constraints that applied between this agent
and the remaining agents of the formation, see Figure
9. Where should new distance constraints be inserted,
in order that the formation can be re-rendered rigid?
The same extending remarks apply here also. In addi-
tion, the closing ranks problem can be generalised to

2G′ = (V ′, E′) is a closed subgraph ofG if there is no directed path
in G starting fromV ′ and containing either a vertex or an edge that does
not belong toG′.
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Fig. 7. Illustration of a formation splitting process to avoid obstacles
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Fig. 8. Illustration of a merging process

contemplate formations in whichmore than oneagent
is simultaneously removed, with the associated distance
constraints.

The initial way to solve these problems revolved round
finding a significant modification of the Henneberg sequence
concept. We describe this in some more detail in the fol-
lowing paragraphs. In the next section, a more recent and
different approach is described. In [5], a so-calledminimal
cover problem was introduced and solved: in the minimal
cover problem, a graph is presented which is not minimally
rigid. One is required to determine a minimal set of edges
(minimality being in the sense of the actual number) which
when added to the graph will render it generically rigid. The
solution of the minimal cover problem can be applied to
solve each of the problems of formatting merging, splitting
and closing ranks. Additionally, it has been observed that:

• The splitting problem is actually a particular case of the
closing ranks problem. One subformation can regard the
agents of the other subformation as the lost agents.

• The closing ranks problem (in graph theoretic language)
can always be solved by introducing new edges between
former neighbours of the lost vertices of the graph, i.e.
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Fig. 9. Illustration of a closing rank process where agent 1 and all
associated links are lost, and new links (5,3) and (4,3) are inserted to re-
establish the rigidity. Agents 6 and 7 are not affected during the process.

by performing a local repair as illustrated in Figure 9.
In connection with the splitting problem, this means
that any new edges can be restricted to connecting pairs
of those vertices in one subformation graph that were
previously neighbours of vertices which ended up in the
other subformation graph, as illustrated in Figure 7.

The above formation operations can also be contemplated
for directed graphs. However, little work has so far been
done.

VI. M ETA-VERTICES, BODIES AND META-FORMATIONS

In merging two formations, it is obvious that much internal
structure is largely irrelevant. As it turns out for example, if
two rigid formations are to be merged in two dimensions, this
can always be done by introducing three distance constraints
with one agent in each of the two formations, and ensuring
that in each of the two formations, at least two agents are
involved in the distance constraints [34]. There is obviously
some kind of a general rule operative here and it is of interest
to establish what the general rules are concerning the con-
nection of formations to form larger formations, particularly
ensuring preservation of rigidity; with the view however
that the internal connections of the individual formations
are unimportant, we shall term the larger formation a meta-
formation [1], [35]. In this connection, we shall first note
two streams of work.

A. Rigidity and two-dimensional formations of formations

The papers [27], [30] investigate what are sometimes
termed body-bar systems. A body is like a generalization
of a point agent. Any rigid formation of agents can be
replaced by a body, a rigid object that in two dimensions
has three degrees of freedom, two displacements and one
rotation. (In contrast, a point agent in two dimensions has
two degrees of freedom, both translational). Each body can
be deemed to have a set of connection points on its surface,
with the property that distances can be constrained between
two connection points in different bodies. One can imagine
a formation comprising a set of bodies, which might also be
termed meta-vertices or meta-agents, with certain distance
constraints between them (usually more than one connection
point on the surface of a body is used; for if only one
connection point were used, the body or the meta-vertex
could rotate about it). The term meta-vertex is however
probably best restricted to applying to the graph equivalent

of a body. One can also pose the question: when will such
a formation be rigid? Of course, it is desired to answer this
question taking no account of the internal structure of the
bodies.

The question was answered for meta-formations of bodies
in [27], [30], using both a generalization of the rigidity
matrix, and a generalization of Laman’s Theorem for the
two-dimensional case. Recall that Laman’s Theorem, see
Appendix B, provides necessary and sufficient conditions for
generic rigidity of a graph corresponding to a formation of
point agents, and the conditions are of a “counting” form;
a simple adjustment of certain numbers appearing in the
statement of Laman’s Theorem converts it to a theorem con-
cerning generic rigidity of a graph corresponding to a two-
dimensional bar-body framework. As for checking rigidity of
a normal graph in<3, the available counting condition for
three-dimensional body-bar framework are necessary for it
to be rigid but not sufficient. The rigidity matrix ideas work
in three dimensions (where the bodies are three dimensional
and thus have six degrees of freedom, three translational ones
and three rotational ones) [30].

Interconnection of two formations is a matter of intercon-
nection of two bodies, and the Laman’s Theorem extension
easily provides the result that three distance constraints
between connection points on each of the two bodies, with
at least two connection points involved for each body, serves
to give rigidity of the overall formation. This idea could be
extended in that of merging more than two formations (meta-
vertices) and agents (vertices) [35]. This type of result of
course exists for directed graphs, some results are available
in [17].

B. More on formation merging

A recent paper [34] by some of the authors considers the
problem described above of connecting two formations in
two dimensions as well as other problems:
• Connecting (via insertion of additional edges) two for-

mations in three dimensions to secure minimal rigidity.
• Connecting two formations in two or three dimensions

to secure global rigidity.
• Connecting two formations when they are not disjoint,

i.e., they are permitted to have a limited number of
common vertices and/or a limited number of common
edges.

By appealing to various results on rigidity and global
rigidity, a series of conditions are established to solve these
problems. The conditions are generally of the form: make
m connections, involve at leastn vertices of one formation,
and at leastp vertices of the second formation. We give two
examples, to make more concrete the form of the results.
• Consider two globally rigid two-dimensional graphs,

with one vertex in common. Then by adding two new
edges with one vertex in each formation, and such that
in at least one of the formations the edges are incident
on two different vertices, a globally rigid graph results.
(Note that the two new edges added cannot be incident
on the vertex common to the two initially given graphs)



• Consider two minimally rigid three dimensional graphs,
with no vertices in common. Then after addition of
six new edges, incident in each graph on at least three
vertices, and with no more than two edges incident to
a single vertex, there results a minimally rigid graph. A
related result is that if the two three-dimensional graphs
are rigid but not necessarily minimally rigid, addition of
six new edges using the same incidence rules will result
in a rigid graph, but fewer than six edges cannot. We
might regard such an interconnection as minimally rigid
from the meta-formation point of view, since the issue of
whether or not the individual meta-vertices (themselves
formations) are minimally rigid (they must of course be
rigid) is considered irrelevant.

Directed versions of these results have in part been ob-
tained [17]. Of course, the conditions for securing persis-
tence always include those applicable to securing rigidity,
as discussed before. Here are some examples of conclusions
which can be established:

• In order to merge two minimally persistent graphs (in
<3) into a larger minimally persistent graph, one needs
to add six directed interconnection edges that leave
vertices with some degrees of freedom in the initial (pre-
merging) graphs (one DOF for each out-going edge)
but that can arrive at any vertices of the other initial
(pre-merging) graphs. (In<3, the degrees of freedom
of a vertex are three, two, one or zero, according as
the vertex has respectively no, one, two, three or more
outgoing edges.) Not every selection of interconnection
edges leads to a persistent merged graph, but it is always
possible to find a set of interconnection edges that
makes the merged graph structurally persistent, even
when the initial (persistent) graphs are not structurally
persistent.

• When the merged graph needs to be persistent and
not necessarily minimally persistent, one still needs
to add six directed edges leaving vertices with some
(positive) degrees of freedom. The number of new edges
leaving a vertex with positive degree of freedom must
be no greater than its degree of freedom. Other edges
(possibly leaving vertices without DOF) can under
some conditions also be added, but they can always
be avoided. As a consequence, at least six degrees of
freedom must be available in the two initial graphs;
otherwise the two graphs cannot be merged.

• If one of the two initial graphs has no degree of freedom
and if simultaneously the other one is not structurally
persistent, then they cannot be merged into a persistent
graph. However, in every other case, if six degrees of
freedom are available, it is always possible to choose
six directed interconnection edges to make the merged
graph persistent and even structurally persistent.

We have further defined two types of persistent merging,
as depicted in Figure 10:

• (Meta-)Leader-Follower merging, in which all newly
added directed edges leave from a persistent formation
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Fig. 10. Illustration of (a) Leader-Follower merging, and (b) Collaborative
merging. FormationG1 consisting of agents 5, 6 and 7, and formationG2

consisting of agents 1, 2, 3, and 4.

G1 (the “meta-follower”) and arrives atG2 (the “meta-
leader”). These directed meta-edges therefore remove
all DOFs of G1 and the merged persistent formation
retains the same DOF allocation pattern ofG2.

• Collaborative merging, in which each formation will
have some newly added directed edges leaving one or
more of their vertices with positive DOF, and arriving
at the other formation. Evidently, both formations will
lose some DOF, and as a result, the DOF allocation
pattern of the post-merged persistent formation may be
different from that of eitherG1 or G2.

Some results related to the above characterizations of
merging persistent formations have been noted and some are
given below:

• Collaborative merging in the three-dimensional case
may produce a formation that is not structurally per-
sistent, even if the two pre-merging formations are
structurally persistent. This happens when both initial
formations contain a leader, and when none of the edges
added during the merging process leaves either of those
two leaders.

• In the case of a leader-follower merging, where the
pre-merging formations contain more than just a single
agent, the formation obtained is always structurally
persistent.

C. Towards a more systematic theory

Given that in<2 one can find a version of Laman’s Theo-
rem describing the rigidity of a meta-formation, obtained by
connecting together meta-vertices or meta-agents, one can
also ask: is there a concept of a Henneberg sequence for
meta-formations? Such a sequence could start with a single
meta-vertex, or rigid formation, and involve the successive
addition of meta-agents to the meta-formation. Each addition
would result in a meta-formation that had the minimal
number of edges between meta-vertices so as to guarantee
rigidity of the overall meta-formation. Indeed, that is the
case. Analogs to vertex addition and edge splitting, termed
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Fig. 11. Illustration of a scenario when one can perform meta-Henneberg
operations: Meta-verticesG1 andG2 are merged intoG′ with three meta-
edges, meta-vertexG3 is merged using (a) meta-vertex addition and (b)
meta-edge splitting.

meta-vertex additionand meta-edge splittingrespectively,
can be constructed, see for example Fig. 11. The process
can also be described by building on the results described in
the previous section, and was set out in detail in our recent
work [35].

VII. C ONCLUSIONS

In this paper, we have set out the rudiments of a theory
for analysing and creating architectures appropriate to the
control of formations of autonomous vehicles. The theory
rests on ideas of rigid graph theory, some but not all of
which are old. The theory however has a number of gaps in
it, and their elimination would help in applications. Some of
the gaps in the relevant graph theory are as follows:

• There is as yet no analog for three-dimensional
graphs of Laman’s theorem, which provides for two-
dimensional graphs a combinatorial criterion for rigidity

• For three dimensional graphs there is no analog of
the two-dimensional Henneberg construction (although
there are conjectures, [31])

• Global rigidity can be easily characterized for two-
dimensional graphs; this is not the case for three-
dimensional graphs.

Actually, it may be the case that one will need to study
graphs in dimensions higher than 3, because the physical

agents they are modelling may have orientation as well as
position. Generally speaking, results for dimensions higher
than three are even less well documented.

Turning more to the applications, let us note the following
important questions:
• What is a satisfactory measure of redundancy in a

formation, i.e. a measure of its ability to sustain loss
of agents or communication/control links?

• For a given number of agents, and with a constraint
on the number of edges in the associated graph, what
formation shapes in<2 and<3 are the most robust to
edge and/or agent loss? Are there any trade-offs?

• What is acompletedescription of the set of distributed
control laws that can be used to maintain the shape of a
formation, both in the undirected and the directed graph
case (a preliminary question is: what isa control law
which will maintain the shape of a formation-but this
question is now well answered for formations modelled
by undirected graphs-need references-and the work of
Lee and Spong [24] deals with directed graphs). Of
course, this question is a logical follow-on to the ideas
of this paper that must be addressed in order that the
ideas can be operationalised.

• What formations are going to bedifficult to control, in
the sense of requiring very accurate sensors and/or very
large control signals? Might they be those for which the
rigidity matrix has its smallest nonzero singular value
close to zero?

• What variations to the results apply when geometric
information other than distances is sensed, such as, for
example, angles, differences of distances (due to Time
Difference of Arrival information)?

• What variations of the results apply when orientation of
agents is relevant?
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APPENDICES

A. Rigidity matrices [31]

Consider a graphG = (V, E) in <2 of |V | vertices and
|E| edges. Let the coordinates of vertexj be (xj , yj). The
rigidity matrix is defined with an arbitrary ordering of the
vertices and edges, and has2|V | columns and|E| rows. Each
edge gives rise to a row, and if the edge links verticesj andk,
the nonzero entries of the row of the matrix are in columns
2j, 2j + 1, 2k and 2k + 1, and are respectivelyxj − xk,
yj − yk, xk − xj , yk − yj . For example, for the graphs of
Figure 1(a) and 1(c), the rigidity matrices are

 

There can be special positions for the vertices of a graph
where rigidity is lost, typically when vertices are collinear
in <2 or coplanar in<3. Call such situations non-generic.
The key result is:

Theorem: A graphG = (V, E) in <2 of |V | vertices and
|E| edges is rigid if and only if for generic vertex positions,
the rigidity matrix has rank2|V | − 3.

It is easy to verify this result for the two examples. The
rank for the rigidity matrix of Figure 1(a) is 4 and for Figure
1(c) it is 5.

In case the rigidity matrix has rank2|V |−3, the dimension
of the kernel is 3. It is possible to argue that independent
vectors in the kernel correspond to agent velocities when the
formation is translating and/or rotating. In two dimensions,
there are two independent translations and one rotation which
are possible. When the kernel dimension is greater than 3,
independent motions in addition to translation and rotation
are possible, corresponding to some kind of flexing.

The theorem extends easily to graphs in<3. There are now
three columns of the matrix associated with each vertex and



rigidity for generic vertex positions corresponds to having a
rank of 3|V | − 6.

The rigidity matrix of a physical structure conveys infor-
mation about how loads on a structure translate into forces
in its members. Rigidity matrices with three zero singular
values and with a very small nonzero singular value appear to
correspond to physical structures which could be considered
to not be very rigid, i.e. small loads could cause large
deflections.

B. Laman’s theorem [23]

Laman’s theorem requires the idea of an induced subgraph
of a graphG = (V, E). Let V ′ be a subset ofV . Then the
subgraph ofG induced byV ′ is the graphG′ = (V ′E′)
whereE′ includes all those edges ofE which are incident
on a vertex pair inV ′.

Laman’s Theorem:A graph G = (V, E) in <2 of |V |
vertices and|E| edges is rigid if and only if there exists a
subgraphG′ = (V, E′) with 2|V | − 3 edges such that for
any subsetV ” of V , the induced subgraphG” = (V ”, E”)
of G′ obeys|E”| ≤ 2|V ”| − 3.

Partial extension of Laman’s theorem to<3: A graphG =
(V, E) in <3 of |V | vertices and|E| edges is rigid only if
(a) there exists a subgraphG′ = (V, E′) with 3|V |−6 edges
such that for any subsetV ” of V , the induced subgraph
G” = (V ”, E”) of G′ obeys |E”| ≤ 3|V ”| − 6, and (b)
if G” obeys|E”| = 3|V ”| − 6, then it is 3-connected, i.e.
between any two vertices ofG”, there are three paths which
pairwise have no vertices in common.

C. Henneberg Constructions [18]

Let G = (V, E) be a graph in<2. The operation of vertex
addition is the following. A new graphG′ = (V ′, E′) is
formed in which a vertexv is adjoined as well as two edges
from G to v, so thatV ′ = V ∪ v andE′ = E ∪ (v, j), (v, k)
for j, k ∈ V .

The operation of edge splitting is the following. A new
graph G′ = (V ′, E′) is formed in which a vertexv is
adjoined as well as three edges fromG to v, while an
edge ofG is removed. More precisely,V ′ = V ∪ v and
E′ = E∪(v, j), (v, k), (v, m)\e for j, k, m ∈ V with at least
two of j, k, m adjacent inG, ande one of (j, k), (j, m), or
(k,m).

D. Global Rigidity Characterization

For two-dimensional formations and their associated
graphs, there is a nice characterization of global rigidity. (No
extension is known for three-dimensional formations.). Call
a graphredundantly rigidif it remains rigid after the removal
of any single edge.

Theorem:A graphG = (V,E) in <2 of |V | vertices and
|E| edges is globally rigid if and only if it is redundantly
rigid and 3-connected.

E. Persistence Testing

As noted in the main body of the text, there is a test
for persistence of a graph. It runs as follows in<2. Let G
be a directed graph, and let{Gi, i = 1, 2, . . .} be the set
of undirected graphs obtainable fromG by deleting edges
outgoing from any vertex with out-degree exceeding 2, until
there are just two outgoing edges. (If there are for example,
three vertices inG with out-degree 3 and two with out-degree
4, the total number of graphsGi will be (3)3(6)2 , being
three possible ways of selecting two outgoing edges from
three, for each of three vertices, and six possible ways of
selecting two out going edges from four, for each of two
vertices.) ThenG is persistent if and only if all undirected
versions of theGi are all persistent.

In <3, the same idea applies, except that outgoing edges
in excess of 3 rather than 2 are deleted.


