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Abstract—This paper reviews a number of concepts and better source localization, or simply have higher sensitivity;
results relevant to the design of architectures to maintain gccurate knowledge and control of the relative positions of

the shape of a formation of autonomous agents. The paper yne agents of the formation is of course essential for this
begins with motivating examples from nature and the man-

made world, and emphasises the task of providing satisfactory appl|-cat|on. A second reason is that some task; .lnherently
sensing, communication and control architectures within a require m.U|t|p|e Se'_'lsorS.Of kr.IOWﬂ relative positions; for
formation of autonomous agents. Then some technical tools example, in three dimensions, if one can measure distances
for characterising and designing architectures are described, to an object of interest, and if one wants to determine the
largely resting on graph theoretic considerations. position of that object, one needs four separate distance

|. INTRODUCTION measurements from sensors with known positions to deter-
For millennia if not millions of years, nature has presenteaqine that object's position (otherwise termed localizing the

examples of collective behaviour by groups of insects, birdeJeCt)' A third reason is that multiple sensors may have indi-

fish, etc. Such behaviour has arisen to permit sophisticatggjua"y differing functionalities, which in aggregate gives a
behaviour of the group that would never be achievable b

ew functionality for the formation of sensors. Small mobile
individual members of the group [19], [22]. The behaviou

ensors are much cheaper to deploy, but then weight and
may serve the needs of foraging for food, of defence again {her considerations will set upper bounds on the on-board
predators, of aggression against prey, of mating, etc. Fi

antionality of any one sensor.
and birds particularly, as part of their group behaviour, often

Sometimes these factors apply at the same time. For exam-
display formation type behaviour; in this sort of behaviourple’ in one application with which the authors are familiar,

the relative positions of the fish or birds are preserved, él?e agents of_the forr_nanon are Iocahzm_g by_ d_etermlnlng
least more or less. and the whole formation moves as gle information, but issues of sensor noise, limited cone of
cohesive whole Of‘ course. from time to time. a formatioﬁ/'Sib”ity and the like, mean that more agents need to be used

may split, rearrange itself in a minor way perhaps to remov? the formation that might be at first thought. Formations

a burden on one or members of the formation, rearrange itsdl naturally or artificially hazardous environments also may
’ quire larger numbers of agents, to cope with outages.

in a major way, perhaps for obstacle avoidance or predatB? . . L
From a control point of view, it is clear that there are

avoidance, merge with another formation, etc. ks at both the level of the whole f i determini
Whether nature has been a conscious or unconscioE)&s S at bo e level ot the whole tormation, determining

motivator for human kind, formations of robots, underwate r example waypoints for a path which the centre of gravity

vehicles and autonomous airborne vehicles are now slow the formation should follow, as well as control tasks for
being deployed to tackle problems in both civilian and"e individual agents of the formation, such as maintaining

military spheres-bush fire control, surveillance, underwateqjelr relative positions, or shifting from one formation shape

exploration and the like. A formation of vehicles may con—.to another formation shape. Certainly in formations occurring

stitute a much more effective sensor than a single vehicl! nature, and commonly in man made formations, there is

for various reasons. First, having many vehicles allows eflb single all-powerful master agem exercising control over

fective synthesis of a large dimension antenna, for receivi very other agent. Cor_1tro| task_s in some way have to be
electromagnetic or acoustic signals, and large antennas all ndled on a decentralized basis. . _

In fact many systems problems arise, and standing at
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paper will not traverse the whole problem domain, but onlys given jointly toj andk (in which case both would have
one corner, albeit an important corner. Most of this papdp sense the distance). Alternatively, it might be given to
will describe what sort of sensing and control architectureg alone, ork alone (in which case only one would need
are needed to maintain the shape of a formation, while tite sense the distance); if it were given foalone, thenk
formation moves as a cohesive whole. As already intimatedjould be unconscious of. In the former instance, with
in many situations, it is desirable that the formation maintaijoint responsibility, it turns out that undirected graphs are
its shape while executing an overall change of locatiomn appropriate tool (and the graph will have an undirected
or change from one shape to another, perhaps to avoid edge between vertices corresponding to aggraad k). In
obstacle; again, on occasions a formation may need to splite latter case (responsibility given t@lone ork alone), the
or merge with a different formation. The architectures needraphs are directed, and the graph will have a directed edge
to be able to sustain these tasks. from j to k (whenj is responsible for maintaining distance)
Within this limited domain, there is a further limitation or from k£ to j (when k is responsible for maintaining
we will impose. Obviously, to maintain a formation shapedistance).
agents have to sense some aspect of the formation geometryThese two sections describe conditions, in two and three
i.e. an agent will need to measure some geometricallgimensions, that must be fulfilled by architectures that allow
relevant variable involving some, at least, of some othasreservation of formation shape during formation movement.
agents in the formation, in order to apply a control to correct In Section V, we address operations with formations,
any error in formation shape. There are many things that camcluding merging, splitting and closing ranks. Closing ranks
be sensed, involving distances and angles, for example ag@nthe task of repairing a formation when one or more agents

j might sense are lost; it is a task that obviously nature has solved in a
« The distance from agentto agentk number of cases. Generally speaking, a minor rearrangement
« The difference in the distance from agento agent of the architecture is needed.
k and the distance from agerntto agentm (“time Section VI develops these tasks in some more detail.
difference of arrival”) There are two very broad conceptual approaches that can be
« The bearing relative to north of ageht adopted. Consider the merging problem. One can contem-
« The declination/inclination relative to the horizon ofplate two formations, both capable of maintaining cohesive
agentk motion, and ask the question, if they are brought into prox-
« The angle subtended at aggrity the lines joining agent imity with one another and thought of as a single formation
j to agentk and agent to agentm with agent set the union of the agent sets of the individual

etc. We note that biological organisms may sense mof@rmations, what additional inter-agent distances might have
complicated things again than the above, and matters dfe be sensed and controlled (beyond those already being
far from clear anyway. One of our colleagues conjecture%ensed and controlled in the individual formations) in order
that birds effectively project angles within a cone onto 4hat the new single formation be capable of cohesive motion?
hemisphere, and at the same time sense perhaps one distalfég is a very natural way to look at the problem. The
(so that the formation is not scale free, which would be thgecond conceptual approach says: think of each of the two
case were angles alone to be sensed). In this paper, we sf@imations as a sort of super agent, or meta-agent, with an
confine our attention to the use of distance measurementdnternal structure that isot fundamentally important. Then
Many of our tools will be graph theoretic. We wilotbe ~We need to identify the rules for assigning edges between
presenting control laws for individual agents in a formationtw0 meta-agents in order that the combination be capable
but focussing on the higher-level question of defining th€f maintaining cohesive motion. This view is a much more
architecture behind these control laws. There has been cdfcent one.
siderable work on control laws, see e.qg. [2], [4], [11], [21], In Section VII we offer some concluding remarks.
[24], [25], [29]. Though not discussed here, it turns out that
the graph theoretic tools we describe can often be applied ) ] o o
to formations with other sensed variables than just distance,!n this section, we indicate the applicability of graph
including those with mixtures of angles and distances, sdBeory to formations.
e.g. [9]. Rigid graph theory[18], [20], [31], [32] is a tool which
has been used to analyse the property of formation rigidity,
Il. OUTLINE OF THE PAPER see [9], [25], [28], [37]. Agents are modelled as points.
In the next two sections, we describe how aspects @&gent pairs for which the inter-agent distance is actively
formation architecture can be described using graphs. Tharenstrained to be constant can be thought of as being
is a clear dividing line between the two sections that igined by bars with lengths enforcing the inter-agent distance
associated with the sort of graphs we are using. Consideonstraints. The system can be therefore modelled by a
two agents in a formation, andk. Suppose that the distancegraph where vertices represent point-like agents and inter-
between these agents is to be actively maintained, and ttegent distance constraints are abstracted as edges. (Naturally,
one or both of the agents in question can sense that distanoee can contemplate other constraints than distance, e.g.
Then the task of maintaining the distance might be one th#ttose involving angle, or angle and distance; however the

Ill. FORMATIONS AND UNDIRECTED RIGID GRAPHS



theory begins with distance constraints, and we will restrict
discussion to this case). Rigid graph theory is concerned
with stating properties of graphs which ensure that the 2 2 2
formation being modelled by the graph will be rigid; formal
definitions are available of course, but roughly speaking, a4 4 4
rigid formation is one in which the only smooth motions are 3 3 3
those corresponding to translation or rotation of the whole €) (b) (©)
formation.

Figure 1 shows several examples of two dimensiondiio- 1: Illustration of _(e_l) non-rigid_ formation_, (b) (minimally) rigid
graphs, two of which are rigid and one of which is notformatlon, and (c) non-minimally but rigid formation
rigid. In a nonrigid graph part of the graph can flex or move,
while the rest of the graph stays still. The notion of rigidity

conforms to one’s normal intuition. matrix, characterisable in two dimensions with Laman’s
o o o Theorem, and the subject of some necessary conditions in
A. Rigidity and Minimal Rigidity three dimensions on the graph determined by a formation.

Two key tools of analysis appear. The first is a tool ofNecessary conditions in two and three dimensions are that
linear algebra. Given knowledge of the positions of theE| = 2|V|—3 and|E| = 3|V| — 6 respectively, wherg¢E|
agents at any one time, one can construct a matrix, the s@ad|V| are the numbers of edges and vertices of the graph.
calledrigidity matrix [31], [32], and the dimensions and rank See Figure 1 for an illustration.
of this matrix allow one to conclude that the formation is The two-dimensional construction result referred to above
or is not rigid. The dimensions and rank are the same fd$ this. Suppose a minimally rigid graph corresponding to a
almost all positions of the agents. This means that rigiditiwo-dimensional formation exists. Then there are two opera-
matrices formed from two formations differing from eachtions on rigid formation construction known as the vertex
other only in terms of the values for the constrained distancé@sldition operation and the edge-splitting operation which
will have the same rank, except for very special sets of thean be used to build another minimally rigid graplith
agent positions. Appendix A contains more detail on thene more vertexObviously, bigger and bigger minimally
rigidity matrix. The concept is valid in both two and threerigid graphs can be built this way, with the process being
dimensions. known asHenneberg sequena®nstruction [7], [31]. What

The characterization of rigidity using the rigidity matrix is important are the following two additional properties:
rests on using linear algebra ideas, and yet, since rigidity ise All two-dimensional minimally rigid graphs with any
a property that will occur for almost all instantiations of a number of vertices are constructible from a primitive
graph, i.e. for almost all vertex positions, except those lying  comprising a two-vertex single-edge graph by an ap-
in a nongeneric set, it is reasonable to conjecture that there propriate sequence of these operations, see Appendix
should be a test for rigidity in which the particular values of  C.
the vertex positions need not appear. Indeed this is the casa Any two-dimensional minimally rigid graph can be

for two dimensions, but not yet for three dimensions. “deconstructed” by the inverse operations, to yield a
It proves possible in two dimensions to also characterize  sequence of minimally rigid graphs each with one
rigidity in purely combinatorial terms, i.e. counting-type less vertex than its predecessor in the sequence, and

conditions related to the graph (discarding therefore the agent terminating with a two-vertex, single-edge graph.
coordinates) can be used to conclude the rigidity or otherwise Figure 2 illustrates a Henneberg construction.

of a generic formation corresponding to the graph. This is |n three dimensions, the results are not so complete and it
the celebrated Laman's Theorem [23], for which no thregs still a matter of conjecture that a certain set of operations
dimensional equivalent exists. In three dimensions, differing necessary and sufficient to build and “deconstruct” all

necessity and sufficiency conditions are known for a graphinimally rigid graphs. Some conjectures are provided in
to correspond to a formation which will be rigid for generic[37].

values of the constrained inter-agent distances [31]. For more
detail see Appendix B. B. Extension to the concept of Global Rigidity

One major result concerns tlenstructionof rigid forma- Before introducing the works reflecting the title of the
tions. As for the characterisation of rigidity, the theory forpaper, we need to digress to introduce another important
two-dimensional formations is better developed than that faggraph theoretic concepi|obal rigidity. Consider a formation
three-dimensional formations. Before describing the resulity which agents are labelled, and certain inter-agent distances
we flag the concept ofninimal rigidity. A formation is are prescribed but the Euclidean positions of the agents are
minimally rigid if it is rigid and if no single inter-agent not known. One can then ask: what Euclidean positions of the
distance constraint can be removed without losing rigidity. Aaagents would correspond to the data? Obviously translations
graph is minimally rigid if almost all formations to which the and rotations must be allowed. Almost as obviously, reflec-
graph corresponds are minimally rigid. Minimal rigidity istions must be allowed. Thus if the agents were so located
easily described in two and three dimensions with the rigiditas to correspond to the data, and if then the signs of all



deform smoothly from that shape. Minimal rigidity allows
retention of shape, but does not of itself specify what shape
is retained. Global rigidity instead is required.

4 1
3 % g Appendix D contains some more remarks on global rigid-
@ \ 2 1ty o .
Henneberg sequence construction is also possible for two-

?

g ! that where there are only enough distance constraints to
ensure minimal rigidity, the shape of an associated formation
2 is not uniquely specified by those constraints, though if
5 ? 1 . ;
{:_A; ﬁ 4 a formation assumes one of the allowed shapes, it cannot
2 I

4 dimensional globally rigid graphs. Two different sets of
3 operations have been advanced, see [7] and [20]. Recent
© unpublished work of some of the authors has shown that

Fig. 2. lllustration of (a) growing a four agent formation to include agen0th sets of operations lead to the same graphs, in fact all

5, by (b) vertex addition operation, OR, (c) edge splitting operation, wherglobally rigid graphs can be grown this way.

edge{1,4} is the removed edge. The definition of global rigidity for two-dimensional for-
mations extends obviously to three dimensions. However,

A though global rigidity is a generic concept in two dimen-
b sions, and thus is a concept that can be associated with a

graph, it is not known whether it is a generic concept in
g three dimensions, although certainly some three-dimensional

graphs can legitimately be termed globally rigid. What this
means is that there may be two three dimensional formations
C with the same graph, but with different specified inter-agent
(b) distances, such that one of these formations has a statpe
Fio. 3. illustration of (a) Fi bicuity: Vertex A can be fibned " uniquely determined by the specified inter-agent distances
o o o) T i e o e iohed vt . is rigid but ot globally rigic) while the other formation
the same. (b) Discontinuous flex ambiguity: Temporarily removing the edgdas a shape that is uniquely determined by the specified inter-
(A,D), th’e edge triple (A,E), (A,B), (B'C), can be flexed to obtain positionsagent distances (i.e. it is globally rigid).
ﬁ\eﬁgfofe'aS“Utchhetg;ﬁ;ﬂi:ggﬁ;ﬁgﬁt& ;Aré':%g‘;‘;ﬂfefhe edge length (A'D).' Global rigidity is of interest in various application areas,
including sensor network localizatiori8], [12], [26]. In
sensor networks, there is given a set of points (like the agents
in a formation but corresponding to sensors), and a set of
the coordinates of every agent were changed and new agegistances between pairs of points (obtained by exchange of
placed at the new positions, another formation correspondifgormation between points in the network); the distances
to the distance data would reSUIt, and in general it would n@re typ|ca||y available for pairs of points which are within
be obtainable from the first by translation and rotation. 3 Euclidean distance of one another that is less than some
A two-dimensional or three-dimensional formation (andhreshold. The associated graph is termahi disk graph
by extension its graph) is termeglobally rigid if and only = The sensor network localization problem is to pass from the
if any two formations corresponding to the distance datdistance set to a set of Euclidean coordinates for the sensors
differ by at most translation, rotation and reflection. It isconsistent with the distance set. In the absence of further
perhaps not immediately obvious, but global rigidity is @nformation, the Euclidean coordinates are only specified up
more demanding concept than rigidity, i.e. there exist rigito translation, rotation or reflection. That further information
formations which are not globally rigid, and such formationss normally obtained from so-called anchor nodes or sensors,
can only be converted to globally rigid formations by thethe position of which are known absolutely.
addition of more distance constraints. Figure 3 gives two It turns out that a number of current applications of
examples of two dimensional formations which are rigid buformations involve localization of objects whose position is
not globally rigid, and yet correspond to the same set ainknown. Recently for example, the following applications
distance constraints. problem (in 12?) was posed to us: Suppose there are the
The notion of flip ambiguity is transparent. Not everyagentsA, B andC at known positions, and three agefsF
minimally rigid graph contains a flip ambiguity. The notionand F' at unknown positions. Suppose that the interagent
of flex ambiguity needs more explanation. The two graphdistances are known fod, B and C, and separately for
of Figure 3(b) satisfy the same distance constraints, but afe, £ and F'. Suppose further that the distancd®, BFE,
clearly quite different.Every minimally rigid graph with and CF are known. Can one localiz®, £ and F, and if
four or more vertices at generic positions can exhibit fleso, how? While we mention this problem simply to motivate
ambiguity (for the graph of Figure 3(a), the flex ambiguitythe importance of studying localization, its solution being
happens to be the same as the flip ambiguity). This meansimportant for the overall message of the paper, we can




nevertheless record what the solution is: the associated graph
can be shown to be minimally rigid, and so not globally

rigid. Generically therefore), £ and F' cannot be localized, 2
though a finite set of positions for each bf E and F' can
be determined, the positions differing by flex ambiguities. 4 3
C. Nonminimally rigid formations @ (0)
Globally rigid formations are nonminimally rigid. But are Fig. 4. lllustration of a 4-agent directed formation that is not constraint

. L. - . _consistent
there other reasons for using nonminimally rigid formations;

where more controls are imposed than are needed? And are
there any special problems in doing so?

There are indeed good reasons to use nonminimally rigi‘d- Constraint Consistence and Persistence of Formations
graphs to underpin the shape of a formation. In a minimally There is still interest in the basic question: what conditions
rigid formation, there is no protection against loss of a sensagnsure that the motions of a formation are restricted to
a communication link or a control actuator, and in practice, ifranslation or rotation? This question is examined in [13] for
will often be necessary to obtain robustness through the uggo dimensions, and in [14], [36], [37] for three dimensions.
of some measure of redundancy. Measures of robustness we will describe the two-dimensional result first. A notion
needed to reflect ability to sustain loss of an edge (whethesrmedpersistencés introduced, which is an amalgam of two
from a sensing, communication or control failure), or theonditions, rigidity (as before) and a notion terneahstraint
loss of an agent, or indeed the loss of a multiplicity ofconsistenceThe rigidity property says that certain inter-
edges and/or agents. Loss of agents is in part covered fyent distances are maintained, then all inter-agent distances
the discussion subsequently of closing ranks. are maintained when the formation moves smoothly. The

Are there any special problems in handling nonminimallywnew property,constraint consistengeis equivalent to the
rigid formations? There is one problem, but it can be overequirement thait is possibleto maintain the nominated
come. Imagine a two-dimensional physical structure that isiter-agent distances. To illustrate this further, consider Fig.
nonminimally rigid. If it were to be constructed from a plan,4 above.
itis clear that if mistakes are made in determining the lengths Suppose agents 1 and 2 are fixed, with agent 2 at its correct
of the members corresponding to the edges, then in some wadigtance from 1. Suppose also that agent 3 is at its correct
the assembly of the structure will not fit together properlydistance from agent 2 and agent 4 at its correct distance from
Likewise, if distances between agents in a formation arg, 2 and 3. Now observe that agent 3 has only one distance
measured with some noise, there will be some inconsistengonstraint, thus it can move, while maintaining its distance
In %2, an agent in a formation with three neighbours fronfrom 2, on a circle centered at agent 2. It is unconscious
which certain distances have to be maintained may not lag the constraint which 4 is supposed to maintain on the
able to consistently position itself so that all measured valugiistance between agents 3 and 4. When agent 3 moves, agent
are consistent with all the nominal values. This sort ofi then has an impossible task. There are only two possible
problem, i.e. having to cope with inconsistencies introducegositions where agent 4 can be in order to maintain its correct
by inaccurate measurements, also arises in sensor netwdistances from agents 1 and 2; for generic allowable positions
localization problems, and techniques are slowly becomingf agent 3, agent 4 will not be able to maintain the correct

available to deal with this [3]. distance from agent 3 from either of these two positions.
We describe such an arrangement as beiog constraint
IV. FORMATIONS AND DIRECTED GRAPHS consistentEvidently, too much is being asked of one agent.

Constraint consistent formations are those where no agent
given potentially impossible constraints, in the manner
agent 4 in Fig. 4. The notion of constraint consistence
n be applied and described with directed graphs. Formal
efinitions of constraint consistence and persistence can be
und in [13], [37]. Let us simply note the following key

The discussion to this point about formation information
and control architectures to secure rigidity has been sketcH
Let us observe now that the task of maintaining a prescrib
distance between a nominated agent pair requires cont
action, and one can conceive that the execution of
task could be the “responsibility” of both agents, or oniz
nominated agent of the pair. Modelling using undirecte cts:
graphs is appropriate in the former case. However in the « Any two dimensional graph which has no more than two
latter case, it is important to recognise the distinction by  outgoing edges from any vertex is constraint consistent
assigning a direction to all edges in the graph. A directed (though there are constraint consistent graphs where
edge from vertex: to vertexv appears when agent has some vertices have out-degree greater than two).
the task of maintaining its distance constant from agent < A graph can be checked for persistence (i.e. rigidity plus
and agent is unconstrained in its own motions with respect ~ constraint consistence) by testing a certain collection of

to the motion ofu, i.e. it is “unconscious” of the task that ~ subgraphs (in which the edge directions are neglected)
agentu has to execute. for rigidity. See Appendix E for further remarks.
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Fig. 5. lllustration of (a) a persistent wheel graph, and (b) a persi§tént 2

graph
Fig. 6. lllustration of a persistent but not structurally persistent formation

B. Securing persistence: some examples

qne possible operation, but the simplest possible operation
&3y edge-reversal, i.e., reversing the direction of one edge
firiving at a vertex with a degree of freedom (D&F)

In the light of the above remarks, an important questio
presents itself. Suppose that a two-dimensional undirect
graph is rigid. Can one assign edge directions so that it
constraint consistent and thus persistent? At the time of wrify. Extension of the persistence concepthtb

ing,the'question in its f‘?” generqlity remai.”?f open. However, In 72, many of the persistence ideas described above
affirmative answers exist for minimally rigid graphs [13]’Wi|| carry through. In particular, one can certainly define

?thgratphs with hcertaln s'irl:ctures,hmclu?ljmg wheel griphé?nstraint consistence and persistence. However, there is a
riateration graphs, complete graphs and power grapns @le twist. In effect, one needs the equivalent of constraint

circle graphs [10], [33]. consistence for all subsets of vertices, as opposed to just

. The S.'mpleSt alg_orlthm for_assugnmg d|re<_:t|ons IN'a MNGach individual vertex considered one at a time. For three
imally rigid graph is to consider the associated undirecte

. . gnd indeed higher dimensions, a concept termed structural
graph and determine the Henneberg sequence whereby it g P

b Then it is trivial to add directi i h st sistence is required [36], [37], and in three dimensions, it
€ grown. Then it Is trivial to a Irections at each Stepy very easy to check structural persistence given persistence.
simply using the rule that any vertex can have no more th

. : efore presenting more details on this concept, we present
two outgoing edges, see [1.3]’ [15] for d_et_a||s. We remar n example. Figure 6 depicts a three-dimensional formation

no more than three out-going edges. However, it is evident
ﬂluat agents 1 and 2 are unconstrained, having no out-going
ges, and so in principle can move apart, thus destroying
e(I?ILI' shape of the formation. Hence despite the persistence
roperty, this formation does not have a sensing and control
E}Ehitecture allowing retention of its shape. The reason is

graphs and the graph known &€, these being two struc-
tures that at times have been advanced as being us
for autonomous agent formations. (The grapf is so

designated as it is the square in a graph theoretic sense of

cycle graph, usually designated I63). The structures have tEat it is not structurally persistent.

distinct robustness properties, i.e. tolerance of agent or lin Here are now some salient points on persistence and
loss in the formation (corresponding to vertex or edge lossctructural persistence for graphs and formation&n

in the graph). A wheel graph with a total &f vertices has Anv three dimensional aranh which has no more than
2N — 2 edges, and can tolerate the loss of any single edge® h y {00 d ? P tox i traint
while still remaining persistent. Also it can tolerate the loss ree outgoing edges lrom any vertex IS cohstrain
of any single vertex other than the 'central’ vertex (together Zonf:tﬁné'an be checked for persistence, (i.e. rigidit
with the associated edges leaving or entering the lost vertex),* Iu% fonstraint consistence) g testin é cér.tair? 003(_
and persistence will be retained for the remaining graph. For Ip " f sub hs (in which )t/h d 9 directi

the C? graph with N vertices, there areN edges, and one ection of subgrapns (in which the edge directions are
can tolerate the loss of any three edges, or the loss of any neglected) for rigidity.

vertex and its incident edges, and still retain persistence. V€t if a directed graph is persistent,
o The graph can be checked fetructural persistence

C. Henneberg sequence theory and persistence graphs which is now the necessary and sufficient condition to
Given the existence of Henneberg sequence theory for be able to provide enough interagent distance controls to
undirected graphs ifR?, it is logical to ask whether the ensure the formation behaves as a cohesive whole; for

theory can be extended to directed graphs. The topic is example, structural persistence of a three-dimensional
treated in [15] and [16]. The broad conclusion is that it ~ formation can be verified by checking its persistence
can be applied, so long as the primitive operations all’elln R2, a vertex has two, one or zero degree(s) of freedom if it has no,

modified .to_ ?‘”OW d're(_:ted_ e_dges in the graph; and also d'i\e, or at least two outgoing edges; each outgoing edge uses up one DOF.
further primitive operation is introduced. There is more tham minor variation applies in three dimensions.



and verifying there is at most one vertex of the graph
with no outwardly directed edges. 1

« A three-dimensional persistent graph is always struc-
turally persistent if it is cycle-free.

« It is provable that all persistent graphs k¥ and R!
are also structural persistent.

« A generalized check for structural persistence can be ¢
executed based on the following theorem: a persistent
graph inR? (d > 1) is structurally persistent if and only
if every one of its closed subgrapRswith less thand
vertices is persistent. g

V. OPERATIONS WITH FORMATIONS @ () ©

In [6], several operations involving formations were in-
troduced. In particular, the concepts of splitting, merging
and closing ranks were defined, for formations which were
modelled using undirected graphs. We give more details:

« Splitting Consider a single rigid formation. A splitting 1
literately means that its agents are divided into two
subsets, and that distance constraints between agents in 4 2
the different subsets are suppressed. Splitting may occur ¢ 3 N
because of a change of objective, or to avoid an obstacle il
etc. See Figure 7 for an illustration of the problem.
In graph theory terms, after the split, there are two
separate (sub-)graphs, neither of which may be rigid.
How can one introduce additional distance constraints
in the separate subformations to ensure rigidity of 8
them both? Additionally, one can consider variations 7
assuming the starting formation is minimally rigid, one )
can consider two and three dimensional versions, and 7
one can consider directed graph versions. One can also @ (b)
consider questions of algorithm complexity, and the
possibility of posing computational constraints on indi-
vidual agents if there is a wish to perform calculations
on a decentralised basis. ) ) _

« Merging Consider two rigid formations. How can ad- ~ contemplate formations in whictmore than oneagent
ditional distance constraints be determined, with one IS simultaneously removed, with the associated distance
agent in each formation, such that the union of the  Constraints.
agents of the two formations, and the union of the The initial way to solve these problems revolved round
distance constraints in the original formations and th&nding a significant modification of the Henneberg sequence
new distance constraints, will describe a single rigidoncept. We describe this in some more detail in the fol-
formation? Figure 8 illustrates the problem. Of coursdowing paragraphs. In the next section, a more recent and
the problem can be expressed using graph theoretiifferent approach is described. In [5], a so-callachimal
terms as well. Again, the problem can be cast in grapgover problem was introduced and solved: in the minimal
theory language, and the same variations apply as fepver problem, a graph is presented which is not minimally
splitting. rigid. One is required to determine a minimal set of edges

« Closing ranks Consider a single rigid formation. Sup- (minimality being in the sense of the actual number) which
pose that one agent is removed, and, consequentiayhen added to the graph will render it generically rigid. The
any distance constraints that applied between this ageslution of the minimal cover problem can be applied to
and the remaining agents of the formation, see Figurgolve each of the problems of formatting merging, splitting
9. Where should new distance constraints be insertednd closing ranks. Additionally, it has been observed that:
in order that the formation can be re-rendered rigid? . The splitting problem is actually a particular case of the
The same extending remarks apply here also. In addi- closing ranks problem. One subformation can regard the
tion, the closing ranks problem can be generalised to  agents of the other subformation as the lost agents.

2@ = (V',E') is a closed subgraph af if there is no directed path » The closing ranks prOblem (in graph theoretic language)
in G starting fromV’ and containing either a vertex or an edge that does can always be solved by 'mmduc'ng new edges between
not belong toG". former neighbours of the lost vertices of the graph, i.e.

Fig. 7. lllustration of a formation splitting process to avoid obstacles

Fig. 8. lllustration of a merging process



of a body. One can also pose the question: when will such

5 a formation be rigid? Of course, it is desired to answer this
7 guestion taking no account of the internal structure of the
1 bodies.

The question was answered for meta-formations of bodies
@ in [27], [30], using both a generalization of the rigidity
matrix, and a generalization of Laman’s Theorem for the
Fig. 9. |lllustration of a closing rank process where agent 1 and atwo-dimensional case. Recall that Laman’s Theorem, see
associated links are lost, and new links (5,3) and (4,3) are inserted to IRpHandix B, provides necessary and sufficient conditions for
establish the rigidity. Agents 6 and 7 are not affected during the process. L . .
generic rigidity of a graph corresponding to a formation of
point agents, and the conditions are of a “counting” form;
a simple adjustment of certain numbers appearing in the
by performing a local repair as illustrated in Figure 9statement of Laman’s Theorem converts it to a theorem con-
In connection with the splitting problem, this meanscerning generic rigidity of a graph corresponding to a two-
that any new edges can be restricted to connecting pafmensional bar-body framework. As for checking rigidity of
of those vertices in one subformation graph that werg normal graph ifR?, the available counting condition for
previously neighbours of vertices which ended up in théhree-dimensional body-bar framework are necessary for it
other subformation graph, as illustrated in Figure 7. to be rigid but not sufficient. The rigidity matrix ideas work
The above formation operations can also be contemplatédthree dimensions (where the bodies are three dimensional
for directed graphs. However, little work has so far beeand thus have six degrees of freedom, three translational ones
done. and three rotational ones) [30].
Interconnection of two formations is a matter of intercon-
nection of two bodies, and the Laman’s Theorem extension
In merging two formations, it is obvious that much internakasily provides the result that three distance constraints
structure is largely irrelevant. As it turns out for example, ibetween connection points on each of the two bodies, with
two rigid formations are to be merged in two dimensions, thigt least two connection points involved for each body, serves
can always be done by introducing three distance constrairits give rigidity of the overall formation. This idea could be
with one agent in each of the two formations, and ensuringxtended in that of merging more than two formations (meta-
that in each of the two formations, at least two agents aneertices) and agents (vertices) [35]. This type of result of
involved in the distance constraints [34]. There is obviouslgourse exists for directed graphs, some results are available
some kind of a general rule operative here and it is of intereit [17].
to establish what the general rules are concerning the COB- More on formation merging

nection of formations to form larger formations, particularly .
ensuring preservation of rigidity; with the view however A recent paper [34] by some of the authors considers the

that the internal connections of the individual formation@roPlem described above of connecting two formations in
are unimportant, we shall term the larger formation a metd?© dimensions as well as other problems:
formation [1], [35]. In this connection, we shall first note * Connecting (via insertion of additional edges) two for-

VI. META-VERTICES, BODIES AND META-FORMATIONS

two streams of work. mations in three dimensions to secure minimal rigidity.
« Connecting two formations in two or three dimensions
A. Rigidity and two-dimensional formations of formations to secure global rigidity.

The papers [27], [30] investigate what are sometimes ® Connecting two formations when they are not disjoint,
termed body-bar systems. A body is like a generalization €., they are permitted to have a limited number of
of a point agent. Any rigid formation of agents can be  common vertices and/or a limited number of common
replaced by a body, a rigid object that in two dimensions ~ €dges.
has three degrees of freedom, two displacements and ond3y appealing to various results on rigidity and global
rotation. (In contrast, a point agent in two dimensions hadgidity, a series of conditions are established to solve these
two degrees of freedom, both translational). Each body cdiioblems. The conditions are generally of the form: make
be deemed to have a set of connection points on its surface,connections, involve at least vertices of one formation,
with the property that distances can be constrained betweand at leasp vertices of the second formation. We give two
two connection points in different bodies. One can imaginexamples, to make more concrete the form of the results.

a formation comprising a set of bodies, which might also be « Consider two globally rigid two-dimensional graphs,
termed meta-vertices or meta-agents, with certain distance with one vertex in common. Then by adding two new
constraints between them (usually more than one connection edges with one vertex in each formation, and such that
point on the surface of a body is used; for if only one in at least one of the formations the edges are incident
connection point were used, the body or the meta-vertex on two different vertices, a globally rigid graph results.
could rotate about it). The term meta-vertex is however (Note that the two new edges added cannot be incident
probably best restricted to applying to the graph equivalent on the vertex common to the two initially given graphs)



« Consider two minimally rigid three dimensional graphs,
with no vertices in common. Then after addition of
six new edges, incident in each graph on at least three
vertices, and with no more than two edges incident to
a single vertex, there results a minimally rigid graph. A
related result is that if the two three-dimensional graphs
are rigid but not necessarily minimally rigid, addition of
six new edges using the same incidence rules will result
in a rigid graph, but fewer than six edges cannot. We
might regard such an interconnection as minimally rigid
from the meta-formation point of view, since the issue of
whether or not the individual meta-vertices (themselves
formations) are minimally rigid (they must of course be

rigid) is considered irrelevant.

Fig. 10.
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lllustration of (a) Leader-Follower merging, and (b) Collaborative

Directed versions of these results have in part been olmerging. FormatiorG, consisting of agents 5, 6 and 7, and format@p
tained [17]. Of course, the conditions for securing persis:onsisting of agents 1, 2, 3, and 4.

tence always include those applicable to securing rigidity,
as discussed before. Here are some examples of conclusions

which can be established:

« In order to merge two minimally persistent graphs (in
R3) into a larger minimally persistent graph, one needs
to add six directed interconnection edges that leave
vertices with some degrees of freedom in the initial (pre-
merging) graphs (one DOF for each out-going edge)
but that can arrive at any vertices of the other initial
(pre-merging) graphs. (&3, the degrees of freedom

of a vertex are three, two, one or zero, according as
the vertex has respectively no, one, two, three or more
outgoing edges.) Not every selection of interconnection

G, (the “meta-follower”) and arrives ab, (the “meta-
leader”). These directed meta-edges therefore remove
all DOFs of G; and the merged persistent formation
retains the same DOF allocation pattern(ef.
Collaborative merging in which each formation will
have some newly added directed edges leaving one or
more of their vertices with positive DOF, and arriving
at the other formation. Evidently, both formations will
lose some DOF, and as a result, the DOF allocation
pattern of the post-merged persistent formation may be
different from that of eithelG; or Gs.

edges leads to a persistent merged graph, but it is alwaysSome results related to the above characterizations of
possible to find a set of interconnection edges thaherging persistent formations have been noted and some are
makes the merged graph structurally persistent, evejiven below:

when the initial (persistent) graphs are not structurally |
persistent.

When the merged graph needs to be persistent and
not necessarily minimally persistent, one still needs
to add six directed edges leaving vertices with some
(positive) degrees of freedom. The number of new edges
leaving a vertex with positive degree of freedom must
be no greater than its degree of freedom. Other edges,
(possibly leaving vertices without DOF) can under
some conditions also be added, but they can always
be avoided. As a consequence, at least six degrees of
freedom must be available in the two initial graphs;
otherwise the two graphs cannot be merged.
If one of the two initial graphs has no degree of freedom
and if simultaneously the other one is not structurall¥
persistent, then they cannot be merged into a persistent
graph. However, in every other case, if six degrees
freedom are available, it is always possible to choosé
six directed interconnection edges to make the mergerH
graph persistent and even structurally persistent.

Collaborative merging in the three-dimensional case

may produce a formation that is not structurally per-

sistent, even if the two pre-merging formations are

structurally persistent. This happens when both initial

formations contain a leader, and when none of the edges
added during the merging process leaves either of those
two leaders.

In the case of a leader-follower merging, where the

pre-merging formations contain more than just a single
agent, the formation obtained is always structurally

persistent.

C. Towards a more systematic theory

Given that in?? one can find a version of Laman’s Theo-
em describing the rigidity of a meta-formation, obtained by
cfonnecting together meta-vertices or meta-agents, one can
Q =
also ask: is there a concept of a Henneberg sequence for
eta-formations? Such a sequence could start with a single
meta-vertex, or rigid formation, and involve the successive
addition of meta-agents to the meta-formation. Each addition

We have further defined two types of persistent mergingyoyld result in a meta-formation that had the minimal

as depicted in Figure 10:
o (Meta-)eader-Follower mergingin which all newly

number of edges between meta-vertices so as to guarantee
rigidity of the overall meta-formation. Indeed, that is the

added directed edges leave from a persistent formati@mase. Analogs to vertex addition and edge splitting, termed



(b)

Fig. 11.
operations: Meta-vertice§; and G2 are merged inta>’ with three meta-
edges, meta-verte&'s is merged using (a) meta-vertex addition and (b)
meta-edge splitting.

meta-vertex additiorand meta-edge splittingespectively,

can be constructed, see for example Fig. 11. The process

agents they are modelling may have orientation as well as
position. Generally speaking, results for dimensions higher
than three are even less well documented.

Turning more to the applications, let us note the following

lllustration of a scenario when one can perform meta-Henneberg

can also be described by building on the results described in
the previous section, and was set out in detail in our recent

work [35].

VIl. CONCLUSIONS

(1]

In this paper, we have set out the rudiments of a theorys,
for analysing and creating architectures appropriate to the
control of formations of autonomous vehicles. The theory
rests on ideas of rigid graph theory, some but not all of3
which are old. The theory however has a number of gaps in
it, and their elimination would help in applications. Some of [4]

the gaps in the relevant graph theory are as follows:

« There is as yet no analog for three-dimensionall®]

graphs of Laman’s theorem, which provides for two-
dimensional graphs a combinatorial criterion for rigidity [6]
For three dimensional graphs there is no analog of
the two-dimensional Henneberg construction (although
there are conjectures, [31]) [7]
Global rigidity can be easily characterized for two-
dimensional graphs; this is not the case for three-[S]
dimensional graphs.

Actually, it may be the case that one will need to study

graphs in dimensions higher than 3, because the physical

important questions:

What is a satisfactory measure of redundancy in a
formation, i.e. a measure of its ability to sustain loss
of agents or communication/control links?

For a given number of agents, and with a constraint
on the number of edges in the associated graph, what
formation shapes ift? and ®? are the most robust to
edge and/or agent loss? Are there any trade-offs?
What is acompletedescription of the set of distributed
control laws that can be used to maintain the shape of a
formation, both in the undirected and the directed graph
case (a preliminary question is: whatascontrol law
which will maintain the shape of a formation-but this
question is now well answered for formations modelled
by undirected graphs-need references-and the work of
Lee and Spong [24] deals with directed graphs). Of
course, this question is a logical follow-on to the ideas
of this paper that must be addressed in order that the
ideas can be operationalised.

What formations are going to tifficult to control, in

the sense of requiring very accurate sensors and/or very
large control signals? Might they be those for which the
rigidity matrix has its smallest nonzero singular value
close to zero?

What variations to the results apply when geometric
information other than distances is sensed, such as, for
example, angles, differences of distances (due to Time
Difference of Arrival information)?

What variations of the results apply when orientation of
agents is relevant?
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rigidity for generic vertex positions corresponds to having a The operation of edge splitting is the following. A new

rank of 3|V| — 6. graph G’ = (V',E’) is formed in which a vertex is
The rigidity matrix of a physical structure conveys infor-adjoined as well as three edges frofh to v, while an

mation about how loads on a structure translate into forcesige of G is removed. More preciselyy’ = V U v and

in its members. Rigidity matrices with three zero singula’ = EU(v, j), (v, k), (v, m)\e for j, k,m € V with at least

values and with a very small nonzero singular value appear two of j, k, m adjacent inG, ande one of (4, k), (j,m), or

correspond to physical structures which could be considergd, m).

to not be very rigid, i.e. small loads could cause Iarg% Global Rigidity Characterization

deflections.
For two-dimensional formations and their associated

B. Laman’s theorem [23] graphs, there is a nice characterization of global rigidity. (No

Laman’s theorem requires the idea of an induced subgraghtension is known for three-dimensional formations.). Call
of a graphG = (V, E). Let V' be a subset o¥/. Then the a graphredundantly rigidif it remains rigid after the removal
subgraph ofG induced byV’ is the graphG’ = (V'E’) of any single edge.
where E’ includes all those edges @ which are incident ~ Theorem:A graphG = (V, E) in ®2 of |V| vertices and
on a vertex pair in/”’. |E| edges is globally rigid if and only if it is redundantly

Laman’s TheoremA graph G = (V,E) in ®2 of |[V| rigid and 3-connected.
vertices and E| edges is rigid if and only if there exists a
subgraphG’ = (V, E’) with 2|V| — 3 edges such that for
any subset/” of V, the induced subgrapf” = (V”, E”) As noted in the main body of the text, there is a test
of G’ obeys|E”| < 2|V”| — 3. for persistence of a graph. It runs as follows%A. Let G

Partial extension of Laman’s theorem®5: A graphGG = be a directed graph, and I§t;, i = 1,2,...} be the set
(V,E) in % of [V| vertices and E| edges is rigid only if ©Of undirected graphs obtainable fro6 by deleting edges
(a) there exists a subgragh = (V, E’) with 3|V|—6 edges outgoing from any vertex with out-degree exceeding 2, until
such that for any subsét” of V, the induced subgraph there are just two outgoing edges. (If there are for example,
G” = (V”,E”) of G’ obeys|E”| < 3|V”| — 6, and (b) three vertices it with out-degree 3 and two with out-degree
if G” obeys|E”| = 3[V"| — 6, then it is 3-connected, i.e. 4, the total number of graph§; will be (3)°(6)* , being
between any two vertices @”, there are three paths which three possible ways of selecting two outgoing edges from

E. Persistence Testing

pairwise have no vertices in common. three, for each of three vertices, and six possible ways of
] selecting two out going edges from four, for each of two
C. Henneberg Constructions [18] vertices.) Then? is persistent if and only if all undirected
Let G = (V, E) be a graph irlt2. The operation of vertex versions of theG; are all persistent.
addition is the following. A new grapl&z’ = (V' E’) is In N3, the same idea applies, except that outgoing edges

formed in which a vertex is adjoined as well as two edgesin excess of 3 rather than 2 are deleted.
from G to v, so thatV/ =V Uwv andE' = EU (v, j), (v, k)
for j,ke V.



