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Abstract— This paper treats the problem of the merging
of formations, where the underlying model of a formation is
graphical. We first analyze the persistence of meta-formations,
which are formations obtained by connecting several persistent
formations. Persistence is a generalization to directed graphs
of the undirected notion of rigidity. In the context of moving
autonomous agent formations, persistence characterizes the
efficacy of a directed structure of unilateral distance constraints
seeking to preserve a formation shape. We derive then, for
agents evolving in a two- or three-dimensional space, the
conditions under which a set of persistent formations can be
merged into a persistent meta-formation, and give the minimal
number of interconnections needed for such a merging. We
also give conditions for a meta-formation obtained by merging
several persistent formations to be persistent.

I. I NTRODUCTION

By autonomous agent, we mean here any human-
controlled or unmanned vehicle moving by itself and having
a local intelligence or computing capacity, such as ground
robots, air vehicles or underwater vehicles. Significant
interest has been shown on the behavior of autonomous
agent formations (groups of autonomous agents interacting
which each other) [2]–[5], [10], and more recently on
meta-formations, consisting of interconnected formations
[1], [14]. Many reasons such as obstacle avoidance and
dealing with a predator can indeed lead a (meta-)formation
to be split into smaller formations which are later re-merged.
Those smaller formations need to be organized in such a
way that they can behave autonomously when the formation
is split. Conversely, some formations may need to be
temporarily merged into a meta-formation to accomplish a
certain task, this meta-formation being split afterwards.

The particular property of formations and meta-formations
which we analyze here ispersistence. This graph-theoretical
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notion was introduced in [5] to analyze the behavior
of autonomous agent formations governed by unilateral
distance constraints: Many applications require some inter-
agent distances to be kept constant during a continuous move
in order to preserve the shape of a multi-agent formation.
In other words, when enough inter-agent distances are
explicitly maintained constant, all the inter-agent distances
remain constant. The information structure arising from
such a system can be efficiently modelled by a graph,
where agents are abstracted by vertices and actively
constrained inter-agent distances by edges. We assume
here that those constraints are unilateral, i.e., that the
responsibility for maintaining a distance is not shared by
the two concerned agents but relies on only one of them.
This can be a deliberate choice to improve the efficacy or
the stability of the formation, but also a consequence of
some technical constraints: Some UAV’s can for instance
not sense the objects located behind them. This asymmetry
is modelled using directed edges in the graph. Intuitively,
an information structure is persistent if, provided that each
agent is trying to satisfy all the distance constraints for
which it is responsible, all the inter-agent distances remain
constant and as a result the formation shape is preserved.
A necessary but not sufficient condition for persistence
is rigidity, which intuitively means that, provided that
all the prescribed distance constraints are satisfied during
a continuous displacement, all the inter-agent distances
remain constant. The above notion of rigidity can also
be applied to structural frameworks where the vertices
correspond to joints and the edges to bars. The main
difference between rigidity and persistence is that rigidity
assumes all the constraints to be satisfied, as if they were
enforced by an external agency or through some mechanical
properties, while persistence considers each constraint to
be the responsibility of a single agent. As explained in
[5], persistence implies rigidity, but it also implies thatthe
responsibilities imposed on each agent are not inconsistent,
for there can indeed be situations where this is so, and they
must be avoided. Rigidity is thus an undirected notion (not
depending on the edge directions), while persistence is a
directed one. Both rigidity and persistence can be analyzed
from a graph-theoretical point of view, and it can be proved
[5], [12], [17] that if a formation is rigid (resp. persistent),
then almost all formations represented by the same graph
are rigid (resp. persistent).

As stated in [1], the problem of merging rigid formations
into a rigid meta-formation has been considered in a number
of places. In [9], [11], the rigidity of a multi-graph (a graph
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Fig. 1. Inℜ2, the graph represented in (a) is not rigid because it can be
deformed (dashed line), while the one in (b) is rigid. The graph (c) satisfies
the 3D condition analogous to Theorem 1 but is not rigid inℜ3: the two
parts of the graph can rotate around the axis defined by 1 and 2.

in which some vertices are abstractions of smaller graphs)
is analyzed. The vertices of a multi-graph can be thought as
two dimensional solid bodies at the surface of which some
bars can be attached; two vertices are then connected by
an edge if the corresponding bodies are attached to a same
bar. Operational ways to merge two rigid formations into a
larger rigid formation can also be found in [4], [15].

In this paper, we treat the problem of determining
whether a given meta-formation obtained by merging
several persistent formations is persistent. For this purpose,
we first consider the above mentioned problem of
determining whether a meta-formation obtained by merging
rigid formations is rigid. We also analyze the conditions
under which a collection of persistent formations can be
merged into a persistent meta-formation. Conditions are
then given on the minimal number of additional links that
are needed to achieve such a merging. Note that throughout
all the paper, we always assume that the internal structure
of the formations cannot be modified. Moreover, we use a
convenient graph theoretical formalism, abstracting agents
by vertices and (unilateral) distance constraints by (directed)
edges.

After reviewing some properties of rigidity and persistence
of graphs in Section II, we examine in Section III the issues
mentioned above for agents evolving in a two-dimensional
space. We show in Section IV how our results can be
generalized in a three-dimensional space, and explain why
this generalization can only partially be achieved. The paper
ends then by the concluding remarks in Section V. Due to
space limitations the proofs of some results are omitted, but
they are available on request from the authors.

II. REVIEW OF RIGIDITY AND PERSISTENCE

As explained in Section I, the rigidity of a graph has
the following intuitive meaning: Suppose that each vertex
represents an agent in a formation, and each edge represents
an inter-agent distance constraint enforced by an external
observer. The graph is rigid if for almost every such structure,
the only possible continuous moves are those which preserve
every inter-agent distance, as shown in Fig. 1(a) and (b). For
a more formal definition, the reader is referred to [5], [12].
In ℜ2, that is, if the agents represented by the vertices of the
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Fig. 2. Inℜ2, the graph represented in (a) is rigid but not persistent. For
almost all uncoordinated displacements of 2, 3 and 4 (even if they satisfy
their constraints), 4 is indeed unable to satisfy its three constraints. This
problem cannot happen for the graph represented in (b), which is persistent.

graph evolve in two dimensions, there exists a combinatorial
criterion to check if a given graph is rigid:

Theorem 1 (Laman [8], [13]):A graphG = (V,E), with
|V | > 1, is rigid inℜ2 if and only if there is a sub-setE′ ⊆ E

such that

• |E′| = 2 |V | − 3.
• For all non-emptyE′′ ⊆ E′ there holds

|E′′| ≤ 2 |V (E′′)| − 3, where V (E′′) is the set of
vertices incident to edges ofE′′.

Unfortunately the analogous criterion inℜ3 obtained by
replacing respectively 2 by 3 and 3 by 6 is only necessary,
as demonstrated by the example in Fig. 1(c). We say that a
graph isminimally rigid if it is rigid and if no single edge
can be removed without losing rigidity. It follows from the
results above that a graph is minimally rigid inℜ2 (resp. in
ℜ3) if and only if it is rigid and contains2 |V | − 3 (resp.
3 |V | − 6) edges [12].

Consider now that the constraints are not enforced by an
external entity, but that each constraint is the responsibility of
one agent to enforce. To each agent, one assigns a (possibly
empty) set of unilateral distance constraints represented
by directed edges: the notation(i, j) for a directed edge
connotes that the agenti has to maintain its distance toj
constant during any continuous move. As explained in the
Introduction, thepersistenceof the directed graph means that
provided that each agent is trying to satisfy its constraints,
the distance between any pair of connected or non-connected
agents is maintained constant during any continuous move,
and as a consequence the shape of the formation is preserved.
Note though that the assignments given to an agent may
be impossible to fulfill, in which case persistence is not
achieved. An example of a persistent and a non-persistent
graph having the same underlying undirected graph is shown
in Fig. 2. For a more formal definition of persistence, the
reader is referred to [5], [17], where it is also proved that
a persistent graph is always rigid, and that persistence can
be checked by checking the rigidity of several subgraphs. A
key result in the proof of this is the following:

Proposition 1: A persistent graphℜ2 (resp.ℜ3) remains
persistent after removal of an edge leaving a vertex whose
out-degree is larger than 2 (resp. 3).



We use the termnumber of degrees of freedomof a vertex
i to denote the (generic) dimension of the set in which
the corresponding agent can choose its position (all the
other agents being fixed). Thus it represents in some sense
the decision power of this agent. The number of degrees
of freedom of a vertexi in ℜ2 (resp. ℜ3) is given by
max (0, 2 − d+(i)) (resp.max (0, 2 − d+(i))), whered+(i)
represent the out-degree of the vertexi. A vertex having a
maximal number of degrees of freedom (i.e. an out-degree
0) is called aleadersince the corresponding agent does not
have any distance constraint to satisfy. It is proved in [5],
[17] that the sum of the numbers of degrees of freedom
over all vertices of a persistent graph cannot exceed 3 in
ℜ2 and 6 inℜ3. Note that those numbers correspond to the
number of independent translations and rotations inℜ2 and
ℜ3. In the sequel we abbreviate degree of freedom by DOF.
By an abuse of language, we define the DOF number of
a graph to be the sum of the DOF numbers of degrees of
freedom of its vertices.

As explained in [17], although the concept of persistence
is applicable in three and larger dimensions, it is not
sufficient to imply the desired stability of the formation
shape. For the shape stability, the graph corresponding to a
three-dimensional formation needs indeed to bestructurally
persistent. In ℜ3, a graph is structurally persistent if and
only if it is persistent and contains at most one leader. In
ℜ2, persistence and structural persistence are equivalent.

Similarly to minimal rigidity, we say that a graph is
minimally (structurally) persistentif it is (structurally) per-
sistent and if no single edge can be removed without losing
(structural) persistence. It is proved in [5], [17] that a graph
is minimally (structurally) persistent if and only if it is
(structurally) persistent and minimally rigid. The numberof
edges of such a graph is thus uniquely determined by the
number of its vertices as it is the case for minimally rigid
graphs.

III. R IGIDITY AND PERSISTENCE OF2D
META-FORMATIONS

A. Rigidity

Consider a setN of disjoint rigid (in ℜ2) graphs
G1, . . . , G|N | having at least two vertices, and a setS of
single-vertex graphsG|N |+1, . . . , G|N |+|S|. In the sequel,
those graphs are calledmeta-vertices, and it is assumed that
no modification can be made on their internal structure: no
internal edge or vertex can be added to or removed from a
meta-vertex. We define the merged graphG by taking the
union of all the meta-vertices, and of some additional edges
EM each of which has end-points belonging to different
meta-vertices.

The conditions under which the merging of two meta-
vertices leads to a rigid graph are detailed in [15]: If both
meta-vertices contain more than one vertices, the merged
graph is rigid if and only ifEM contains at least three edges,
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Fig. 3. The graph represented in (a) and (b) is an edge-optimalrigid
merge if it is obtained by mergingG1 andG2 (a) but not if it is obtained
by mergingG1, G′

2
andG′

3
(c). The dashed edge represents the edges of

EM

which are incident to at least two vertices of each meta-
vertex. This is actually a particular case of the following
result for an arbitrary number of graphs (analogous to a result
in [9] which is obtained under the assumption that no vertex
of any meta-vertex is incident to more than one edge ofEM ):

Theorem 2:G =
(

⋃

N,S Gi

)

∪ EM (with N and S as
defined at the beginning of this section) is rigid if and only
if there existsE′

M ⊆ EM such that
• |E′

M | = 3 |N | + 2 |S| − 3
• For all non-emptyE′′

M ⊆ E′
M , there holds

|E′′
M | ≤ 3 |I(E′′

M )| + 2 |J(EM )| − 3,
where I(E′′

M ) is the set of meta-vertices with at least two
vertices incident to edges ofE′′

M and J(E′
M ) is the set of

those with only one vertex incident to edge(s) ofE′′
M .

For a given collection of meta-vertices, we say thatG

is an edge-optimal rigid mergingif no single edge ofEM

can be removed without losing rigidity. Notice that a single
graph can be an edge-optimal rigid merging with respect to
a certain collection of meta-vertices, and not with respect
to another one, as shown in Fig. 3. If all meta-vertices are
minimally rigid, then an edge-optimal rigid merging is also
a minimally rigid graph. From Theorem 2, one can deduce
that G is an edge-optimal rigid merging if and only if it is
rigid and |EM | = 3 |N | + 2 |S| − 3.

B. Persistence

Next we analyze the case where the meta-vertices are
directed persistent graphs. If it is possible to merge them
into a persistent graph, then it is possible to do so in such
a way that all the edges ofEM leave vertices which have
an out-degree not greater than 2 inG. A set of edgesEM

that would makeG persistent but that would not satisfy this
property could indeed be reduced by Proposition 1 until it
satisfies it. It is possible to prove that when the added edges
leave only vertices whose out-degree is not greater than 2,
G is persistent if and only if it is rigid. The condition on
the out-degrees of the vertices with an outgoing edge of
EM can be conveniently re-expressed in terms of degrees
of freedom: To each DOF (within a single meta-vertex) of
any vertex there corresponds at most one outgoing edge of
EM . By an abuse of language, we say that such edges leave
a vertex with one or more local DOFs, i.e. a vertex which
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Fig. 4. Merging of the persistent meta-verticesG1 andG2 into a persistent
graph in ℜ2 (a). The symbol “*” represents one DOF (with respect to
the meta-vertex). (b) represents two persistent meta-vertexthat cannot be
merged into a persistent graph inℜ2 because none of their vertices has a
DOF.

inside its meta-vertex has one or more DOFS. This allows
reformulating the above results in a dimension-free way:

Theorem 3:A collection of (structurally) persistent
meta-vertices can be merged into a (structurally) persistent
graph if and only if it can be merged into a (structurally)
persistent graph by adding edges leaving vertices with one
or more local DOFs. In that case, the merged graph is
persistent if and only if it is rigid.

If one or more edges do leave a vertex with an out-degree
larger than 2, no criterion has been found yet to determine
whether the merged graph is persistent or not, which also
takes advantage of the fact that the graph is obtained by
merging several persistent meta-vertices.

Tying Theorem 3 together with what is known and re-
viewed above regarding the merging of two rigid meta-
vertices, we conclude: two persistent meta-verticesGa and
Gb each having more than one vertex can be merged into a
persistent graph if and only if three edges leaving vertices
with local DOFs can be added in such a way that they are
incident to at least two vertices in each meta-vertex. There
must thus be at least three local DOFs available among the
vertices in Ga and Gb. Conversely, if there are available
three local DOFs among the vertices ofGa and Gb, since
no vertex can have more than two DOFs, it is possible to add
a total of at least three edges leaving at least two vertices of
Ga ∪ Gb. The vertices to which those edges arrive can then
be chosen in such a way that at least two vertices of both
Ga and Gb are incident to edges ofEM , as shown in Fig.
4. By Theorem 3, this implies that the merged graph would
be rigid and therefore persistent:

Proposition 2: Two meta-vertices with more than one
vertex can be merged into a persistent graph if and only if
the sum of their DOFs number is at least 3. At least three
edges are needed to perform this merging, and merging can
always be done with exactly three edges.

If one or two of the meta-vertices are single vertex
graphs, the result still holds, but the minimal number of
added edges (and therefore the number of needed DOFs) are
then respectively 2 and 1. We define thenumber of missing
DOFs (mDOF ) to be the absolute value of the difference

between the DOF number of the graph and the maximal
DOF number that any graph with the same number of
vertices can have. Inℜ2, this maximal number is 2 for the
single vertex graphs, and 3 for other persistent graphs. There
is an interesting consequence: when the minimal number of
edges is used to merge two meta-verticesGa and Gb, the
number of missing DOFs is preserved through the process,
i.e. mDOF (Ga ∪ Gb ∪ EM ) = mDOF (Ga) + mDOF (Gb).

Consider now an arbitrary number of meta-vertices, pos-
sibly containing single-vertex graphs, but such that the total
number of vertices is at least 2. If the sum of their number
of missing DOFs is no greater than 3, it follows from
Proposition 2 that any two of them can be merged in such
a way that the obtained graph is persistent and that the total
number of missing DOFs remains unchanged. Any pair of
those meta-vertices would indeed contain at least the required
number of DOFs. Doing this recursively, it is possible to
merge all these meta-vertices into a single persistent graph.
In case there are more than 3 missing DOFs, the total DOF
number is by definition smaller than3 |N |+2 |S|−3, which
is the minimal number of edges required to make the merged
graph rigid. It follows then from Theorem 3 that such meta-
vertices cannot be merged in a persistent graph. We have
thus proved the following result:

Proposition 3: A collection of persistent meta-vertices
N ∪S (with N andS as defined in the beginning of Section
III-A) can be merged into a persistent graph if and only if
the total number of missing DOFs is no greater than 3, or
equivalently if the total number of local DOF inN ∪S is at
least3 |N | + 2 |S| − 3. At least3 |N | + 2 |S| − 3 edges are
needed to perform this merging, and merging can always be
done with exactly this number of edges.

As when merging rigid meta-vertices, we say thatG is an
edge-optimal persistent mergingif no single edge ofEM can
be removed without losing persistence. Again, if all meta-
vertices are minimally persistent, thenG is an edge-optimal
persistent merging if and only if it is minimally persistent.
It can be proved that:

Theorem 4:G =
(

⋃

N,S Gi

)

∪ EM (with N and S as
defined at the beginning of Section III-A and with allGi

persistent) is an edge-optimal persistent merging inℜ2 if
and only if the following conditions all hold

• |EM | = 3 |N | + 2 |S| − 3
• For all non-emptyE′′

M ⊆ E′
M , there holds

|E′′
M | ≤ 3 |I(E′′

M )| + 2 |J(EM )| − 3
with I(E′′

M ) andJ(E′
M ) as defined in Theorem 2

• All edges ofEM leave vertices with local DOFs.

Equivalently, a persistentG is an edge-optimal persistent
merging if and only if it is an edge-optimal rigid merging,
or if and only if its number of missing DOFs is equal to
the sum of the numbers of missing DOFs of all its meta-
vertices. Notice that an efficient way to obtain such a merging
is provided in the discussion of Proposition 3.



|Va| 1 1 1 2 2 ≥ 3
|Vb| 1 2 ≥ 3 2 ≥ 3 ≥ 3

min |EM | 1 2 3 3 5 6

TABLE I

M IN . NUMBER OF EDGES TO MERGE TWO GRAPH INTO A RIGID GRAPH.

IV. R IGIDITY AND PERSISTENCE OF3D
META-FORMATIONS

A. Rigidity

We now consider a setN of disjoint rigid (in ℜ3)
graphs G1, . . . , G|N | having at least three vertices, a
set D of graphs containing two (connected) vertices
G|N |+1, . . . , G|N |+|D|, and a setS of single-vertex graphs
G|N |+|D|+1, . . . , G|N |+|D|+|S|. As in Section III, these
graphs are called meta-vertices, and we define the merged
graphG by taking the union of all the meta-vertices, and of
some additional edgesEM each of which having end-points
belonging to different meta-vertices.

The merging of two rigid meta-vertices, each containing
more than two vertices, is treated in [15]: At least six edges
are needed, and they must be incident to at least three vertices
of each meta-vertex, and it is always possible to achieve
a rigid merging using exactly six edges incident to exactly
three vertices of each meta-vertex. But these conditions are
only necessary: The so-called “double-banana” of Fig. 1(c)
can be obtained by merging two distinct rigid tetrahedral
meta-vertices (1,3,4,5) and (2,5,7,8) using a total of six edges
incident to four vertices of each meta-vertex. With a minor
modification, the merging result above holds in the cases
where at least one meta-vertex has less than 3 vertices:
The required number of edges is different, as summarized
in Table I wheremin |EM | represents the minimal number
of edges required to merge the meta-verticesGa(Va, Ea)
and Gb(Vb, Eb) into a rigid graph. Also, if a meta-vertex
has less than 3 vertices, all of them should be incident to
edges ofEM , otherwise at least 3 of them should be. When
merging several meta-vertices, there is no available necessary
and sufficient condition for the rigidity ofG. Determining
whether a merged graph is rigid inℜ3 is indeed a more
general problem than determining whether a given graph is
rigid (it suffices to takeN = D = ∅) and there is no known
set of combinatorial necessary and sufficient conditions for
this. However, we have the following necessary condition:

Theorem 5:G =
(

⋃

N,D,S Gi

)

∪ EM (whith N,S,D as

defined at the beginning of this section) is rigid (inℜ3). Then
there existsE′

M ⊆ EM such that

• |E′
M | = 6 |N | + 5 |D| + 3 |S| − 6

• for all non-emptyE′′
M ⊆ E′

M , there holds
|E′′

M | ≤ 6 |I(E′′
M )| + 5 |J(E′′

M )| + 3 |K(E′′
M )| − 6,

whereI(E′′
M ) is the set of meta-vertices with at least three

vertices or two unconnected ones incident to edges ofE′′
M ,

J(E′′
M ) is the set of those with one connected pair incident

to edges ofE′′
M , and K(E′′

M ) the set of those with only
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Fig. 5. Example of a persistent but not structurally persistent meta-vertex
Gb which cannot be merged into a persistent or rigid graph with the meta-
vertexGa, the latter being persistent but having no DOF. (b) shows howtwo
non-structurally persistent meta-vertices can be merged into a structurally
persistent graph. The symbol “*” represents one DOF, and the dashed edges
are the edges ofEM .

one vertex incident to edge(s) ofE′′
M .

It should be noted that the counting conditions of Theorem
5 are not sufficient for rigidity. The non-rigid graph of Fig.
1(c) which can be obtained by merging two rigid tetrahedral
meta-vertices (1,3,4,5) and (2,6,7,8) would indeed satisfy
them. Nevertheless, one can deduce from Theorem 5 that
G is an edge-optimal rigid merging inℜ3 if and only if it is
rigid and |EM | = 6 |N | + 5 |D| + 3 |S| − 6.

B. Persistence

Consider now all meta-vertices as persistent graphs. The-
orem 3 can be proved in a way that does not depend on
the dimension of the space in which the agent evolves
and is thus still valid in three dimensions. Merging two
meta-vertices into a persistent graph is however a more
complicated problem inℜ3 than in ℜ2. Consider indeed
a meta-vertexGa without any DOF, and a meta-vertexGb

which is not structurally persistent, i.e. which is persistent
and contains two vertices (leaders) having three DOFs. The
number of available DOFs is equal to the minimal number of
edges that should be added to obtain a rigid merged graph.
However, the only way to add six edges leaving local DOFs
is to add three edges leaving each leader ofGb and arriving
in Ga, as shown in Fig. 5(a). Only two vertices ofGb would
thus be incident to the added edges, which prevents the
merged graph from being rigid and therefore persistent. We
have thus proved the following condition:

Proposition 4: If two persistent meta-vertices are such
that one is not structurally persistent and the other does not
have any DOF, they cannot be merged into a persistent graph.

However, this is the only case for which the argument
used in establishing Proposition 2 cannot be generalized to
establish an analogous property inℜ3:

Proposition 5: If two meta-vertices (with more than 2
vertices) do not satisfy the condition of Proposition 4, they
can be merged into a persistent graph if and only if the sum
of their DOFs is at least 6. At least six edges are needed to
perform this merging, and merging can always be done with
exactly six edges and in such a way that the graph obtained
is structurally persistent.



In case at least one of the meta-vertices has less than 3
vertices, the result still holds, but with a different required
number of edges inEM and therefore of available DOFs:
these minimal numbers are both equal tomin |EM | in Table
I (for the merging of a graphGa(Va, Ea) with a graph
Gb(Vb, Eb)). It is worth noting that even if one or both of
the meta-vertices are not structurally persistent, it is possible
to obtain a structurally persistent merged graph, as shown
in Fig. 5(b). This has already been observed in [17] for the
case where one meta-vertex is a single vertex graph.

Consider now a collection of meta-vertices such that the
total number of vertices is at least 3. By a similar argument
as for Proposition 3, one can prove the following result.

Proposition 6: A collection of persistent meta-vertices
N ∪ D ∪ S (with N,D, S as defined in the beginning of
Section IV-A) that does not consist of only two meta-vertices
satisfying the condition of Proposition 4 can be merged
into a persistent graph if and only if the total number
of missing DOFs is no greater than 6, or equivalently if
the total number of local DOFs inN ∪ D ∪ S is at least
6 |N | + 5 |D| + 3 |S| − 6. At least6 |N | + 5 |D| + 3 |S| − 6
edges are needed to perform this merging. Merging can
always be done with exactly this number of edges, and
in such a way that the merged graph is structurally persistent.

The only difference with the discussion of Proposition
3 appears when the collection contains two meta-vertices
satisfying the condition of Proposition 4 (that is, one not
structurally persistent and one without DOF) and at least
one other meta-vertex. In that case, a counting argument
shows that there can only be one meta-vertex with no DOF,
and that apart from this one, all meta-vertices have no
missing DOF. One can thus begin by merging all those into
a structurally persistent graph, which can then be merged
with the meta-vertex without DOF.

As in the two-dimensional case, one can prove that a
persistent graph is an edge-optimal persistent merging if and
only if it is an edge-optimal rigid merging. However, due to
the absence of necessary and sufficient conditions allowing
a combinatorial checking of the rigidity of a graph or of
a merged graph inℜ3, the result cannot be expressed in a
purely combinatorial way.

Theorem 6:G =
(

⋃

N,D,S Gi

)

∪ EM with N,D, S as
defined at the beginning of Section IV-A and with allGi

persistent) is an edge-optimal persistent merging inℜ3 if
and only if the following conditions all hold

• |EM | = 6 |N | + 5 |D| + 3 |S| − 6
• G is rigid
• All edges ofEM leave local DOFs.

Again, an efficient way to obtain an edge-optimal persis-
tent merging from a collection of meta-vertices satisfyingthe
hypotheses of Proposition 6 is to first merge two of them and
then to iterate, as in the discussion of Propositions 3 and 6.

V. CONCLUSIONS

We have analyzed the conditions under which a graph re-
sulting from the merging of several persistent graphs is itself
persistent. Necessary and sufficient conditions were found
to determine which collections of persistent graphs could be
merged into a larger persistent graph. We first treated these
issues inℜ2. Our analysis was then generalized toℜ3 and
to structural persistence, leading to somewhat less powerful
results. This is especially the case for those which rely on the
sufficient character of Laman’s conditions for rigidity inℜ2

(Theorem 1), no equivalent condition being known inℜ3.
Following this work, we plan to develop systematic ways
to build all optimally merged persistent graphs, similarlyto
what has been done for minimally persistent graphs [6] and
for minimally rigid merged graphs [16].
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