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Abstract— This paper considers the problem of merging
of more than two (minimally) rigid formations which do
not have any common agent to obtain a single (minimally)
rigid formation in <2 and <3. Following previously developed
strategies for sequential merging of two rigid formations, a
new set of enhanced merging operations is developed. They
can be performed in a formalized meta-formation framework,
where the individual rigid formations are considered asmeta-
verticesand they can be merged into ameta-formation. These
operations for growing meta-formations offer a level of control
to the merging quality and optimality, in the sense of minimizing
the number of meta-edges(that is, edges between different
meta-vertices) required. It is also proved that all minimally
rigid meta-formations in <2 can be obtained by successively
merging two or more meta-verticesusing the proposed set of
meta-operations.

I. I NTRODUCTION

Recently there has been growing interest in cooperative
control of autonomous agents in formation [1]–[4], [8], [9],
[13]. Agents are often modelled as vertices of graphs in order
to investigate the information structures of formations [4],
[12]. Communications and/or information flow and forma-
tion control architecture are usually modelled using either
undirected or directed graphs, representing respectively, the
symmetric [4] and asymmetric control and/or sensing strate-
gies [5], [19].

One way to keep the autonomous agents in formation,
i.e. as an assembled multi-agent system in which agents’
relative positions are fixed, is to maintain enough of the
distances between certain pairs of agents, such that all the
inter-agent distances are preserved as a consequence. The
formation, modelled using underlying undirected graphs,
can be therefore studied using graph rigidity theory, traced
back to [10]. Consequently, and for convenience in this
paper, we may (with some abuse of nomenclature) use
the two terms, formation and its (underlying undirected)
graph, interchangeably. A framework has been established
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to study the information structure for control of formations
with symmetric control/sensing [4], and extended to the
asymmetric (directed) case [5], [19]. And for the first case,
the ideas have been taken further to treat operations on
rigid formations, rather than on individual agents forming
the formation.

An algebra that consists of performing some basic op-
erations on (minimally rigid) formations is introduced in
[12], including examples of rejoining/splitting maneuvers. In
[4], operations on formations for the problems of closing
ranks, splitting and merging are studied. In particular, some
results about merging formations were presented in [4],
[12] and more complete results, with guiding principles to
control formation merging, are found in [18]. Merging (of
rigid formations) literally means combining two or more
rigid formations into a single rigid formation, of course
through the introduction of new distance constraints that
will involve agent pairs with agents drawn from different
formations among those merging. All these works focus
on systematic ways of merging two formations at a time.
For larger multiagent formations, adoption of a hierarchical
structure is needed to be considered as well as merging of
multiple (more than two) formations to form a formation of
formations [17], or a meta-formation [1].

Whiteley [16] gives a detailed explanation of the merging
problem using notions from rigidity theory. In fact, in the
course of development of rigidity theory, merging problems
are studied implicitly under the so-called “body-and-bar”
framework [14], where each rigid body is equivalent to a
rigid formation and they are linked (or merged) by bars. Later
in [11], the testing of rigidity of a formation in<2 is made
more efficient by “gluing (or merging)” smaller rigid for-
mations or single agents. The rigid graph theoretical results
for the “body-and-bar” framework are very promising for
showing the possibility of merging a collection of multiple
formations and agents, and preserving the rigidity properties
of the merged formation. However, as previously mentioned,
existing works focus on operational merging procedures that
can only cope withtwo formations at a time, and hence
can only achieve a certain class of merging tasks involving
multiple formations. There is clearly a gap between the
existing operational procedures and the theoretical results.

The main contribution of this paper is to tackle the
problem of merging multiple (more than two) disjoint
autonomous formations, viewed as construction of meta-
formations; and to propose a set of operations that can
be used to obtain all minimally rigid meta-formations in
<2. More specifically, the work in [18] on merging two
formations is extended by defining a new set of operations
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Fig. 1. Illustration of (a) non-rigid formation, (b) (minimally) rigid
formation, and (c) non-minimally but rigid formation

that one can perform on multiple formations, while still
maintaining rigidity of the merged formation. The operations
are built upon a well-structured methodology by Henneberg
[7], and the results and principles are proven to be consistent
with theories developed in [14]. The paper will illustrate
theories using examples in<2, although some results are
also fully or partially generalized to<3.

The paper is organized as follows. Section II reviews the
notions and some properties of graph rigidity theory, for its
application to control of autonomous multiagent formations.
In section III, results for merging of two minimally rigid
formations are summarized and results from the bar-and-
body framework are linked to the merging problem. The
main results of this paper are presented in Section IV,
including a set of operations that permit one to merge
multiple formations, and associated theorems. Conclusions
with a description of proposed future work appear in Section
V. Discussion on computational aspects, and proofs of most
results are omitted due to space limitations and will appear
in a full length version later.

II. A B RIEF REVIEW OF RIGIDITY

In this section, we review the notions and some properties
of (minimal) rigidity. Our description will be largely based
on graphs. The graph modelling a formation is what is
obtained when vertex position information and edge length
information is thrown away. Different formations can have
the same graph. A rigid graph is one for which for almost
all choices of edge lengths and vertex positions for which a
corresponding formation exists, the corresponding formation
is rigid [19]. Intuitively, if enough of the distances between
certain pairs of agents are maintained, such that all the inter-
agent distances are preserved as a consequence, then the
formation is said to be rigid.

Figure 1 shows several examples of two dimensional
graphs, two of which are rigid and one of which is not rigid.
In a non-rigid graph part of the graph can flex or move,
while the rest of the graph stays still. The notion of rigidity
conforms to one’s normal intuition.

It proves possible in two dimensions to characterize
rigidity in purely combinatorial terms, i.e. counting-type
conditions related to the graph (discarding therefore the agent
coordinates) can be used to conclude the rigidity or otherwise
of a generic formation corresponding to the graph. This is
the celebrated Laman’s Theorem [19], for which no three-
dimensional equivalent exists. In three dimensions, differing

necessity and sufficiency conditions are known for a graph
to correspond to a formation which will be rigid for generic
values of the constrained inter-agent distances [15].

In some scenarios of multi-agent formation control, an
information structure with a minimum number of commu-
nication links (or distance constraints) is to be exploited
while preserving the rigidity of the formation. This leads to
a widely used notion ofminimal rigidity. A graph is called
minimally rigid if it is rigid and if there exists no rigid graph
with the same number of vertices and a smaller number of
edges, i.e., a graph isminimally rigid if it is rigid and if no
single edge can be removed without losing rigidity. Figure
1(b) gives an example of a minimally rigid graph.

Note here that there exists another graph theoretical notion
found useful in analyzing formations,global rigidity, which
eliminates the flip and/or flex ambiguity of the rigid graphs
due to discontinuous motion. In this paper, however, we do
not consider global rigidity.

III. F ORMATION MERGING PROBLEM

In this section, we revisit the formation merging problem
[4], [18]. We review the existing results for merging of
two formations and the results dealing with rigidity of
multiple bodies linked by bars. Where possible, we present
the theorems in a meta-formation framework.

A. Merging Two Rigid Formations

A rigid formation merging problem is one of constructing
a single post-merged rigid formation by adding new edges
(i.e., new sensing and communication links corresponding to
agent pairs between which the distances must be maintained)
between two or more pre-merging rigid formations.

A recent work [18] provides a complete description of
possible scenarios of merging two (but only two) minimally
rigid formations to obtain a single minimally rigid formation,
respectively, both in<2 and <3. A strategy is developed
based on simplification of the merging problem to a problem
of growing a minimally rigid graph. In summary, the strategy
presented in [18] is built upon a Henneberg Construction
(HC) procedure (explained below) to grow one of the two
formations to include the vertices of the other, such that when
the two formations share a sufficient number of common
vertices, the rigidity of the (merged) formation is guaranteed
by Lemma 1 below. Based on this strategy, three principles
are provided to control the merging efficiently and optimally,
in the sense of minimizing the number of added edges and
the number of vertices incident to these edges. Any possible
scenario of merging two given minimally rigid formations
can be handled using a combination of these three principles.
This paper adopts the framework and strategy in [18] as
summarized below:

Lemma 1: [18] If two minimally rigid formationsG1 =
(V1, E1) andG2 = (V2, E2) in <d d ∈ {2, 3} satisfy |Vc| ≥
d and |Ec| = d|Vc| − d(d + 1)/2, where Vc = V1 ∩ V2

and Ec = E1 ∩ E2, then the (meta-) formationG1 ∪ G2 is
minimally rigid.



Let G1 = (V1, E1) and G2 = (V2, E2) be underlying
rigid graphs of two rigid formations, possibly with common
vertices and/or edges. Themerging problemis to find a set of
new edgesEnew such that the resulting graphG′ = (V ′, E′),
whereV ′ = V1 ∪ V2 and E′ = E1 ∪ E2 ∪ Enew, is rigid.
Note thatEnew can be the empty set. We further note that
the above definition can be easily generalized to encompass
minimal rigidity. An optimal procedurethat can solve the
merging problem is one which minimizes both|Enew| and
the number of vertices inV ′ incident to the edges inEnew.
Consider two minimally rigid graphsG1 = (V1, E1) and
G2 = (V2, E2) in <d d ∈ {2, 3}. If Vc = V1 ∩ V2 satisfies
|Vc| ≥ d, Lemma 1 indicates thatG1 ∪ G2 is already
minimally rigid and we do not need to add any more edges.
Therefore, we only need to consider the case where|Vc| < d
and hencennew = d + 1 − |Vc| > 0. In this case, we look
for a systematicway for optimal selection of a vertex set
Vnew ⊆ V2\V1 with |Vnew| = nnew and an edge setEnew

such thatG′1 = (V ′
1 , E′

1) = (V1 ∪ Vnew, E1 ∪ Enew) is
minimally rigid.

In the strategy of [18],G1 is grown to G′1 in nnew

steps, where in each step we add a single vertex and a
certain set of edges incident on this vertex. Let us denote
the resultant graph in stepm (m ∈ {1, ..., nnew}) by
Ḡ1(m), e.g., Ḡ1(nnew) = G′1 and let Ḡ1(0) = G1. In
order to produce the graphs̄G1(m) (m ∈ {1, ..., nnew}) and
eventuallyG′1, [18] follows a well-known procedure in the
literature which is called the Henneberg construction (HC)
[4] and its extensions which deals with merging globally
rigid formations [18].

The HC is a systematic way of constructing, from any
given minimally rigid graphG = (V, E) in <d, (d ∈ {2, 3}),
a larger minimally rigid graphG′ = (V ′, E′) V ⊂ V ′ in
m′ = |V ′| − |V | steps. The HC produces a sequence of
graphsḠ(m) = (V̄ (m), Ē(m)) (m ∈ {0, ..., m′}), where
Ḡ(0) = G and Ḡ(m′) = G′, which is called a Henneberg
sequence (HS). Each̄G(m) (m ∈ {1, ..., n′}) is obtained in
stepm of the HC and is proven to be minimally rigid once
one of the following two normal HC operations is used at
each stepm [4]:

• Vertex addition: Adding a new vertexi and d edges
betweeni andd other vertices inV̄ (m− 1).

• Edge splitting: Removing an edge(j, k) ∈ Ē(m − 1)
and then adding a new vertexi together withd+1 edges
incident oni, two of which are(i, j) and (i, k).

B. Formation Merging in a Meta-Formation Prospective

Merging of formations naturally resembles some graphical
equivalences, such as gluing of rigid subgraphs (clusters)
[11], which treats<2 problems; or linking rigid bodies [14],
which treats problems in<3. The formulation in [14] uses
the so-calledbody-bar-jointframework, where joints, bodies
and bars correspond to vertices, rigid formations and edges
connecting rigid formations, respectively. In this framework,
eachbody can be considered as a rigid object that in<3

has six degrees of freedom (DOF), three translational and
three rotational. The bars used to link rigid bodies are called

external bars. Intuitively, the merging process can be simply
thought of as adding (external) bars to eliminate extra DOFs
until the linked bodies only have six DOFs in total, making a
single rigid body. Since each (independent) bar removes one
DOF while connecting two bodies, one needs six external
bars to link two bodies without losing rigidity. This result
is consistent with the propositions in [18], stating that one
needs at least six independent edges to merge two disjoint
(minimally) rigid formations. The result in [11] can also be
formulated in thebody-bar-joint framework.

In this paper, considering the formation control applica-
tions aspect, we prefer ameta-formation frameworkview
of the pure graph theoretical results. A meta-formation
Fm = (Vm, Em) is a formation of meta-verticesVm =
{G1, . . . , G|Vm|} that are connected by a set of meta-edges
Em = {e1, . . . , e|Em|}. Each meta-vertexGi is a rigid
formation. If Gi contains only a single agent (or a pair of
connected agents in<3), it is called atrivial meta-vertex.
Otherwise,Gi is called anon-trivial meta-vertex. The main
difference between a non-trivial meta-vertex and a vertex
representing a point agent is that the non-trivial meta-vertex
has a two state descriptor (position and orientation), while
the vertex (point agent) only has position but no orientation.

Before we proceed with further discussions using meta-
formation framework, we to make two global remarks ap-
plying to the remaining parts of the paper.

Remark 1: In this paper, we present the results in a meta-
formation prospective, which is a high-level abstraction of
“formation of formations”. We assume, unless otherwise
stated, that: (a) all the formations (meta-vertices) are rigid;
(b) no agent belonging to anon-trivial meta-vertex is incident
on more than 2 meta-edges in<d (d ∈ {2, 3}). Note that the
merging strategy presented in previous subsection implicitly
guarantees this assumption in<2.

Remark 2:Given that the problem of merging trivial
meta-vertices can be simply treated as addition of agents to
formation using HC vertex additions, we do not consider the
trivial meta-vertices in the sequel. Therefore unless otherwise
stated, we assume that all the meta-vertices are non-trivial
disjoint rigid formations (i.e. each meta-vertex has at leastd
vertices in<d (d ∈ {2, 3}) and there is no common vertex
between any pair of meta-vertices).

We restate in our terminology two fundamental theorems
which are first established inbody-bar-jointframeworks [11],
[14], which are a development of Laman’s theorem. Note
both theorems below are obtained under the assumption
stated in Remark 1. Analogous but stronger results exist in
[6] which removes this assumption.

Theorem 1:Consider a meta-formationFm = (Vm, Em)
in <2 satisfying the assumptions stated in Remark 1, where
Vm is a set of disjoint non-trivial meta-vertices representing
rigid formations andEm is the set of meta-edges,Fm is rigid
if and only if there exists subsetE′

m ⊆ Em of Fm such that:
• |E′

m| = 3|Vm| − 3.
• There is no non-empty subsetE′′

m ⊂ E′
m such that

|E′′
m| > 3|V ′′

m|−3, whereV ′′
m is the set of meta-vertices

that are incident on meta-edges ofE′′
m.



Theorem 2: [11] A meta-formationFm = (Vm ∪ Vt, E)
containing at least 2 meta-vertices in<2 satisfying the
assumption of Remark 1, whereVm is the set of disjoint
non-trivial meta-vertices,Vt is the set of trivial meta-vertices
(single agents) andEm is the set of meta-edges, is rigid if
and only if there exists subsetE′

m ⊆ Em of Fm such that:

• E′
m ⊆ Em of Fm such that|E′

m| = 3|Vm|+ 2|Vt| − 3.
• There is no non-empty subsetE′′ ⊂ E′

m of Fm such
that |E′′

m| > 3|V ′′
m|+ 2|V ′′

t | − 3, whereV ′′
n is the set of

meta-vertices that are incident on meta-edges ofE′′
m and

V ′′
t is the set of trivial meta-vertices that are incident

on meta-edges ofE′′
m.

We shall end this section with a motivating example to
show the linkage of the HC-based operational procedure and
the results generated from the meta-formation framework.
Consider the simple merging of three minimally rigid for-
mations in<2; the HC-based procedures can be performed
by first merging two of the three formations with three meta-
edges, and then merging the post-merged meta-formation
with the other formation to form a single minimally rigid
meta-formation after inserting another three meta-edges.
Theorem 1 states that if and only if there are six meta-
edges between the three meta-vertices, and between each
two meta-vertices there is at most three meta-edges, the
resulting framework is minimally rigid. It is thus easy to see
that the formation obtained using the HC-based procedure
satisfies the necessary and sufficient condition of Theorem
1. However, one may ask that if the HC-based procedure for
merging two formations is able to progressively (i.e., through
a sequence of steps) obtain all possible merged formations.
In the next section, we answer this question formally and
illustrate the answer with some specific examples.

IV. M ERGING FORMATIONS AS GROWING

META-FORMATIONS

In this section, we investigate the problem of merging
multiple (more than two) formations. For illustration of
the essential concepts, we first consider the problem in its
simplest form of merging three minimally rigid formations
in <2. We then formalize the results in a systematic way in a
meta-formation framework, introducing meta-operations. We
also generalize the operations to<3, to provide a flavor of
this analysis framework.

A. Merging Three Minimally Rigid Formations in the Plane

For the specific problem raised at the end of previous
section, considering the pre-merging formations as “meta-
vertices”, one can identify three types of possible structures
from the problem of merging three rigid formations as shown
in Fig. 2. Note that the figures reflect only the connectivity
and the merging patterns and the actual positions of the
agents are assumed to be algebraically independent. In each
case, the resultant post-merged formation can be considered
as a meta-formation with the three pre-merging formations
as its meta-vertices and the edges used in merging these
meta-vertices as “meta-edges”. The three types of merging
structures and the corresponding three types of post-merged
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Fig. 2. Illustration of merging of three formations in<2: (a) Serial, (b)
Unbalanced, (c) Balanced

meta-formations are differentiated by their meta-degrees,
which is the number of meta-edges incident on the formation.
The practical implication about implementing a meta-edge is
that it may require long-distance communication, or commu-
nication and control of a hybrid type with a more complicated
protocol than for the “normal” case represented by edges
between pairs of agents belonging to a single formation. In
the case of merging, certain agents are nominated to maintain
meta-edges and coordinate. This hierarchical structure is
similar to that is proposed in [17].

Lemma 2:Each meta-formationFm = (Vm, Em) in Fig.
2, whereVm = (Gi, i = 1, 2, 3) is a set of minimally rigid
formations (meta-vertices) andEm is the set of (six) meta-
edges, is minimally rigid.

For the convenience of explaining Fig. 2, we refer to the
merging structure found in Fig. 2 (a) asserial-merging, for
the formationG2 is incident to 6 meta-edges and each of the
formationsG1 andG3 has 3 meta-edges, while in the case
of Fig. 2(c), there is a better balance: each formation (meta-
vertex) maintains 4 meta-edges. We refer to the merging
patterns found in Fig. 2(b) and (c) asunbalanced-merging
andbalanced-merging, respectively.

We attempt to use the existing results for merging for-
mations [4], [12], [18] to construct the merging of three
formations in Fig. 2. Essentially, the operations presented in
[4], [18] for merging two disjoint minimally rigid formations
can be reformulated as a single operation, calledmeta-
addition, in the meta-formation framework as described in
the following lemma:

Lemma 3:Let F ′m = (V ′
m, E′

m) in <d(d = 2, 3) be a
rigid meta-formation satisfying the assumption of Remark
1 and letGi be a rigid formation and letFm be the new
meta-formation obtained by ameta-additionoperation, that
is, a setS of d(d+1)/2 meta-edges incident onGi andF ′m.



Then the new meta-formationFm = F ′m ∪ Gi ∪ S is rigid.
Moreover, Fm is minimally rigid if and only if both the
meta-formationF ′m and the meta-vertexGi are minimally
rigid.

We find that:serial-mergingcan be easily constructed by
merging the pairs (G1, G2) and (G2, G3) sequentially, using
Lemma 3. This can be viewed in the meta-formation frame-
work by considering firstG1 as a meta-formation by itself
and a meta-vertexG2 is added using meta-addition, and sub-
sequently a meta-vertexG3 is added. Similarly,unbalanced-
merging can be obtained by two consecutive/progressive
meta-addition operations (refer to Lemma 3) to addG2

to G1 which is treated as a meta-formation by itself, and
then to addG3 to the meta-formation consisting ofG1

and G2. Note that the second meta-addition involves all
three formations. However, the strategies given in [18] and
summarized as meta-addition fails to construct abalanced-
mergingstructure. Therefore, to obtain the balanced-merging
structure by HC operations, the set of operations has to be
expanded to a fuller set of operations that can be performed
for merging that involves any number of formations; indeed,
they need to be able to create any configuration type whose
rigidity can be validated using Theorem 1.

B. Extending Henneberg Constructions

In this subsection, we seek to solve the problem of
using a single merging operation to create the merging
structure which could not otherwise be created usingmeta-
addition. Our approach is to combine multiple steps of
normal HC operations performed on formations into a single
meta-operation that can be operated between multiple meta-
vertices within a meta-formation.

Observe that the main difference between the sample
balanced-merging structure (c), and the other two (a, b) as
shown in Fig. 2, is that one edge ends up re-distributed from
betweenG1 and G2 to betweenG2 and G3. This suggests
that one needs to look at procedures such that, whenG3 is
merged, the operation would allow removing some of the
existing meta-edges and allowG3 to be connected with four
edges. Obviously this would be an edge-splitting operation
as opposed to vertex addition. Hence, a new operation is
proposed when merging the third formation to two merged
formations, as illustrated below for merging three minimally
rigid formationsG1, G2 andG3, and summarized in Lemma
4. Let us explain this new operation using standard HC ideas.

Following Lemma 3,G1 andG2 are merged by connecting
them with 3 meta-edges,e1, e2 and (k, l), see Fig. 3(a).
FormationG3 is to be merged next and it is assumed thatG3

consists of at least three vertices,i, j, s, and interconnected
by implicit or explicit edges denoted by dotted lines.

Refer to Fig. 3(b) and (c):

• At the first step, edge splitting is used when adding
vertexj of G3 to G′, with new edges(j, m), (j, k) and
(j, l) and existing meta-edge(k, l) removed.

• At the second step, edge splitting is applied again to
the newly added meta-edge(j, k), and observing the
existence of an implicit (or explicit) edge(i, j) due to

 

 

G1 
G3 

 (a) 

 l 

 k 

 r 

 j 

 i 

 s 

G2 

G’  

G1 
G3 

 l 

 k 

 r 

 j 

 i 
 s 

G2 

G’  
 m 

 (c) 

G1 

G3 

 l 

 k 

 j 

 i 

 s 

G2 

G’  

 y 

 e1  e2 

 (d) 

 m 

G1 
G3 

 l 

 k 

 j 

 i 

 s 

G2 

G’  

 (b) 

 m 

 e1  e2 

Fig. 3. Illustration of implementation of a meta-1-splitting operation in<2:
(a) before performing a meta-1-splitting (b) performing first HC operation
to split an existing meta-edge (l,k) (c) performing second HC operation to
split a newly added meta-edge (j,k), obtaining a rigid meta-formation (d)
performing additional HC operations to obtain meta-edges which do not
incident on common agents

the rigidity property ofG3, only two new edges(i, k)
and (i, r) have to be added so that the new vertexi of
G3 is added toG′ ∪ {j}. From Lemma 1 we conclude
that the formationsG′ andG3 are merged into a single
minimally rigid formation in<2.

Detailed in Fig. 3(d), we further extend the Third Princi-
ple1 of [18] to redistribute the meta-edges among connecting
vertices. Applying two successive edge splitting operations
to meta-edges(m, j) and(k, i), one at each time, we obtain
the desired formationbalanced-mergingin Fig. 2(c).

We combine the multiple HC operations (for example,
two possible combinations are described above in Fig. 3(b)
and (c)) into a single meta-operation as described below
in Lemma 4, termedmeta-1-splitting, to fit into the meta-
formation framework. Note that every such operation, as
defined below, can be implemented by a sequence of normal
HC operations.

Lemma 4:Let F ′m = (V ′
m, E′

m) in <d(d = 2, 3) be a rigid
meta-formation satisfying the assumption of Remark 1, and
Gi a rigid formation and letFm be the new meta-formation
obtained by ameta-1-splittingoperation, viz, removing a
meta-edgee from F ′m and adding a setS of d(d + 1)/2 + 1
meta-edges betweenGi andF ′m, such that two are incident
on the vertices (agents) connected bye. Then the new meta-
formationFm = F ′m∪Gi∪S\{e} is rigid. Moreover,Fm is
minimally rigid if and only if bothF ′m andGi are minimally
rigid.

1The third principle of formation merging asserts the genericity of the
merging procedure is independent of the specific vertices concerned. That
is, in a given merged formation, it is possible to re-distribute, as long as the
hypothesis of Remark 1 is satisfied, the edges linking the two formations
to other agents without violating the (minimal or global) rigidity property.



C. Meta-Operations for Growing Rigid Meta-Formations

In order to solve more general questions involving multi-
ple formation merging, we propose expanding the concept
of combining HC operations to meta-level, following the
creation ofmeta-addition(Lemma 3) andmeta-1-splitting
(Lemma 4), to a full set of meta-operations that are sufficient
to obtain all minimally rigid meta-formations in<2. The
generalization of this set of meta-operations to<3 can be
found to obtain not all, but a class of minimally rigid meta-
formations.

It is noted that we have implicitly used the following
principle in the operation described above, which we call the
“principle of encapsulation”: In a meta-formation framework,
each meta-vertexGi is encapsulated and no modification
is made to its internal rigid structure, so the only edges
that can be split are meta-edges. This principle protects the
rigidity properties of meta-vertices that could otherwise be
violated by any operations performed within these meta-
vertices; and it also draws a clear distinction between normal
HC operations and meta-operations.

As an extension of the meta-1-splitting operation, we note
that one could perform edge splitting to further remove
one more existing meta-edge. In this case, where a total
of two existing meta-edges are removed after merging, the
operation is referred to asmeta-2-splittingand is detailed
in Lemma 5. Note that though “meta-3-splitting” may be
defined analogously in<2, which removes 3 existing meta-
edges, it cannot be implemented by normal HC operations,
and it can also be proved thatmeta-3-splittingis in fact not
necessary for generating all minimally rigid meta-formations
in <2.

Lemma 5:Let F ′m = (V ′
m, E′

m) in <d(d = 2, 3) be a rigid
meta-formation satisfying the assumption of Remark 1, and
Gi a rigid formation and letFm be the new meta-formation
obtained by ameta-2-splittingoperation, viz, removing two
meta-edgese1 ande2 from F ′m and adding a setS of d(d+
1)/2 + 2 meta-edges betweenGi andF ′m, such that two are
incident on the vertices (agents) connected bye1 and two are
incident on the vertices (agents) connected bye2. Then the
new meta-formationFm = F ′m ∪ Gi ∪ S\{e1, e2} is rigid.
Moreover,Fm is minimally rigid if and only if bothF ′m and
Gi are minimally rigid.

Fig. 4 gives an abstracted illustration of the three meta-
operations for merging multiple minimally rigid formations
in <2, highlighting the differences while hiding the compli-
cated details concerning the undirected normal HC opera-
tions. The set of meta-operations proposed for merging of
multiple formations in<2 is summarized in the following
theorem. Note that all the definitions of meta-operations are
given in their general form, but it can be proved that their
varieties can always be implemented using combinations of
normal HC operations.

Theorem 3:If F ′m is a (minimally) rigid meta-formation
in <2, thenFm obtained by performingmeta-addition, meta-
1-splitting or meta-2-splitting, to add new meta-vertexGi

(with meta-degreek (k = 3, 4, 5)) is also (minimally) rigid.

 

 

G’ Gi 
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Fig. 4. Illustration of the three meta-operations for constructing minimally
rigid meta-formations in<2: (a) meta-addition, (b) meta-1-splitting, (c)
meta-2-splitting

Moreover, those three meta-operations can be implemented
by sequences of normal Henneberg Construction operations.

Note that in the case of merging multiple minimally
rigid formations in<3, one could have a fourth operation
to remove in total 3 existing meta-edges, namely meta-3-
splitting; and it is always possible to implement a meta-3-
splitting in<3 using corresponding Henneberg Construction
operations.

In the sequel, we first define reverse meta-operations and
then state in Theorem 4 that reverse meta-operations can
always be performed for removing meta-vertices with a
certain meta-degree in<2. And it also can be proved, see
Theorem 5, that all minimally rigid meta-formations in<2

can be obtained using the set of meta-operations as stated
in Theorem 3. However, whether these two results can be
generalized to<3 is still open problem.

The reverse meta-operations in<2 can be defined in their
general forms as follows: LetFm = (Vm, Em) in <2 be a
rigid meta-formation, andGi be a meta-vertex of setVm,
andEm be the set of meta-edges.
• If Gi is incident to a setEi ⊂ Em containing three

meta-edges, areverse meta-additionis removal of these
three meta-edges andGi from Fm.

• If Gi is incident to a setEi ⊂ Em containing four meta-
edges, areverse meta-1-splittingis removal of these four
meta-edges andGi from Fm and inserting a new meta-
edgee (and indeed there is at least one) between two
meta-vertices that were adjacent toGi such that the
meta-formationF ′m = (Vm\Gi, Em\Ei ∪ {e}) is rigid.

• If Gi is incident to a setEi ⊂ Em containing five
meta-edges, areverse meta-2-splittingis removal of
these five meta-edges andGi from Fm and inserting
two new meta-edgee1, e2 (and indeed there are at least
two) between two meta-vertices that were adjacent toGi

such that the meta-formationF ′m = (Vm\Gi, Em\Ei ∪
{e1, e2}) is rigid.



Since the meta-operations can always each be imple-
mented using multiple steps of normal HC operations; and
since normal HC operations can always be reversed [7],
reverse meta-operations can always be implemented using
a combination of reverse normal HC operations (a trivial
example is that a reverse meta-operation can be performed
in the reverse order of implementing the corresponding meta-
operation). Furthermore, it also can be shown that it is always
possible to perform one of the three reverse meta-operations
on a minimally rigid meta-formation in<2.

Theorem 4:Let Fm be a rigid meta-formation in<2, and
suppose it containsat least one non-trivial meta-vertexGi

with meta-degreek (k = 3, 4, 5). It is always possible to
perform one of the three reverse meta-operations,reverse
meta-addition, reverse meta-1-splitting or reverse meta-2-
splitting for the case ofk = 3, 4, 5 respectively, to remove
Gi and to obtain a smaller meta-formationF ′m that is rigid.
Moreover, F ′m is minimally rigid if both Fm and Gi are
minimally rigid.

Theorem 5:Under the assumption made in Remark 1 and
2, a meta-formationFm = (Vm, Em) in <2 consisting
of |Vm| non-trivial meta-vertices is minimally rigid if and
only if it can be obtained by performing|Vm| − 1 meta-
operations to merge|Vm| disjoint meta-vertices (minimally
rigid formation)Gi (i = 1 . . . |Vm|) successively.

Proof Sketch:The sufficiency holds due to Theorem 3. It
follows from Theorem 1 that a minimally rigidFm always
contains a meta-vertex with a meta-degree smaller than 6,
and sinceFm is rigid, no meta-vertex can have a meta-
degree smaller than 3. Therefore there is a meta-vertex with a
degree 3, 4 or 5, which by Theorem 4 can be removed using
one of the three reverse meta-operations to obtain a smaller
minimally rigid meta-formationF ′m with |Vm| − 1 non-
trivial meta-vertices. Doing this recursively one can reduce
any minimally rigid meta-formation to a single meta-vertex
using the reverse operations. This implies that it is possible
to build any minimally rigid meta-formation starting from
one meta-vertex, indeed,Fm can be obtained by applying
a sequence of meta-operations (that is reversing the reverse
meta-operations) on this last meta-vertexGi.

V. CONCLUSION AND FUTURE WORK

We have provided a solution to the problem of merging
multiple minimally rigid formations to obtain a single mini-
mally rigid formation in<2 and<3. Following the strategies
developed for sequential merging of two rigid formations
[18], which constitute meta-addition in a meta-formation
framework, we proposed a new set of enhanced merging
operations, called meta-n-splittings (n = 1, 2 for <2). The
meta-addition and the meta-n-splittings can be considered
as a set of meta-operations that can be performed in a
formalized meta-formation framework, when the problem of
merging meta-vertices arises. We engineered the operations
to offer a level of control to the merging quality and optimal-
ity, by minimizing the number of meta-edges required and
balancing the distribution of meta-degrees among formations.
We also proved that all minimally rigid meta-formations in

<2 can be obtained by merging two or more formations using
the proposed procedure and a set of three meta-operations.

This work has a few natural extensions. Paramount is the
problem of merging of globally rigid formations, which is
particularly relevant to certain problems in sensor network
localization, including increasing the speed of current (se-
quential) localization algorithms. We have commenced work
on this. Another direction of possible work would be solving
the merging problems for multiple (minimally) persistent
formations, in which directed graph representations are used.
Partial results can be found in [6]. Other formation operations
than merging constitute another future research topic under
the meta-formation framework.
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