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Abstract—This paper considers the problem of merging to study the information structure for control of formations
of more than two (minimally) rigid formations which do  with symmetric control/sensing [4], and extended to the
not have any common agent to obtain a single (minimally) - 5qymmetric (directed) case [5], [19]. And for the first case,

rigid formation in ®? and ®*. Following previously developed - .
strategies for sequential merging of two rigid formations, a the ideas have been taken further to treat operations on

new set of enhanced merging operations is developed. They figid formations, rather than on individual agents forming
can be performed in a formalized meta-formation framework,  the formation.

where the individual rigid formations are considered asmeta- An algebra that consists of performing some basic op-
verticesand they can be merged into ameta-formation These g ations on (minimally rigid) formations is introduced in

operations for growing meta-formations offer a level of control 121 includi | f reioinina/solitti |
to the merging quality and optimality, in the sense of minimizing  L+2]; including examples of rejoining/splitiing maneuvers. In

the number of meta-edges(that is, edges between different [4], operations on formations for the problems of closing
meta-vertices) required. It is also proved that all minimally — ranks, splitting and merging are studied. In particular, some
rigid meta-formations in %* can be obtained by successively results about merging formations were presented in [4],
merging two or more meta-verticesusing the proposed set of 151 and more complete results, with guiding principles to
meta-operations . . A .
control formation merging, are found in [18]. Merging (of
. INTRODUCTION rigid formations) literally means combining two or more

Recently there has been growing interest in cooperatifdid formations into a single rigid formation, of course
control of autonomous agents in formation [1][4], [8], [9] through the introduction of new distance constraints that
[13]. Agents are often modelled as vertices of graphs in orddill involve agent pairs with agents drawn from different
to investigate the information structures of formations [4]formations among those merging. All these works focus

[12]. Communications and/or information flow and forma-C" Systematic ways of merging two formations at a time.

tion control architecture are usually modelled using eithe’?or Iarger. multiagent formation;, adoption of a hierarchical
undirected or directed graphs, representing respectively, tREUCtUre is needed to be considered as well as merging of
symmetric [4] and asymmetric control and/or sensing strat&ultiple (more than two) formations to form a formation of
gies [5], [19]. formations [17], or a meta-formation [1].

One way to keep the autonomous agents in formation, Whiteley [16] gives a detailed explanation of the merging

i.e. as an assembled multi-agent system in which agenf%mblem using notions from ,“Qid“y theory. In.fact, in the
relative positions are fixed, is to maintain enough of th&§°Urse of development of rigidity theory, merging problems
distances between certain pairs of agents, such that all fig¢ Studied implicitly under the so-called “body-and-bar
inter-agent distances are preserved as a consequence. TABEWOrK [14], where each rigid body is equivalent to a
formation, modelled using underlying undirected graphd!9id formation and they are linked (or merged) By_ bars. Later
can be therefore studied using graph rigidity theory, tracefl [11]: the testing of rigidity of a formation ifit” is made
back to [10]. Consequently, and for convenience in thi§'°"® efficient by “gluing (or merging)” smaller rigid for-
paper, we may (with some abuse of nomenclature) udpations or single agents. The rigid graph theoretical results
the two terms, formation and its (underlying undirected{o" the “body-and-bar” framework are very promising for

graph, interchangeably. A framework has been establishédoWing the possibility of merging a collection of multiple
formations and agents, and preserving the rigidity properties
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necessity and sufficiency conditions are known for a graph
to correspond to a formation which will be rigid for generic

2 2 2 . . .
values of the constrained inter-agent distances [15].
4 4 4 In some scenarios of multi-agent formation control, an
3 3 3 information structure with a minimum number of commu-
@ (0) © nication links (or distance constraints) is to be exploited
Fig. 1.  llustration of (a) non-rigid formation, (b) (minimally) rigid Whll_e preserving the “g'O!'tY of the_ f(_)rmatlon' Th_IS leads to
formation, and (c) non-minimally but rigid formation a widely used notion ofminimal rigidity. A graph is called

with the same number of vertices and a smaller number of
. . . ..edges, i.e., a graph iminimally rigid if it is rigid and if no
thaf[ one can _pgrform on multiple formatlons, while _St'”single edge can be removed without losing rigidity. Figure
maintaining rigidity of the merged formation. The operatloni(b) gives an example of a minimally rigid graph

are built upon a well-strugtur-ed methodology by Henneperg Note here that there exists another graph theoretical notion
[7], and the results and principles are proven to be conS|stefrat

. : : o und useful in analyzing formationgjobal rigidity, which
with f[heorle_s developed n 2[14]' The paper wil IIIus'[rat(—:‘eliminates the flip and/or flex ambiguity of the rigid graphs
theories using examples iR“, although some results are

also fully or partially generalized ti? due to discontinuous motion. In this paper, however, we do

The paper is organized as follows. Section Il reviews th(re]Ot consider global rigidity.
notions and some properties of graph rigidity theory, for its m
application to control of autonomous multiagent formations.

In section lll, results for merging of two minimally rigid In this section, we revisit the formation merging problem
formations are summarized and results from the bar-anf#], [18]. We review the existing results for merging of
body framework are linked to the merging problem. Théwo formations and the results dealing with rigidity of
main results of this paper are presented in Section IVpultiple bodies linked by bars. Where possible, we present
including a set of operations that permit one to mergéhe theorems in a meta-formation framework.

multiple formations, and associated theorems. Conclusions

with a description of proposed future work appear in SectioA- Merging Two Rigid Formations

V. Discussion on computational aspects, and proofs of most  rigid formation merging problem is one of constructing
results are omitted due to space limitations and will appegf single post-merged rigid formation by adding new edges
in a full length version later. (i.e., new sensing and communication links corresponding to
agent pairs between which the distances must be maintained)
between two or more pre-merging rigid formations.

In this section, we review the notions and some properties A recent work [18] provides a complete description of
of (minimal) rigidity. Our description will be largely based possible scenarios of merging two (but only two) minimally
on graphs. The graph modelling a formation is what isigid formations to obtain a single minimally rigid formation,
obtained when vertex position information and edge lengtiespectively, both ink? and 3. A strategy is developed
information is thrown away. Different formations can havebased on simplification of the merging problem to a problem
the same graph. A rigid graph is one for which for almosbf growing a minimally rigid graph. In summary, the strategy
all choices of edge lengths and vertex positions for which presented in [18] is built upon a Henneberg Construction
corresponding formation exists, the corresponding formatiofHC) procedure (explained below) to grow one of the two
is rigid [19]. Intuitively, if enough of the distances betweenformations to include the vertices of the other, such that when
certain pairs of agents are maintained, such that all the intehe two formations share a sufficient number of common
agent distances are preserved as a consequence, thenviiéices, the rigidity of the (merged) formation is guaranteed
formation is said to be rigid. by Lemma 1 below. Based on this strategy, three principles

Figure 1 shows several examples of two dimensionalre provided to control the merging efficiently and optimally,
graphs, two of which are rigid and one of which is not rigidin the sense of minimizing the number of added edges and
In a non-rigid graph part of the graph can flex or movethe number of vertices incident to these edges. Any possible
while the rest of the graph stays still. The notion of rigidityscenario of merging two given minimally rigid formations
conforms to one’s normal intuition. can be handled using a combination of these three principles.

It proves possible in two dimensions to characterizdhis paper adopts the framework and strategy in [18] as
rigidity in purely combinatorial terms, i.e. counting-typesummarized below:
conditions related to the graph (discarding therefore the agentLemma 1: [18] If two minimally rigid formationsG; =
coordinates) can be used to conclude the rigidity or otherwig®;, F;) and Gy = (Va, E») in R d € {2,3} satisfy|V,| >
of a generic formation corresponding to the graph. This i§ and |E.| = d|V,| — d(d + 1)/2, whereV. = V1, NV,
the celebrated Laman’s Theorem [19], for which no threeand E. = E; N E,, then the (meta-) formatiot’; U G is
dimensional equivalent exists. In three dimensions, differingninimally rigid.

. FORMATION MERGING PROBLEM

II. A BRIEF REVIEW OF RIGIDITY



Let G; = (Vi,E1) and Gy = (Va, E3) be underlying external bars. Intuitively, the merging process can be simply
rigid graphs of two rigid formations, possibly with commonthought of as adding (external) bars to eliminate extra DOFs
vertices and/or edges. Tiheerging problenis to find a set of until the linked bodies only have six DOFs in total, making a
new edges,,.., such that the resulting graghf = (V’, E’),  single rigid body. Since each (independent) bar removes one
whereV' = ViUV, and E' = E; U Es U E,, is rigid. DOF while connecting two bodies, one needs six external
Note thatF,.,, can be the empty set. We further note thabars to link two bodies without losing rigidity. This result
the above definition can be easily generalized to encompassconsistent with the propositions in [18], stating that one
minimal rigidity. An optimal procedurethat can solve the needs at least six independent edges to merge two disjoint
merging problem is one which minimizes baoth,,..,| and (minimally) rigid formations. The result in [11] can also be
the number of vertices iV’ incident to the edges if,,.,,. formulated in thebody-bar-jointframework.

Consider two minimally rigid graphg&s; = (V4, E;) and In this paper, considering the formation control applica-
Gy = (Vo, Ey) in R% d € {2,3}. If V, = V; NV, satisfies tions aspect, we prefer meta-formation frameworkiew

[V.] > d, Lemma 1 indicates tha6i; U G, is already of the pure graph theoretical results. A meta-formation
minimally rigid and we do not need to add any more edges:,,, = (V,,, E,,) is a formation of meta-vertice¥,, =
Therefore, we only need to consider the case whigre< d  {G1,..., G}y, |} that are connected by a set of meta-edges
and henceipe, = d+ 1 —[V.| > 0. In this case, we look FE,, = {ei,...,e g, }. Each meta-vertexG; is a rigid

for a systematicway for optimal selection of a vertex set formation. If G; contains only a single agent (or a pair of
View € Va\Vi With |V;iew| = nnew and an edge sel,.,, connected agents ift®), it is called atrivial meta-vertex
such thatG]; = (V{,E]) = (Vi U Vyew, B1 U Epney) is  Otherwise,G; is called anon-trivial meta-vertexThe main
minimally rigid. difference between a non-trivial meta-vertex and a vertex

In the strategy of [18],G; is grown to G in n,., representing a point agent is that the non-trivial meta-vertex
steps, where in each step we add a single vertex andhas a two state descriptor (position and orientation), while
certain set of edges incident on this vertex. Let us denotbe vertex (point agent) only has position but no orientation.
the resultant graph in stejm (m € {1,..,npew}) by Before we proceed with further discussions using meta-
Gi1(m), e.9., Gi(npew) = G} and letG1(0) = G;. In  formation framework, we to make two global remarks ap-
order to produce the graplis; (m) (m € {1,...,n,.,}) and  plying to the remaining parts of the paper.
eventuallyG’,, [18] follows a well-known procedure in the  Remark 1:In this paper, we present the results in a meta-
literature which is called the Henneberg construction (HCormation prospective, which is a high-level abstraction of
[4] and its extensions which deals with merging globallyformation of formations”. We assume, unless otherwise
rigid formations [18]. stated, that: (a) all the formations (meta-vertices) are rigid;

The HC is a systematic way of constructing, from anyb) no agent belonging torson-trivial meta-vertex is incident
given minimally rigid graphG = (V, E) in ®?, (d € {2,3}), on more than 2 meta-edgesi{ (d € {2, 3}). Note that the
a larger minimally rigid graphG’ = (V’,E’) V C V' in  merging strategy presented in previous subsection implicitly
m' = |V'| —|V| steps. The HC produces a sequence ajuarantees this assumptionit.
graphsG(m) = (V(m), E(m)) (m € {0,...,m'}), where Remark 2:Given that the problem of merging trivial
G(0) = G andG(m') = G', which is called a Henneberg meta-vertices can be simply treated as addition of agents to
sequence (HS). Eadi(m) (m € {1,...,n'}) is obtained in formation using HC vertex additions, we do not consider the
stepm of the HC and is proven to be minimally rigid oncetrivial meta-vertices in the sequel. Therefore unless otherwise
one of the following two normal HC operations is used astated, we assume that all the meta-vertices are non-trivial

each stepn [4]: disjoint rigid formations (i.e. each meta-vertex has at least
. Vertex addition: Adding a new vertek and d edges Vertices in®? (d € {2,3}) and there is no common vertex
betweeni andd other vertices inV/ (m — 1). between any pair of meta-vertices).
« Edge splitting: Removing an eddg, k) € E(m — 1) We restate in our terminology two fundamental theorems
and then adding a new vertéxogether withd+1 edges which are first established ody-bar-jointframeworks [11],
incident ond, two of which are(i, j) and (i, k). [14], which are a development of Laman’s theorem. Note

both theorems below are obtained under the assumption

B. Formation Merging in a Meta-Formation Prospective  stated in Remark 1. Analogous but stronger results exist in
Merging of formations naturally resembles some graphicd6] which removes this assumption.

equivalences, such as gluing of rigid subgraphs (clusters) Theorem 1:Consider a meta-formatiofy,,, = (V;,, E,,)
[11], which treatsR? problems; or linking rigid bodies [14], in ®* satisfying the assumptions stated in Remark 1, where
which treats problems if?. The formulation in [14] uses Vi, is a set of disjoint non-trivial meta-vertices representing
the so-callecbody-bar-jointframework, where joints, bodies rigid formations and¥,, is the set of meta-edges,, is rigid
and bars correspond to vertices, rigid formations and edgégnd only if there exists subsét,, C E,, of F;,, such that:
connecting rigid formations, respectively. In this framework, « |E! | = 3|V,,| — 3.
eachbody can be considered as a rigid object thatRf o There is no non-empty subsét’ C E!/ such that
has six degrees of freedom (DOF), three translational and |E/,| > 3|V,|—3, whereV,! is the set of meta-vertices
three rotational. The bars used to link rigid bodies are called that are incident on meta-edges Bf,.



Theorem 2: [11] A meta-formationF,, = (V,, UV;, E)
containing at least 2 meta-vertices R? satisfying the
assumption of Remark 1, whefié,, is the set of disjoint
non-trivial meta-verticesy; is the set of trivial meta-vertices
(single agents) and’,, is the set of meta-edges, is rigid if
and only if there exists subsét, C E,, of F,,, such that:

o E/ CE,, of F,,, such that|E],| = 3|V,,| + 2|V;| — 3.

« There is no non-empty subsé&t’ C E! of F,, such

that |E! | > 3|V 4 2|V)’| — 3, whereV,” is the set of
meta-vertices that are incident on meta-edges;hfand
V" is the set of trivial meta-vertices that are incident
on meta-edges aof!,.

We shall end this section with a motivating example to
show the linkage of the HC-based operational procedure and
the results generated from the meta-formation framework.
Consider the simple merging of three minimally rigid for-
mations inf*?; the HC-based procedures can be performed
by first merging two of the three formations with three meta- (©)
edges, and then merging the post-merged meta-formation
with the other formation to form a single minimally rigid Fig. 2. lllustration of merging of three formations ®?: (a) Serial, (b)

. . . Unbalanced, (c) Balanced
meta-formation after inserting another three meta-edges.
Theorem 1 states that if and only if there are six meta-
edges between the three meta-vertices, and between each
two meta-vertices there is at most three meta-edges, tAteta-formations are differentiated by their meta-degrees,
resulting framework is minimally rigid. It is thus easy to seaVhich is the number of meta-edges incident on the formation.
that the formation obtained using the HC-based procedufd'e practical implication about implementing a meta-edge is
satisfies the necessary and sufficient condition of Theoretfat it may require long-distance communication, or commu-
1. However, one may ask that if the HC-based procedure foication and control of a hybrid type with a more complicated
merging two formations is able to progressively (i.e., througRrotocol than for the “normal” case represented by edges
a sequence of steps) obtain all possible merged formatiofEtween pairs of agents belonging to a single formation. In
In the next section, we answer this question formally anthe case of merging, certain agents are nominated to maintain

illustrate the answer with some specific examples. meta-edges and coordinate. This hierarchical structure is
similar to that is proposed in [17].
IV. MERGING FORMATIONS AS GROWING Lemma 2: Each meta-formatior¥,,, = (V;,, E,,,) in Fig.
META-FORMATIONS 2, whereV,, = (G;, i = 1,2,3) is a set of minimally rigid

In this section, we investigate the problem of mergingormations (meta-vertices) anl,, is the set of (six) meta-
multiple (more than two) formations. For illustration of edges, is minimally rigid.
the essential concepts, we first consider the problem in its For the convenience of explaining Fig. 2, we refer to the
simplest form of merging three minimally rigid formationsmerging structure found in Fig. 2 (a) aerial-merging for
in 2. We then formalize the results in a systematic way in &he formationG, is incident to 6 meta-edges and each of the
meta-formation framework, introducing meta-operations. WrmationsG, and Gs has 3 meta-edges, while in the case
also generalize the operations %5, to provide a flavor of of Fig. 2(c), there is a better balance: each formation (meta-
this analysis framework. vertex) maintains 4 meta-edges. We refer to the merging

) o o ) ) patterns found in Fig. 2(b) and (c) ambalanced-merging
A. Merging Three Minimally Rigid Formations in the Planeg,q balanced-mergingrespectively.

For the specific problem raised at the end of previous We attempt to use the existing results for merging for-
section, considering the pre-merging formations as “metanations [4], [12], [18] to construct the merging of three
vertices”, one can identify three types of possible structurdermations in Fig. 2. Essentially, the operations presented in
from the problem of merging three rigid formations as showi¥], [18] for merging two disjoint minimally rigid formations
in Fig. 2. Note that the figures reflect only the connectivitcan be reformulated as a single operation, caltedta-
and the merging patterns and the actual positions of treldition in the meta-formation framework as described in
agents are assumed to be algebraically independent. In edleé following lemma:
case, the resultant post-merged formation can be consideredemma 3:Let F/, = (V! E! ) in ®¢(d = 2,3) be a
as a meta-formation with the three pre-merging formationsgid meta-formation satisfying the assumption of Remark
as its meta-vertices and the edges used in merging thekand letG; be a rigid formation and lef;, be the new
meta-vertices as “meta-edges”. The three types of mergimgeta-formation obtained by meta-additionoperation, that
structures and the corresponding three types of post-mergsda setS of d(d+ 1)/2 meta-edges incident oi; and F),.



Then the new meta-formatioR,,, = F) U G; U S is rigid. G
Moreover, F,, is minimally rigid if and only if both the
meta-formationF}, and the meta-vertexs; are minimally
rigid. §

We find that:serial-mergingcan be easily constructed by !
merging the pairs,, G2) and (G2, G3) sequentially, using
Lemma 3. This can be viewed in the meta-formation framg- ~—+"
work by considering firstz; as a meta-formation by itself
and a meta-verte& is added using meta-addition, andsub-_
sequently a meta-verte¥; is added. Similarlyunbalanced-
merging can be obtained by two consecutive/progressive
meta-addition operations (refer to Lemma 3) to add
to G; which is treated as a meta-formation by itself, and
then to addGs to the meta-formation consisting af’; |
and G>. Note that the second meta-addition involves all
three formations. However, the strategies given in [18] aan ‘
summarized as meta-addition fails to construdtadanced- o
mergingstructure. Therefore, to obtain the balanced-merging
structure by HC operations, the set of operations has to ig. 3. lllustration of implementation of a meta-1-splitting operatiofRh

' . gasl before performing a meta-1-splitting (b) performing first HC operation

expanded to a fuller set of operations that can be performegspiit an existing meta-edge (1K) (c) performing second HC operation to
for merging that involves any number of formations; indeedsplit a newly added meta-edge (j,k), obtaining a rigid meta-formation (d)
they need to be able to create any configuration type whogerforming additional HC operations to obtain meta-edges which do not
Lo . . incident on common agents
rigidity can be validated using Theorem 1.

B. Extending Henneberg Constructions

In this subsection, we seek to solve the problem of the rigidity property ofGs, only two new edgesi, k)
using a single merging operation to create the merging and(i,r) have to be added so that the new verteof
structure which could not otherwise be created usirgga- G3 is added toG’ U {j}. From Lemma 1 we conclude
addition Our approach is to combine multiple steps of  that the formationgs’ and G5 are merged into a single
normal HC operations performed on formations into a single ~ minimally rigid formation in%2.
meta-operation that can be operated between multiple metapetajled in Fig. 3(d), we further extend the Third Princi-
vertices within a meta-formation. le* of [18] to redistribute the meta-edges among connecting

Observe that the main difference between the samplgtices. Applying two successive edge splitting operations
balanced-merging structure (c), and the other two (a, b) g§ meta-edgeém, j) and (k, i), one at each time, we obtain
shown in Fig. 2, is that one edge ends up re-distributed frofpe gesired formatiobalanced-mergingn Fig. 2(c).
betweenG:; and G to betweenG, and Gs. This suggests e combine the multiple HC operations (for example,

that one needs to look at procedures such that, whems o possible combinations are described above in Fig. 3(b)
merged, the operation would allow removing some of thgg (c)) into a single meta-operation as described below
existing meta-edges and allaf to be connected with four ;, | emma 4, termedneta-1-splitting to fit into the meta-

edges. Obviously this would be an edge-splitting operatiofyrmation framework. Note that every such operation, as

as opposed to vertex addition. Hence, a new operation i&fined below, can be implemented by a sequence of normal
proposed when merging the third formation to two mergeg,c operations.

formations, as illustrated below for merging three minimally | emima 4:Let 7 — (V! E')inR4(d = 2,3) be arigid

rigid formationsG1, Gz andGs, and summarized in Lemma a4 formation satisfying the assumption of Remark 1, and
4, Let us.explam this new operation using standard HC |'deaéni a rigid formation and lef,, be the new meta-formation
Following Lemma 3(+, andG, are merged by connecting gptained by ameta-1-splitingoperation, viz, removing a
them with 3 meta-edges;;, e, and (k,1), see Fig. 3(a). meta-edge from F! and adding a sef of d(d+1)/2+1
FormationGz; is to be merged next and it is assumed gt meta-edges betwee; and F”,, such that two are incident
consists of at least three verticésj, s, and interconnected ., the vertices (agents) conlrwnecteddm'hen the new meta-
by implicit or explicit edges denoted by dotted lines. formation ¥, = F/, UG; U S\{e} is rigid. Moreover,E,, is
Refer to Fig. 3(b) and (c): minimally rigid if and only if bothF’. andG; are minimally
« At the first step, edge splitting is used when addingigid.
vertexj of G to G’, with new edgegj, m), (j, k) and
(4,1) and existing meta-edgg:, /) removed. 1The third principle of formation merging asserts the genericity of the

« At the second step, edge splitting is applied again teperging procedure is independent of the specific vertices concerned. That
' Is, in a given merged formation, it is possible to re-distribute, as long as the

th? nery addeq m(_etg-edg(g', k).' .and observing the hypothesis of Remark 1 is satisfied, the edges linking the two formations
existence of an implicit (or explicit) edg@, j) due to to other agents without violating the (minimal or global) rigidity property.



C. Meta-Operations for Growing Rigid Meta-Formations

=Y

In order to solve more general questions involving multi-
ple formation merging, we propose expanding the concept
of combining HC operations to meta-level, following the
creation of meta-addition(Lemma 3) andmeta-1-splitting
(Lemma 4), to a full set of meta-operations that are sufficient
to obtain all minimally rigid meta-formations ifR?. The
generalization of this set of meta-operationsité can be
found to obtain not all, but a class of minimally rigid meta-
formations.

It is noted that we have implicitly used the following
principle in the operation described above, which we call the
“principle of encapsulation”: In a meta-formation framework, 7 X
each meta-vertexi; is encapsulated and no modification
is made to its internal rigid structure, so the only edges (©)
that can be split are meta-edges. This principle protects the _ . . -
" . . . 1g. 4. lllustration of the three meta-operations for constructing minimally
rigidity properties of meta-vertices that could otherwise bﬁgid meta-formations inR?: (a) meta-addition, (b) meta-1-splitting, (c)
violated by any operations performed within these metaneta-2-splitting
vertices; and it also draws a clear distinction between normal
HC operations and meta-operations.

As an extension of the meta-1-splitting operation, we notfloreover, those three meta-operations can be implemented
that one could perform edge splitting to further removey sequences of normal Henneberg Construction operations.
one more existing meta-edge. In this case, where a totalNote that in the case of merging multiple minimally
of two existing meta-edges are removed after merging, theyid formations in®3, one could have a fourth operation
operation is referred to aseta-2-splittingand is detailed to remove in total 3 existing meta-edges, namely meta-3-
in Lemma 5. Note that though “meta-3-splitting” may besplitting; and it is always possible to implement a meta-3-
defined analogously ifi®?, which removes 3 existing meta- splitting in % using corresponding Henneberg Construction
edges, it cannot be implemented by normal HC operationgperations.
and it can also be proved thateta-3-splittingis in fact not  In the sequel, we first define reverse meta-operations and
necessary for generating all minimally rigid meta-formationshen state in Theorem 4 that reverse meta-operations can
in 12, always be performed for removing meta-vertices with a

Lemma 5:Let F), = (V! E/) in R%(d = 2,3) be arigid certain meta-degree 2. And it also can be proved, see
meta-formation satisfying the assumption of Remark 1, aritheorem 5, that all minimally rigid meta-formations ¢
G; arigid formation and let,, be the new meta-formation can be obtained using the set of meta-operations as stated
obtained by ameta-2-splittingoperation, viz, removing two in Theorem 3. However, whether these two results can be
meta-edges; ande; from F), and adding a sef of d(d+ generalized tar? is still open problem.

1)/2 + 2 meta-edges betweeH; and F), such that two are  The reverse meta-operationsi¥ can be defined in their
incident on the vertices (agents) connected:pgnd two are general forms as follows: LeF,, = (V,,, E,,,) in %2 be a
incident on the vertices (agents) connectedebyThen the rigid meta-formation, and>; be a meta-vertex of sét,,,
new meta-formation?,,, = F! UG, U S\{e1,e>} is rigid. andE,, be the set of meta-edges.

Moreover, F,, is minimally rigid if and only if both 7, and . If G, is incident to a setF; c E,, containing three
G, are minimally rigid. meta-edges, eeverse meta-additiors removal of these

~
)

~— 7
)¢
(b)

BYA

Fig. 4 gives an abstracted illustration of the three meta-
operations for merging multiple minimally rigid formations
in %2, highlighting the differences while hiding the compli-
cated details concerning the undirected normal HC opera-
tions. The set of meta-operations proposed for merging of
multiple formations inRk? is summarized in the following
theorem. Note that all the definitions of meta-operations are
given in their general form, but it can be proved that their .
varieties can always be implemented using combinations of
normal HC operations.

Theorem 3:If F/ is a (minimally) rigid meta-formation
in 72, thenF,,, obtained by performingneta-addition, meta-
1-splitting or meta-2-splittingto add new meta-verte&;

(with meta-degreé: (k = 3,4,5)) is also (minimally) rigid.

three meta-edges an@; from F,,,.

If G, is incident to a sel); C E,, containing four meta-
edges, aeverse meta-1-splittinig removal of these four
meta-edges and; from F;,, and inserting a new meta-
edgee (and indeed there is at least one) between two
meta-vertices that were adjacent €& such that the
meta-formationF;, = (V;,\G;, E.,\E; U {e}) is rigid.

If G; is incident to a sett; C FE,, containing five
meta-edges, aeverse meta-2-splittings removal of
these five meta-edges arig;, from F,, and inserting
two new meta-edge;, e (and indeed there are at least
two) between two meta-vertices that were adjacelit to
such that the meta-formatioR), = (V,,\G;, E,\F; U
{e1,e2}) is rigid.



Since the meta-operations can always each be impl&? can be obtained by merging two or more formations using
mented using multiple steps of normal HC operations; anithe proposed procedure and a set of three meta-operations.
since normal HC operations can always be reversed [7], This work has a few natural extensions. Paramount is the

reverse meta-operations can always be implemented usipgblem of merging of globally rigid formations, which is

a combination of reverse normal HC operations (a trivigbarticularly relevant to certain problems in sensor network
example is that a reverse meta-operation can be performiedalization, including increasing the speed of current (se-
in the reverse order of implementing the corresponding metguential) localization algorithms. We have commenced work
operation). Furthermore, it also can be shown that it is alwaym this. Another direction of possible work would be solving
possible to perform one of the three reverse meta-operatiotie merging problems for multiple (minimally) persistent

on a minimally rigid meta-formation k2.

formations, in which directed graph representations are used.

Theorem 4:Let F,,, be a rigid meta-formation ift?, and Partial results can be found in [6]. Other formation operations
suppose it containsat least one non-trivial meta-vertgx than merging constitute another future research topic under
with meta-degree: (k = 3,4,5). It is always possible to the meta-formation framework.

perform one of the three reverse meta-operatioagerse
meta-addition, reverse meta-1-splitting or reverse meta-2-

splitting for the case oft = 3,4, 5 respectively, to remove [
G, and to obtain a smaller meta-formatidtj, that is rigid.
Moreover, F. is minimally rigid if both F;,, and G; are
minimally rigid. (2]

Theorem 5:Under the assumption made in Remark 1 and
2, a meta-formationF;,, = (V,,,E,) in %2 consisting

of |V,,| non-trivial meta-vertices is minimally rigid if and [3]
only if it can be obtained by performing/,,,| — 1 meta-
operations to mergéV,,| disjoint meta-vertices (minimally [4]
rigid formation)G; (i = 1...|V;,|) successively.

Proof SketchThe sufficiency holds due to Theorem 3. It
follows from Theorem 1 that a minimally rigid’,, always [5]

contains a meta-vertex with a meta-degree smaller than 6,
and sinceF;, is rigid, no meta-vertex can have a meta-
degree smaller than 3. Therefore there is a meta-vertex with @]
degree 3, 4 or 5, which by Theorem 4 can be removed using
one of the three reverse meta-operations to obtain a smalley,
minimally rigid meta-formationF,, with |V;,|] — 1 non-
trivial meta-vertices. Doing this recursively one can reducé®l
any minimally rigid meta-formation to a single meta-vertex
using the reverse operations. This implies that it is possiblgg]
to build any minimally rigid meta-formation starting from
one meta-vertex, indeedy,, can be obtained by applying [10]
a sequence of meta-operations (that is reversing the reverse
meta-operations) on this last meta-vertgx (11]

V. CONCLUSION AND FUTURE WORK (12]

We have provided a solution to the problem of mergin%S]
multiple minimally rigid formations to obtain a single mini-
mally rigid formation in}*? andR?3. Following the strategies [14]
developed for sequential merging of two rigid formations
[18], which constitute meta-addition in a meta-formatio
framework, we proposed a new set of enhanced mergings]
operations, called meta-splittings ¢ = 1,2 for R2). The
meta-addition and the metasplittings can be considered [17
as a set of meta-operations that can be performed in a
formalized meta-formation framework, when the problem of
merging meta-vertices arises. We engineered the operati&?@
to offer a level of control to the merging quality and optimal-
ity, by minimizing the number of meta-edges required anétdl
balancing the distribution of meta-degrees among formations.
We also proved that all minimally rigid meta-formations in
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