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Abstract— We consider a simple dynamical model of agents
distributed on the real line. The agents have a limited vision
range and they synchronously update their positions by moving
to the average position of the agents that are within their
vision range. This dynamical model was initially introduced
in the social science literature as a model of opinion dynamics
and is known there as the “Krause model”. It gives rise to
surprising and partly unexplained dynamics that we describe
and discuss in this paper. One of the central observations is the
2R-conjecture: when sufficiently many agents are distributed
on the real line and have their position evolve according to the
above dynamics, the agents eventually merge into clusters that
have inter-cluster distances roughly equal to2R (R is the vision
range of the agents). This observation is supported by extensive
numerical evidence and is robust under various modifications
of the model. It is easy to see that clusters need to be separated
by at least R. On the other hand, the unproved bound 2R

that is observed in practice can probably only be obtained by
taking into account the specifics of the model’s dynamics. In
this paper, we study these dynamics and consider a number
of issues related to the2R conjecture that explicitly uses the
model’s dynamics. In particular, we provide bounds for the
vision range that lead all agents to merge into only one cluster,
we analyze the relations between agents on finite and infinite
intervals, and we introduce a notion of equilibrium stability
for which clusters of equal weights need to be separated by at
least 2R to be stable. These results, however, do not prove the
conjecture. To understand the system behavior for a large agent
density, we also consider a version of the model that involves
a continuum of agents. We study properties of this continuous
model and of its equilibria, and investigate the connections
between the discrete and continuous versions.

I. I NTRODUCTION

We consider a simple multi-agent system. There aren
agents and every agent has an opinion represented by a real
numberx(i), i ∈ 1, . . . , n. At every time step, the agents
update their opinion by taking the average of all opinions
distant from their own by no more than a pre-specified
toleranceR:

xt+1(i) =

∑

j∈Nt(i)
xt(j)

|Nt(i)|
, (1)
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Fig. 1. Evolution with timet ∈ [0, 15] of agent opinions initially
equidistantly located on intervals of lengthL = 4 (a) andL = 10 (b), for
100L agents. Only one cluster is produced in (a), and inter-cluster distances
in (b) are much larger than the vision rangeR = 1 of the agents.

whereNt(i) = {j: |xt(j) − xt(i)| ≤ R}.

The model (1) was introduced by Krause [8] and has been
studied in a number of contributions. It can be proved that
opinions converge in finite time to clusters separated by a
distance larger thanR [9], [11] (For simplicity and without
loss of generality we assume in the sequel thatR = 1.)
Thus, if the initial opinions lie in an interval of lengthL,
we could, in principle, obtain up toL clusters. Fig. 1 shows,
however, that for equidistant initial opinions, only one cluster
appears whenL = 4, and only four clusters appear when
L = 10. Moreover, these clusters are separated by distances
much larger than1. Similar behaviors can be observed in
the case of initial opinions that are randomly distributed [2].
This has already been observed in the literature [9], [11]



and it has been conjectured that the number of clusters is
asymptotically equal toL/2 [12]. But no explanation of this
phenomenon nor any nontrivial lower bound on the inter-
cluster distance have been provided so far. We analyze this
issue by introducing a particular notion of equilibrium sta-
bility, under which a nontrivial lower bound on the distance
between any two clusters is obtained. To better understand
the system behavior for large numbers of agents, we also
introduce and study a version allowing a continuous opinion
distribution, and we link it to the discrete system. Note
that similar phenomena are observed in a variation of this
model, introduced by Weisbuch and is co-authors [4]. In
Weisbuch’s model, only two randomly selected agents update
their opinion at each time step. If their previous opinions
differ by more than a certain pre-defined distance they remain
unaffected, otherwise each agent assumes a new opinion
which is a weighted average of its previous opinion and of
the other agent’s opinion.

The opinion dynamics models considered here are similar
to the linearized version of the Vicsek model [16]. In that
model, agents are all moving in the plane at the same speed.
Each agent updates its bearing by forming an average of
its neighbors’ bearings, where the neighbors are defined as
those agents within a given radius. The main difference
with the opinion dynamics model is thus the presence of
two variables for each agent in [16], one which is involved
in averaging and one that determines the neighborhood
relation. A wide range of such systems have been studied
in the literature, see [14] for a survey. But until now, with
very few exceptions, as in [3], [7], the explicit dynamics of
the neighborhood relation have not been taken into account,
and the sequence of neighborhood graphs (where agents are
connected if they are neighbors) is always considered as
exogenous. In contrast, our analysis explicitly considersthe
dynamics of the model.

The linearized Vicsek model is a special case of more
general multi-agent systems where every agent has a value
which it updates by taking a linear (possibly convex) com-
bination of the neighbors’ values. Such systems are studied
for example in [1], [5], [6], [13], [15].

Finally, opinion dynamics models also present similarities
with certain rendezvous algorithms (see [10] for an example)
in which the objective is to have all agents meet at one
point. Agents are neighbors if their positions are within
a radiusR, and they update their position by taking an
average of their neighbors’ positions. There is an additional
constraint, that once two agents become neighbors they must
remain so forever and therefore need to make sure that they
remain within a distance of at mostR. This ensures that the
connectivity of the neighborhood graph is preserved and that
an initially connected set of agents is never split into smaller
groups, so that all agents converge to a same point.

In Section II we explicitly use the neighborhood relation
construction to analyze the equilibria to which the system
(1) converges. We characterize their stability and attempt
to explain the experimentally observed distances between
opinion clusters at the equilibrium. We then consider in

Section III a version of the model allowing a continuous
opinion distribution, and prove results on the equilibria of
such systems. We also explore the issue of convergence
to an equilibrium. Finally, we analyze in Section IV the
link between the continuous and discrete systems. Some
proofs and numerical observations omitted here due to space
constraints are available in an extended version of this paper
[2].

II. F INITE NUMBER OF AGENTS

Throughout the rest of the paper, we will assume, without
loss of generality, thatR = 1.

A. Convergence

If the number of agents is finite, it is a consequence of
well known results in [1], [5], [9], [11], [13] that everyxi in
the system (1) converges to a limiting valuex̄i and that the
limiting values of two agents are either equal or separated
by more than1 1. We call clustersthese limiting values to
which opinions converge. Due to the particular dynamics of
the system, the opinions converge to their clusters in finite
time [9]: The distance between any two opinions converging
to different clusters eventually becomes larger than1, while
the distance between two opinions converging to the same
cluster decays to 0. So after a certain time, the interaction
graph (where agents are connected if their distance is no
more than1) contains as many connected components as
the number of clusters, and each of them is fully connected.
In every connected component the updated opinion at the
next time step is then the same for all agents so that their
opinions stop changing.

Fact 1: For a finite number of agents and the dynamics
(1), the opinions converge in finite time to clusters whose
distance from each other is more than1 [9].

The above results do not hold without the assumption that
the number of agents is finite. Indeed, consider an infinite
number of agents, all with an initial opinion which is a
positive integer. Callm(p) the number of agents having an
initial opinion p. If m(0) = 0, m(1) = 1, and for all larger
p, m(p + 1) = m(p) + 3m(p − 1), then for each agenti
and for eacht, x(t + 1) = x(t) + 1/2. All agent opinions
are thus shifting indefinitely towards infinity. An infinite
number of agents also allows equilibria where clusters are
separated by less than1, as in the case where there is one
agent on every integerp and on everyp + 1

2 .

Fact 2: For an infinite number of agents and the dynamics
(1), the opinions may not converge or may converge to
clusters whose distance from each other is less than1.

B. Analysis of numerical experiments

Fig. 2 shows the evolution of 1000 initially random
two-dimensional opinions according to (1). The distance

1Actually those results imply that the distance between the opinions of
such agents is larger than1 for all time stepst after a certain timeT , and
could thus converge to1 when t → ∞. But we explain in the sequel that
the system converges in finite time, which forbids a convergence to1.
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Fig. 2. Representation of the evolution of a set of 1000 two-dimensional
initially random opinions according to (1). The opinions converge to clusters
which are separated by more than1. At t = 12, two clusters and some
isolated agents in the lower right part of the figure are in a meta-stable
situation. They eventually merge, as seen att = 20.
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Fig. 3. The location of the different clusters at equilibrium, as a function of
L, for 5000L agents with opinions initially equidistantly located on[0, L].
Clusters are represented in terms of their distance fromL/2, and the dashed
lines represent the endpoints0 andL of the initial opinion distribution.

between agents is measured according to the Euclidean
norm. All opinions converge to clusters, but these clusters
are separated by distances significantly larger than1 from
their closest neighbors. The same can be observed in
Fig. 1, which involves one-dimensional opinions, initially
equidistantly located on[0, 4] and [0, 10], respectively.
Although the results of Section II-A would allow up to
4 and 10 clusters, respectively, only 1 and 4 clusters are
observed. To further investigate this phenomenon, we
consider in Fig. 3, as a function ofL, the number and
positions of the final clusters, when the initial opinions are
are located equidistantly in the interval[0, L]. The cluster
positions tend to change withL in a piecewise continuous
(or even linear) manner. The discontinuity points correspond
to the emergence of new clusters, or to “splitting” of a
cluster into two smaller ones. The number of clusters tends

to increase linearly withL, as already observed in [12],
and in [4] for the Weisbuch model. It is conjectured in
[4] that the number of clusters is asymptotically equal to
L/γ with γ ≃ 2. From our own numerical experiments,
it seems however thatγ is close to2.2. In any case, the
inter-cluster distance appears to be much larger than the
minimal distance1 between any two clusters, and no better
asymptotic upper bound has yet been found. In the next
three subsections we analyze three problems that relate to
these observations, summarized below.

Observation 1:For initial opinions uniformly distributed
over [0, L], the typical equilibrium inter-cluster distance is
γ ≃ 2.2, and the number of clusters is asymptoticallyL/γ.
Similar observations are made for Weisbuch’s model [].

C. Largest interval for one cluster

Considern agent opinions equidistantly located on[0, L].
Assume thatn is odd, so that one agent has an initial opinion
of L/2. Explicit computations of the first two iterations
show that att = 1, all opinions belong to[12 , L− 1

2 ], and at
t = 2 to [1112 , L− 11

12 ]. Moreover, since opinions are updated
by making convex combinations, all further opinions also
belong to these intervals. Observe now that our system
cannot produce more than one cluster if all opinions are in
(L/2 − 1, L/2 + 1), as the agent opinion initially onL/2
always remains so by symmetry, and the agents’ equilibrium
opinions are either equal or at least 1 apart. So this system
cannot produce more than one cluster if11

12 > L/2 − 1,
that is if L < 23

6 ≃ 3.833. This bound is smaller than the
experimental bound which we observed to be between 5
and 5.1. The explicit bound of 23/6 provided here could
of course be improved by explicitly computing further
iterations but these calculations become tedious fort > 2.
Let us also mention that, provided there are sufficiently
many agents, a similar analysis is possible for the case
where there is no agent opinion at the origin and for the
case where opinions are randomly distributed on the interval.

Fact 3: Opinions initially equidistantly distributed on
[0, L] converge to one cluster ifL < 23

6 .

Observation 2:Experimentally the maximalL leading to
a single cluster is between5 and5.1.

D. Finite and semi-infinite intervals

When L is sufficiently large, Fig. 3 shows that distance
of the first cluster from zero becomes independent ofL.
This can be explained by analyzing the “information” prop-
agation: During an iteration, an agent is only influenced by
those opinions within distance1 of its own, and its opinion
is modified by less than1. So information is propagated by
at most a distance 2 at every iteration. In the case of an
initial uniform distribution on[0, L] for a largeL, during
the first iterations the agents with initial opinions close to 0
behave as if opinions were initially distributed uniformlyon
[0,+∞). Moreover, once a group of opinions is separated
from other opinions by more than1, they are not influenced
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Fig. 4. Evolution with time of the opinions for an initial semi-infinite
equidistant distribution of opinion (initially, there are100 agents within
each unit of thex axis).

by them at any subsequent iteration. Therefore, agents with
initial opinions close to 0 and getting separated from the
other opinions after some finite time follow exactly the
same trajectories when the initial uniform distribution ison
[0,+∞) or on [0, L] for a sufficiently largeL.

We performed simulations with an initial semi-infinite
interval, i.e. opinions equidistantly distributed between 0 and
+∞. It appears that every agent eventually gets disconnected
from the semi-infinite set but remains connected with some
other agents. Each group behaves then independently of
the rest of the system and converges to a single cluster.
As shown in Fig. 4, the distance between two consecutive
clusters converges to approximately2.2. This asymptotic
inter-cluster distance would partially explain the evolution
of the number of clusters (as a function ofL) shown in Fig.
3, but at the time of writing, there is no proof for the above
observations.

Observation 3:For an initial semi-infinite opinion distri-
bution, every agent opinion converges to a cluster and the
distance between consecutive clusters converges to approxi-
mately 2.2.

E. Equilibrium stability

Another phenomenon preventing inter-cluster distances
close to 1 often happens for values ofL just smaller
than those at which one cluster is separated in two, and
has also been observed in [12]. Locally, the system first
converges to a “meta-stable equilibrium” where two clusters
are separated by a distance larger than1 but smaller than
2, with some isolated agents between them. Since these
isolated agents interact with both clusters, their opinions
become approximately the weighted average of these
clusters. At the same time, they attract the clusters that
slowly move towards each other, as illustrated in Fig. 5.
When the distance separating them finally becomes smaller
than1, they merge in one time-step and the system reaches
an equilibrium. An example of such meta-stable situation
can also be seen in Fig. 2 fort = 12, or in Fig. 1(a) between

Wa

Wb

B A > r

WAA+WBB

WA+WB

B(t)A(t)

B A

1+
WA

WB

B A

1+
WB

WA

Fig. 5. Meta-stable situation:A and B are disconnected but interact
both with isolated agents between them, so that they slowly get closer one
from each other. The isolated agents remain approximately at the weighted
average of the clusters.WA and WB represented by the heights are the
number of agents inA andB and are supposed to be large.

t = 5 and t = 7 with a small clusters instead of isolated
agents. Based on these observations, we define in the
sequel a notion of equilibrium stability characterizing the
robustness of an equilibrium with respect to the addition of
an “arbitrarily small” agent. The stability of an equilibrium
(under this new notion) then implies that clusters are
separated by distances larger than a bound that depends on
the weights of the clusters. For clusters of identical weight
this lower bound is equal to2.

Observation 4:If the distance between two clusters is
more than 1 (so that they do not interact), but within some
threshold, the addition of a few isolated agents can cause
structural changes.

To introduce the notion of stable equilibrium, we consider
a weighted version of (1) where every agenti has a weight
wi and where the update rule is

xt+1(i) =

∑

j∈Nt(i)
wjxt(j)

∑

j∈Nt(i)
wj

. (2)

The results described in Section II-A about convergence
to clusters can be generalized to this weighted case, and
we call weight of a clusterthe sum of the weights of all
agents at this cluster. Let̄x be a vector of agent opinions
at equilibrium. Suppose that one adds a new agent of
weight δ and opinion z, and let the system re-converge
to a perturbed equilibrium opinion vector̄x′ (which does
not contain the perturbing agent opinion). We denote by
∆z,δ = wT |x̄ − x̄′| the distance between the initial and
perturbed equilibria. We say that̄x is stable if maxz ∆z,δ,
the largest distance between initial and perturbed equilibria
for a perturbing agent of weightδ can be made arbitrarily
small by choosing a sufficiently smallδ. An equilibrium
is thus unstable if some modification of fixed size can be
achieved by adding an agent of arbitrarily small weight.

Theorem 1:An equilibrium is stable if and only if the
distance between any two clustersA and B is larger than
1 + min

(

WA

WB
, WB

WA

)

. In this expression,WA and WB are



the weights of the clusters.
Proof: Consider an equilibrium̄x and an additional

agent of opinionz and weightδ. If this agent is disconnected
from all clusters, it has no influence and∆z,δ = 0. If it
is connected to one clusterA of position xA and weight
WA, the system reaches a new equilibrium after one time
step, where both the additional agent and the cluster have
an opinion(zδ + xAWA)/(δ + WA). So∆z,δ ≤ δ |z − xA|.
Finally, suppose that the perturbing agent is connected to
two clustersA,B (it is never connected to more than two
clusters). For a sufficiently smallδ, its position after one time
step is approximately

z′ = xA +
xB − xA

1 + WA

WB

=
xA − xB

1 + WB

WA

+ xB , (3)

while the new positions of the clusters are(zδ+xAWA)/(δ+
WA) and (zδ + xBWB)/(δ + WB). If |xA − xB | > 1 +

min
(

WA

WB
, WB

WA

)

, it follows from (3) that for smallδ the agent
is then connected to only one cluster and that equilibrium is
thus reached at the next time step, with a∆z,δ proportional
to δ. The condition of this theorem is thus sufficient for
stability of the equilibrium as∆z,δ is proportional toδ when
it is satisfied.

If the condition is not satisfied, the agent is still connected
to both clusters as represented in Fig. 5. An explicit recursive
computation shows that in the sequel its opinion remains
approximately at the weighted average of the two clusters
(3), while these get steadily closer one to each other. Note
that their weighted average moves at each iteration in the
direction of the largest cluster by a distance bounded by
δ/(WA + WB). Once the distance separating the clusters
becomes smaller than or equal to1, they merge in one central
cluster of opinionz′. Thus, in this case, the addition of
a perturbing agent of arbitrary small weightδ connected
to both A and B results in the merging of the clusters
independently ofδ, so that∆z,δ does not decay to 0 withδ.

We have observed in most cases that, provided that the
number of agents is sufficiently large, the equilibrium to
which the system converges is stable [2]. Intuitively this
could be explained by the fact that when the system is
converging to an unstable equilibrium, there are almost
always a few agents remaining in the zone where they can
produce large changes and redirect the system to a stable
equilibrium. Of course, not every system converges to a
stable equilibrium. For instance if an unstable equilibrium is
taken as initial condition, the system remains at this unstable
equilibrium forever. We make the following conjecture.

Conjecture 1:The probability of convergence to a
stable equilibrium tends to 1 when the number of agents
increases, for initial agent opinions that are randomly
distributed according to a continuous probability function
with connected support.

We give in the next sections partial results that support
this conjecture. If the conjecture proves to be be correct,

it would partially justify the dependence onL/2 of the
number of clusters observed in Section II-D, as the clusters
generally have the same weight. However, this approach
is not likely to give a tight bound as the limiting inter-
cluster distances observed in the semi-infinite case or in
the finite case for largeL is larger than2, which is the
maximal distance that can be justified by stability of the
equilibrium. Moreover, the convergence of those clusters
is often rapid and does not go through the meta-stable phase.

Observation 5:Typical inter-cluster distances are larger
than the largest lower bound provided by stability analysis.

III. C ONTINUOUS DISTRIBUTION OF AGENTS

To further analyze the properties of (1) and its behavior
when the number of agents increases, we now consider a
modified version of the model, which involves a continuum
of agents. We use the intervalI = [0, 1] to index the agents
and denote byxt(α) the opinion at timet of the agentα ∈ I.
As an example, a uniform initial distribution of opinions is
given x0(α) = Lα. At each iteration, the agent opinions are
updated by

xt+1(α) =

∫

β∈I
at(α, β)xt(β)dβ

∫

β∈I
at(α, β)dβ

, (4)

whereat(α, β) = 1 if |xt(α) − xt(β)| ≤ 1 and 0 else. We
denote by∆xt the opinion function variationxt+1 − xt.
The relation between this system and its discrete analog
((1) or (2)) is studied in Section IV. It would be desirable
to prove the convergence of (4), but at the time of writing
this remains a conjecture:

Conjecture 2:The system (4) converges to an
equilibrium.

Although we have no proof for this conjecture, we have a
weaker result, that implies that (4) does not produce any
cycle and that the opinion variations decay to 0. Before
stating and proving this result, we need to introduce a few
concepts. By analogy with the discrete system, we define
the adjacency operatorAt, which maps the set of bounded
measurable functions onI into itself, by

Atx(α) =

∫

β∈I

at(α, β)x(β)dβ,

and the degree functiondt(α) : I → ℜ+ by dt(α) =
∫

β∈I
at(α, β)dβ. Multiplying an opinion function by its

degree function can be viewed as applying the operator
(defined on the same set of functions asAt)

Dtx(α) = dt(α)x(α) =

∫

β∈I

at(α, β)x(α)dβ.

Finally, we define theLaplacian operatorLt = Dt − At.
The update (4) can be rewritten, more compactly, in the form
∆xt = xt+1−xt = − 1

dt
Ltxt. In the sequel, we use the scalar

product 〈x, y〉 =
∫

α∈I
x(α)y(α)dα. The following lemmas

are proved by elementary computations [2].



Lemma 1:The operators defined above are symmetric
with respect to the scalar product:〈y,Atx〉 = 〈Aty, x〉,
〈y,Dtx〉 = 〈Dty, x〉 and 〈y, Ltx〉 = 〈Ltq, p〉.

Lemma 2:There holds

〈x, (Dt ± At)x〉 =
1

2

∫

(α,β)∈I2

a(α, β) (x(α) ± x(β))
2
.

Theorem 2:The system (4) does not produce cycles (ex-
cept for fixed points). Moreover, the following quantity
decays to 0 whent → ∞

∫

(α,β)∈I2

at(α, β) (∆xt(α) + ∆xt(β))
2
. (5)

Proof: We consider the nonnegative function

V (x) =
1

2

∫

(α,β)∈I2

min
(

1, (x(α) − x(β))2
)

, (6)

and we prove that it decreases at each iteration of (4), with

V (xt)−V (xt+1) ≥
1

2

∫

(α,β)∈I2

at(α, β) (∆xt(α) + ∆xt(β))
2

(7)
It can be seen that when∆xt 6= 0, V decreases strictly.
This implies that the system cannot produce any non-trivial
cycles. Furthermore, sinceV is non-negative and decreasing,
it converges to a limit. ThereforeV (xt+1)− V (xt) tends to
0 and so does (5).

Consider an arbitrary but fixed time stept. For any time
s, V (xs) can be rewritten as

1
2

(

∫

(α,β)∈I2,at(α,β)=1
min

(

1, (xs(α) − xs(β))2)
)

)

+ 1
2

(

∫

(α,β)∈I2,at(α,β)=0
min

(

1, (xs(α) − xs(β))2)
)

)

.

For s = t, (xs(α) − xs(β))2 ≥ 1 for all α, β such that
at(α, β) = 0, and the second term above takes its maximal
value 1

2

∫

(α,β)∈I2,at(α,β)=0
1 and cannot increase betweent

andt+1. Consider now the first term. For anys, there holds

1
2

(

∫

(α,β)∈I2,at(α,β)=1
min

(

1, (xs(α) − xs(β))2
)

)

≤ 1
2

(

∫

(α,β)∈I2 at(α, β)(xs(α) − xs(β))2
)

= 〈xs, Ltxs〉

where the inequality follows froma(α, β) ≤ 1 and the last
equality follows from Lemma 2 and fromLt = Dt − At.
For s = t, (xs(α) − xs(β))2 ≤ 1 for all α, β such that
at(α, β) = 1. The above inequality is thus an equality for
s = t, and we have

V (xt+1) − V (xt) ≤ 〈xt+1, Ltxt+1〉 − 〈xt, Ltxt〉 .

By symmetry (Lemma 1) and by the update rule (4) which
implies Dt∆xt = −Ltxt, this becomes

V (xt+1) − V (xt) ≤ 〈∆xt, Lt∆xt〉 + 2 〈∆xt, Ltxt〉
= 〈∆xt, Lt∆xt〉 − 〈∆xt, 2Dt∆xt〉 .

Since Lt = Dt − At, we have〈∆xt, (At + Dt)∆xt〉 ≤
V (xt)−V (xt+1), which by Lemma 2 proves that (7) holds.

The following lemmas can be proved by explicit compu-
tations [2].

Lemma 3: If xt(α) ≤ xt(β), thenxt+1(α) ≤ xt+1(β).

Lemma 4: If xt is continuous and piecewise differentiable
with a derivative bounded from below and above by positive
numbers, so isxt+1, provided thatxt(1) − xt(0) ≥ 2.

In the sequel we can thus assume without loss of
generality that allxt are nondecreasing. Ifx0 satisfies
the hypotheses of Lemma 4 (continuity and piecewise
differentiability with positive lower and upper bounds
on the derivative), so do allxt as long as the range of
opinions is no smaller than 2. However, the existence
of a function x0 satisfying the hypotheses of Lemma
4 and leading to a sequence of functionsxt such that
maxα xt(α) − minα xt(α) ≥ 2 for all t has not been
proved yet. Similarly, it is not known whether there exists
a continuous initial opinion functionx0 for which we fail
to obtain convergence to a “state” where all opinions are
equal.

Conjecture 3:There exist continuous and piecewise
differentiable initial opinion functionsx0 with positive
lower and upper bounds on their derivative such that
maxα xt(α) − minα xt(α) ≥ 2 for all t.

We now prove that under certain conditions the continuous
system equilibria always satisfy the stability conditionsof
Theorem 1. Analogously to the discrete system, we say that
a real numberc is a cluster if xt(α) → c, for all α in a
positive length interval contained inI, and we callcluster
weight the lengthWc of this interval.

Theorem 3:Suppose that the initial opinion function is
such that allxt are continuous and strictly increasing. Ifxt

converges to a set of clusters whose distance from each other
is at least1, then any two clustersA and B are separated
by at least1 + min

(

WA

WB
, WB

WA

)

.

Proof: We show that if two clustersA,B (A < B
without loss of generality) do not satisfy this condition,I
contains a positive length interval of agents whose opinions
remain betweenA and B but do not converge toA nor to
B. But this is impossible becauseA andB are separated by
less than2.

Since x0 is increasing, it follows from Lemma 3 that
if α ≤ β ≤ γ, xt(α) ≤ xt(β) ≤ xt(γ) for all t. The
set of agents converging toA and B are thus intervals,
which we denote byIA and IB (WA = |IA|, WB = |IB|).
We call their infimum and supremum respectivelyfA, lA
and fB , lB . Consider arbitrarily small but fixedδ and ǫ.
Because all agents in(fA, lA) have opinions converging to
A, there is a time after which|xt(fA + δ) − A| < ǫ and
|xt(lA − δ) − A| < ǫ. As almost all agents outside ofIA

converge to clusters distant fromA by at least1, there
is also a time after whichxt(fA − δ) < A − 1 + ǫ and
xt(lA + δ) > A + 1 − ǫ ≥ B − 1 + ǫ. Applying the same
argument forB, we conclude that after a sufficiently large
time, the following hold:



• The difference betweenIA and the intervalI ′A,t =

x−1
t ([A − ǫ, A + ǫ]) of agents with an opinion close

to A at time t has measure smaller than2δ.
• The difference betweenIB and the intervalI ′B,t =

x−1
t ([B − ǫ, B + ǫ]) of agents with an opinion close

to B at time t has measure smaller than2δ.
• The measure of the set of agentsJt with an opinion

distant fromA andB by at leastǫ and that can interact
with agents having an opinion in[B − 1 + ǫ, A + 1− ǫ]
is smaller than4δ.

Consider now an agent with an opinion in[B−1+ǫ, A+1−ǫ]
(The interval of such agents is of positive measure sincext

is continuous). Its updated opinion is at most

x+
δ,ǫ =

(WA − 2δ)(A + ǫ) + (WB + 2δ)(B + ǫ) + 4δ(A + 2)

(WA − 2δ) + (WB + 2δ) + 4δ
,

where agents ofI ′A,t, I ′B,t and Jt have the largest possible
opinionA+ǫ, B+ǫ andA+2, and were the setI ′B,t, Jt with
a large opinion have the largest possible measuresWB + 2δ
and4δ while theI ′A,t with a small opinion has the smallest
possible measureWA − 2δ. Similarly, a lower bound on the
updated opinion is

x−
δ,ǫ =

(WA + 2δ)(A − ǫ) + (WB − 2δ)(B − ǫ) + 4δ(B − 2)

(WA + 2δ) + (WB − 2δ) + 4δ
.

Both x−
δ,ǫ and x+

δ,ǫ tend to WAA+WBB
WA+WB

when ǫ and δ tend
to 0, and since the condition of this theorem is assumed not
to be satisfied, this value belongs to[B − 1, A + 1]. So, for
sufficiently smallǫ andδ, [x−

δ,ǫ, x
+
δ,ǫ] ⊆ [B−1+ǫ, A+1−ǫ].

The agent opinions in this last interval remain thus forever
inside this interval and do not converge toA nor to B.

IV. RELATION BETWEEN THE DISCRETE AND

CONTINUOUS MODELS

A discrete system can be simulated by a system involving
a continuum of agents. Indeed, a vector of discrete opinions
x̂ ∈ ℜN can be represented by taking a piecewise constant
function x on I = [0, 1], with x(α) = x̂(i) for α ∈ 1

N
(i −

1, i). It follows from (4) that all x̂t are constant on these
intervals, and their value corresponds to the discrete opinions
xt obtained by the discrete system. Different weights can also
be given to the discrete agents by varying the length of the
interval on whichx0 is constant.

Before analyzing further the link between continuous
and discrete systems, we prove a result on the opinion
functions on which the update operator is continuous. Let
U : (Uxt)(α) = xt+1(α) be the update operator defined
on the set ofnondecreasing opinion functions. It follows
from Lemma 3 that if x is nondecreasing,Ux is also
nondecreasing. The operatorU can thus be composed with
itself arbitrarily many times (U t+1x = UU t(x)). We say
thatU is continuous at a certain opinion functionx if for any
ǫ > 0 there exists aδ > 0 such that for any non-decreasing
opinion functiony, ||x − y||∞ < δ ⇒ ||Ux − Uy||∞ < ǫ.

Proposition 1: Let x be a continuous piecewise differen-
tiable opinion function onI = [0, 1] with positive lower and

upper bounds on its derivativex′. ThenU is continuous at
x. As a result, ifx is has also the property that for every
finite t > 0, maxα U tx(α) − minα U tx(α) ≥ 2, the self
compositionU t is continuous atx for every finitet.

Proof: Consider such ax and let ⌊x′⌋ be a positive
lower bound on its derivative. For anyα the set of agents
whose opinion is within a distance 1 ofx(α) is an interval,
and we denote bylα,x andfα,x its supremum and infimum.
It follows from the continuity and differentiability ofx that
for all α, lα,x − fα,x is larger than some uniform bound
k(x)/ ||x′||∞. The update law (4) can be rewritten as

Ux(α) =

∫ lα,x

fα,x
x(β)dβ

lα,x − fα,x

(8)

We begin by showing that if a nondecreasing opinion
function y satisfies ||x − y||∞ ≤ δ := 1

2ǫ⌊x′⌋, then
|lα,x − lα,y| ≤ ǫ. To avoid edge effects, we definex and
y for α ≥ 1 by x(α) = x(1) + (α − 1)⌊x′⌋ and y(α) =
y(1) + (α − 1)⌊x′⌋. All values lα,x and lα,y smaller than
1 are unaffected. Those which are equal to1 are here
overestimated, but this can only result in an overestimation
of |lα,x − lα,y| since|min(a, c) − min(b, c)| ≤ |a − b|. Note
that x(lα,y) − x(lα,x) can be rewritten as

x(lα,y)−(y(α)+1)+1+y(α)−x(α)+x(α)−x(lα,x). (9)

By continuity of x and sincex has been redefined so that it
is unbounded, there holdsx(lα,x) = x(α) + 1. Note thaty
is not necessary continuous, but due to the definition oflα,y

we have

yi + 1 ∈ [ lim
β<lα,y

y(β), lim
β>lα,y

y(β)].

But, again by continuity ofx and because||x − y||∞ ≤ δ,

lim
β<lα,y

y(β) ≥ lim
β<lα,y

x(β) − δ = x(lα,y) − δ.

Similarly, limβ>lα,y
y(β) ≤ x(lα,y) + δ, so that

|(y(α) + r) − x(lα,y)| ≤ δ. Using this, the expression of
x(lα,x) and the bound on||x − y||∞, we obtain from (9)

|x(lα,y) − x(lα,x)| ≤ 2δ = ǫ⌊x′⌋,

and so|lα,y − lα,x| ≤
1

⌊x′⌋ ≤ ǫ. Exactly the same results can
be obtained for|fα,x − fα,y|. The updated valueUy(α) can
be rewritten

lα,y − fα,y

lα,x − fα,x

Ux(α) +

∫ fα,x

fα,y
y(β)dβ +

∫ lα,y

lα,x
y(β)dβ

lα,y − fα,y

.

If ||x − y||∞ < ⌊x′⌋ǫ, the second term of the sum has
an upper bound proportional toǫ, and the multiplicative
factor of the first term is different from one by at most
2ǫk(x)
||x′||

∞

. Since Ux is bounded, this implies that for allα,
|Uy(α) − Ux(α)| < Kǫ, which proves the continuity of
U with respect to||.||∞ for such x. The results forU t

follow then directly becauseU preserves monotonicity and
x satisfies the conditions of Conjecture 3.

Consider now an initial opinion functionx0 on
[0, 1] satisfying the conditions of Conjecture 3, and let



L = x0(1) − x0(0). This system can be approximated by a
discrete one with initial opinion̂x0 ∈ ℜN , x̂0(i) = x0

(

i
N

)

.
The discrete system is then equivalent to a continuous
system where the initial opinion functioñx0 is piecewise
constant, with||x0 − x̃0||∞ ≤ ||x′||∞ /N . Thus, x̃0 can be
made arbitrarily close tox0. Since by Proposition 1,U t is
continuous atx0 for any fixed t, we can havẽxt = U tx̃0

arbitrarily close toxt by taking x̃0 sufficiently close tox0,
which can be accomplished by taking a sufficiently largeN .
This supports the intuition that for a largeN , the continuous
systems behaves approximatively as the discrete one for a
certain number of time-steps. In view of Theorem 1, this
suggests that the discrete system should always converge
to a stable equilibrium (in the sense defined in Section II)
whenN is sufficiently large. However, this argument is not
rigorous, because the continuity ofU t for any t does not
imply the continuity ofU∞ := limt→∞ U t. To summarize:

Fact 4: A discrete system can approximate arbitrarily well
the behavior of a continuous system for a fixed number of
time-steps.

The comparison between discrete and continuous systems
provides a new result about discrete systems. Consider
a discrete distributionx̂0 of N agents approximating a
continuous distributionx0 as above. Until any time stept,
xt is approximated arbitrarily well bŷxt if N is sufficiently
large, butxt never reaches the equilibrium. For anyt, there
is thus aN above whicĥxt has not yet reached equilibrium.
Therefore, by increasing the numberN of agents in a
discrete system (in a way that approximates a continuous
distribution x0), the convergence time will increase to
infinity (even though it is finite for any particular finiteN ).

Fact 5: The finite convergence time of a discrete system
tends to infinity when the number of agents grows (for some
choices of the initial opinions).

V. CONCLUSIONS

In this paper, we have analyzed the equilibria of the Krause
model of opinion dynamics. We have focused our attention
on the inter-cluster distances, and on the experimentally
observed dependence of the number of clusters on the param-
eters of the model. We have attempted to justify the observed
inter-cluster distances; first by comparison with a semi-
infinite opinion distribution, and second by introducing a
notion of stability of equilibria which assesses the robustness
of an equilibrium with respect to the addition of an agent
with arbitrarily small “weight”. We have given a necessary
and sufficient condition for an equilibrium to be stable in
terms of inter-cluster distances, requiring for instance any
pair of identical clusters to be separated by at least2. We
have also considered a version of the model involving a
continuum of agents and continuous opinion distributions,for
which we have proved that the stability of the equilibrium
is under certain assumptions guaranteed. Finally we have
studied the relation between the discrete and the continuous
models, seeking to use the results for the second on the first.

The analysis of these problems is not yet complete. We
have proved that the continuous model cannot produce
cycles and that the amplitude of the changes at each step
decays to zero, but have not yet established convergence. It
is an open question whether a continuous strictly increasing
initial opinion function can converge to more than one
cluster. Finally, the link between the discrete and continuous
systems needs to be further studied, in order for example to
prove that the discrete system equilibria are stable with a
high probability when the numbers of agents increases.
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