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Abstract— We consider a simple dynamical model of agents
distributed on the real line. The agents have a limited vision
range and they synchronously update their positions by moving
to the average position of the agents that are within their
vision range. This dynamical model was initially introduced
in the social science literature as a model of opinion dynamics
and is known there as the “Krause model”. It gives rise to
surprising and partly unexplained dynamics that we describe
and discuss in this paper. One of the central observations is the
2R-conjecture: when sufficiently many agents are distributed
on the real line and have their position evolve according to the
above dynamics, the agents eventually merge into clusters that
have inter-cluster distances roughly equal t&R (R is the vision
range of the agents). This observation is supported by extengv
numerical evidence and is robust under various modifications
of the model. It is easy to see that clusters need to be separated
by at least R. On the other hand, the unproved bound2R
that is observed in practice can probably only be obtained by
taking into account the specifics of the model’'s dynamics. In
this paper, we study these dynamics and consider a number
of issues related to the2R conjecture that explicitly uses the
model’s dynamics. In particular, we provide bounds for the
vision range that lead all agents to merge into only one cluster,
we analyze the relations between agents on finite and infinite
intervals, and we introduce a notion of equilibrium stability
for which clusters of equal weights need to be separated by at
least 2R to be stable. These results, however, do not prove the
conjecture. To understand the system behavior for a large agen
density, we also consider a version of the model that involves
a continuum of agents. We study properties of this continuous
model and of its equilibria, and investigate the connections
between the discrete and continuous versions.

. INTRODUCTION (b)

We consider a simple multi-agent system. There 7are Fig. 1.  Evolution with timet € [0,15] of agent opinions initially
agents and every agent has an opinion represented by a pjdistantly located on intervals of length= 4 (a) andL = 10 (b), for

b N . A . h 100L agents. Only one cluster is produced in (a), and inter-efudistances
numberz (i), i € 1,...,n. At every time step, the agents;, (b) are much larger than the vision ranffle= 1 of the agents.

update their opinion by taking the average of all opinions
distant from their own by no more than a pre-specified
toleranceR:
41 (i) = %, (1) The model (1) was introduced by Krause [8] and has been
[N:(2)] studied in a number of contributions. It can be proved that
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and it has been conjectured that the number of clusters $ction Ill a version of the model allowing a continuous
asymptotically equal td./2 [12]. But no explanation of this opinion distribution, and prove results on the equilibria o
phenomenon nor any nontrivial lower bound on the intersuch systems. We also explore the issue of convergence
cluster distance have been provided so far. We analyze thes an equilibrium. Finally, we analyze in Section IV the
issue by introducing a particular notion of equilibrium-stalink between the continuous and discrete systems. Some
bility, under which a nontrivial lower bound on the distanceproofs and numerical observations omitted here due to space
between any two clusters is obtained. To better understaodnstraints are available in an extended version of thigipap
the system behavior for large numbers of agents, we al$).
iqtroducg and study a 'vers.ion allowing a continuous opinion Il. EINITE NUMBER OF AGENTS
distribution, and we link it to the discrete system. Note ) ,

that similar phenomena are observed in a variation of this Throughout the rest of the paper, we will assume, without
model, introduced by Weisbuch and is co-authors [4]. 1SS Of generality, thaf? = 1.

Weisbuch’s model, only two randomly selected agents update Convergence

their opinion at each time step. If their previous opinions |f the number of agents is finite, it is a consequence of
differ by more than gcertain pre-defined distance they mma_\i,ve" known results in [1], [5], [9], [11], [13] that every; in
unaffected, otherwise each agent assumes a new Opinigfe system (1) converges to a limiting valagand that the
which is a weighted average of its previous opinion and Qfmiting values of two agents are either equal or separated
the other agent's opinion. _ _ by more thanl 1. We call clustersthese limiting values to

The opinion dynamics models considered here are similgfnich opinions converge. Due to the particular dynamics of
to the linearized version of the Vicsek model [16]. In thahe system, the opinions converge to their clusters in finite
model, agents are all moving in the plane at the same speghe [9]: The distance between any two opinions converging
Each agent updates its bearing by forming an average gf gifferent clusters eventually becomes larger thawhile
its neighbors’ bearings, where the neighbors are defined g& distance between two opinions converging to the same
those agents within a given radius. The main differencgyster decays to 0. So after a certain time, the interaction
with the opinion dynamics model is thus the presence g:aph (where agents are connected if their distance is no
two variables for each agent in [16], one which is involvednore than1) contains as many connected components as
in averaging and one that determines the neighborh0gde number of clusters, and each of them is fully connected.
relation. A wide range of such systems have been studig¢q every connected component the updated opinion at the
in the literature, see [14] for a survey. But until now, withpet time step is then the same for all agents so that their
very few exceptions, as in [3], [7], the explicit dynamics Ofopinions stop changing.
the neighborhood relation have not been taken into account,
and the sequence of neighborhood graphs (where agents argact 1: For a finite number of agents and the dynamics
connected if they are neighbors) is always considered @§) the opinions converge in finite time to clusters whose
exogenous. In contrast, our analysis explicitly considees gistance from each other is more tharfo].
dynamics of the model. . '

The linearized Vicsek model is a special case of mor The above results do. noj[ hOId without the a.ssumptlpn.that
general multi-agent systems where every agent has a va%@ number of agents is _f|n|te. I_n(_je_zed, C_‘)'?S'der an |r_1f|n|te
which it updates by taking a linear (possibly convex) com[““T_'t_)er _Of agents, all with an initial opinion Wh'c_h IS a
bination of the neighbors’ values. Such systems are studi@§Sitive integer. Calin(p) the number of agents having an
for example in [1], [5], [6], [13], [15]. initial opinion p. If m(0) =0, m(1) = 1, and for all Iarggr

Finally, opinion dynamics models also present similagitie?s (P +1) = m(p) + 3m(p — 1), then for each agent
with certain rendezvous algorithms (see [10] for an exaynplémd for eacr_t,_ a(t T 1) - z(t) +1/2. A." ?‘g_e”t opinions
in which the objective is to have all agents meet at on re thus shifting indefinitely towards infinity. An infinite

point. Agents are neighbors if their positions are Wi,[hirpumber of agents also allows equilibria where clusters are

a radius R, and they update their position by taking anseparated by less than as in the case where there is one
agent on every integer and on every + %

average of their neighbors’ positions. There is an addifion
constraint, that once two agents become neighbors they mus
remain so forever and therefore need to make sure that th
remain within a distance of at mo& This ensures that the

connectivity of the neighborhood graph is preserved antd th
an initially connected set of agents is never split into $enal B. Analysis of numerical experiments

groups, so that all agents converge to a same point. Fig. 2 shows the evolution of 1000 initially random

In Section Il we explicitly use the neighborhood relationyyo-dimensional opinions according to (1). The distance
construction to analyze the equilibria to which the system
(1) converges. We characterize their stability and attempt Actually those results imply that the distance between thieiaps of
lain th . tally observed distances bet esuch agents is larger thanfor all time stepst after a certain timé’, and
to explain the experimentally V! ! WeeBuld thus converge td whent — oo. But we explain in the sequel that

opinion clusters at the equilibrium. We then consider inhe system converges in finite time, which forbids a convergen 1.

act 2: For an infinite number of agents and the dynamics
, the opinions may not converge or may converge to
glusters whose distance from each other is less than



to increase linearly withL, as already observed in [12],
and in [4] for the Weisbuch model. It is conjectured in
[4] that the number of clusters is asymptotically equal to
L/~v with v ~ 2. From our own numerical experiments,

it seems however thaj is close t02.2. In any case, the
inter-cluster distance appears to be much larger than the
minimal distancel between any two clusters, and no better
asymptotic upper bound has yet been found. In the next
three subsections we analyze three problems that relate to
these observations, summarized below.

A 1o Observation 1:For initial opinions uniformly distributed
teo ] : over [0, L], the typical equilibrium inter-cluster distance is
— — ~ =~ 2.2, and the number of clusters is asymptotically~.
‘— 19 ¢+ — 920 Similar observations are made for Weisbuch’s model [].

Fig. 2. Representation of the evolution of a set of 1000 timesisional C- Largest interval for one cluster
e T P . e e, Considem agent opinions equidistantly located B ).
isolated agents in the lower right part of the figure are in aarseable ASSUMe that is odd, so that one agent has an initial opinion
situation. They eventually merge, as seert at 20. of L/2. Explicit computations of the first two iterations
show that at = 1, all opinions belong td1, L — 1], and at
t=2to [}, L — 1}]. Moreover, since opinions are updated
by making convex combinations, all further opinions also
belong to these intervals. Observe now that our system
cannot produce more than one cluster if all opinions are in
(L/2 —1,L/2 4 1), as the agent opinion initially od /2
always remains so by symmetry, and the agents’ equilibrium
opinions are either equal or at least 1 apart. So this system
cannot produce more than one clusterff > L/2 — 1,

that is if L < 2—6:3 ~ 3.833. This bound is smaller than the
experimental bound which we observed to be between 5
and 5.1. The explicit bound of 23/6 provided here could
of course be improved by explicity computing further
iterations but these calculations become tedioust for 2.

‘ ‘ ‘ ‘ ‘ Let us also mention that, provided there are sufficiently

x-L/2
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L many agents, a similar analysis is possible for the case
Fig. 3. The location of the different clusters at equililbniuas a function of \vhere there is no agent opinion at the origin and for the
L, for 5000L agents with opinions initially equidistantly located i L]. . . .
Clusters are represented in terms of their distance fg®, and the dashed case where opinions are randomly distributed on the interva

lines represent the endpoirtsand L of the initial opinion distribution.

Fact 3: Opinions initially equidistantly distributed on
[0, L] converge to one cluster if < 22.

between agents is measured according to the Euclideanopservation 2:Experimentally the maximal leading to
norm. All opinions converge to clusters, but these clustertg single cluster is betweenand5.1.

are separated by distances significantly larger the&rom N S

their closest neighbors. The same can be observed fh Finite and semi-infinite intervals

Fig. 1, which involves one-dimensional opinions, inityall ~When L is sufficiently large, Fig. 3 shows that distance
equidistantly located on[0,4] and [0,10], respectively. of the first cluster from zero becomes independentZof
Although the results of Section II-A would allow up to This can be explained by analyzing the “information” prop-
4 and 10 clusters, respectively, only 1 and 4 clusters asgation: During an iteration, an agent is only influenced by
observed. To further investigate this phenomenon, wiose opinions within distanck of its own, and its opinion
consider in Fig. 3, as a function of, the number and is modified by less thai. So information is propagated by
positions of the final clusters, when the initial opiniong arat most a distance 2 at every iteration. In the case of an
are located equidistantly in the intervfll, L]. The cluster initial uniform distribution on[0, L] for a large L, during
positions tend to change with in a piecewise continuous the first iterations the agents with initial opinions close0t
(or even linear) manner. The discontinuity points correspo behave as if opinions were initially distributed unifornadn

to the emergence of new clusters, or to “splitting” of &0, +oc0). Moreover, once a group of opinions is separated
cluster into two smaller ones. The number of clusters tendsom other opinions by more thah they are not influenced
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Fig. 5. Meta-stable situationA and B are disconnected but interact
t both with isolated agents between them, so that they slowtylgser one
from each other. The isolated agents remain approximatelyeatveighted
Fig. 4. Evolution with time of the opinions for an initial semiffinite ~ average of the clustersy’4 and W represented by the heights are the
equidistant distribution of opinion (initially, there a0 agents within number of agents i and B and are supposed to be large.
each unit of ther axis).

t =5 andt = 7 with a small clusters instead of isolated
by them at any subsequent iteration. Therefore, agents wilyents. Based on these observations, we define in the
initial opinions close to 0 and getting separated from theequel a notion of equilibrium stability characterizinge th
other opinions after some finite time follow exactly therobustness of an equilibrium with respect to the addition of
same trajectories when the initial uniform distributionois  an “arbitrarily small” agent. The stability of an equiliorn
[0,400) or on [0, L] for a sufficiently largeL. (under this new notion) then implies that clusters are

We performed simulations with an initial semi-infinite separated by distances larger than a bound that depends on
interval, i.e. opinions equidistantly distributed betwékand the weights of the clusters. For clusters of identical weigh
+00. It appears that every agent eventually gets disconnectets lower bound is equal t.
from the semi-infinite set but remains connected with some
other agents. Each group behaves then independently ofObservation 4:If the distance between two clusters is
the rest of the system and converges to a single clustenore than 1 (so that they do not interact), but within some
As shown in Fig. 4, the distance between two consecutiiireshold, the addition of a few isolated agents can cause
clusters converges to approximately2. This asymptotic structural changes.

Ior:‘t(tar:-edrl:j:ﬁtr)edrlit? cr:]IZit(\;vrcs)u(lgsp;;ﬂilgt/ioixg)l‘asl?uotvr\;ﬁ i?\quﬂim To introduce the notion of stable equilibrium, we consider
9 3 weighted version of (1) where every ageéritas a weight

3, but at'the time of writing, there is no proof for the abovewl_ and where the update rule is
observations.

ZjeNt(i) w;ze(f)

Observation 3:For an initial semi-infinite opinion distri- T (i) = e W )

bution, every agent opinion converges to a cluster and thei1 its d ibed in Section Il-A ab
distance between consecutive clusters converges to approl—( e results described in Section lI-A about convergence

mately 2.2. to clusters can be generalized to this weighted case, and
we call weight of a clusterthe sum of the weights of all

E. Equilibrium stability agents at this cluster. Let be a vector of agent opinions

cluster distancéd €quilibrium. Suppose that one adds a new agent of

close to 1 often happens for values of just smaller weight 6 and opinionz, and let the system re-converge

than those at which one cluster is separated in two, ari@ & Perturbed equilibrium opinion vectar (which does
has also been observed in [12]. Locally, the system fir&@Ot contalg the E’F”Ufb'ng agent opinion). We denote by
converges to a “meta-stable equilibrium” where two cluster®=.s = w' |7 — 7’| the distance between the initial and

are separated by a distance larger thahut smaller than Perturbed equilibria. We say thatis stableif max. A s,

2, with some isolated agents between them. Since thethe largest distance between initial and perturbed edgjialib

isolated agents interact with both clusters, their opigion©f & Perturbing agent of weight can be made arbitrarily
all by choosing a sufficiently smadl. An equilibrium

become approximately the weighted average of thesd" ; L . .
clusters. At the same time, they attract the clusters thit thus unstable if some modification of fixed size can be

slowly move towards each other, as illustrated in Fig. s2chieved by adding an agent of arbitrarily small weight.

When the distance separating them finally becomes smaller

than 1, they merge in one time-step and the system reaches'heorem 1:An equilibrium is stable if and only if the

an equilibrium. An example of such meta-stable situatiof!Stance bmftwisn any two clustetsand B is larger than
A B

can also be seen in Fig. 2 for= 12, or in Fig. 1(a) between 1 -+ min (WB’ WA) In this expression}¥4 and Wy are

Another phenomenon preventing inter-



the weights of the clusters. it would partially justify the dependence oh/2 of the
Proof: Consider an equilibriun and an additional number of clusters observed in Section II-D, as the clusters
agent of opinionz and weight. If this agent is disconnected generally have the same weight. However, this approach
from all clusters, it has no influence amd, s = 0. If it is not likely to give a tight bound as the limiting inter-
is connected to one clustet of position x4 and weight cluster distances observed in the semi-infinite case or in
Wy, the system reaches a new equilibrium after one timihe finite case for largd. is larger than2, which is the
step, where both the additional agent and the cluster haweaximal distance that can be justified by stability of the
an opinion(zd + x4 Wa)/(6 +Wa). SOA, 5 < |z —z4|. equilibrium. Moreover, the convergence of those clusters
Finally, suppose that the perturbing agent is connected i® often rapid and does not go through the meta-stable phase.
two clustersA, B (it is never connected to more than two
clusters). For a sufficiently small its position after one time  Observation 5:Typical inter-cluster distances are larger
step is approximately than the largest lower bound provided by stability analysis

Ip = %A _TATTB A3) [1l. CONTINUOUS DISTRIBUTION OF AGENTS
14+ 94 148 ’
B

Wa To further analyze the properties of (1) and its behavior
while the new positions of the clusters de@+x4Wa4)/(6+ when the number of agents increases, we now consider a
W,4) and (25 +xpWg)/(0 + Wg). If [ta—2xp| > 1+ modified version of the model, which involves a continuum
min (4, 72 ), it follows from (3) that for smalb the agent ~ Of agents. We use the interval= [0, 1] to index the agents
is then connécted to only one cluster and that equilibrium @nd denote by, («) the opinion at time of the agent: € 1.
thus reached at the next time step, witiha; proportional As an example, a uniform initial distribution of opinions is
to 5. The condition of this theorem is thus sufficient fordivenzo(a) = La. At each iteration, the agent opinions are
stability of the equilibrium as\. ; is proportional tos when ~Updated by
itis satisfied. o o B fgezat(avﬁ)wt(ﬁ)dﬁ
If the condition is not satisfied, the agent is still conndcte T () = p )
to both clusters as represented in Fig. 5. An explicit reears fﬁel (e, B)dB
computation shows that in the sequel its opinion remaingherea;(«, 3) = 1 if |z,(a) — 24(3)| < 1 and 0 else. We
approximately at the weighted average of the two clusteenote byAz; the opinion function variationr;,; — ;.
(3), while these get steadily closer one to each other. Nofhe relation between this system and its discrete analog
that their weighted average moves at each iteration in th{¢1) or (2)) is studied in Section IV. It would be desirable
direction of the largest cluster by a distance bounded hy prove the convergence of (4), but at the time of writing
d/(W4 4+ Wpg). Once the distance separating the clustershis remains a conjecture:
becomes smaller than or equalltahey merge in one central
cluster of opinionz’. Thus, in this case, the addition of Conjecture 2:The system (4) converges to an
a perturbing agent of arbitrary small weigtitconnected equilibrium.
to both A and B results in the merging of the clusters
independently of, so thatA, ; does not decay to 0 with. Although we have no proof for this conjecture, we have a
B weaker result, that implies that (4) does not produce any
We have observed in most cases that, provided that tlgcle and that the opinion variations decay to 0. Before
number of agents is sufficiently large, the equilibrium tastating and proving this result, we need to introduce a few
which the system converges is stable [2]. Intuitively thisoncepts. By analogy with the discrete system, we define
could be explained by the fact that when the system ige adjacency operatord;, which maps the set of bounded
converging to an unstable equilibrium, there are almosheasurable functions ohinto itself, by
always a few agents remaining in the zone where they can
produce large changes and redirect the system to a stable Arz(a) :/ a(a, B)z(B)dp,
equilibrium. Of course, not every system converges to a pel
stable equilibrium. For instance if an unstable equilibriis  and the degree functiod;(a) : I — RT by di(a) =
taken as initial condition, the system remains at this unieta [EI at(a, B)dp. Multiplying an opinion function by its
equilibrium forever. We make the following conjecture. degree function can be viewed as applying the operator
(defined on the same set of functions 49
Conjecture 1:The probability of convergence to a
stable equilibrium tends to 1 when the number of agents  Dix(a) = di(a)z(a) =/ at(a, B)z(a)dp.
increases, for initial agent opinions that are randomly pel
distributed according to a continuous probability funatio Finally, we define theLaplacian operatorL, = D, — A;.
with connected support. The update (4) can be rewritten, more compactly, in the form
Axy = Ty — = —d%tht. In the sequel, we use the scalar
We give in the next sections partial results that suppogroduct(z,y) = fael z(a)y(a)da. The following lemmas
this conjecture. If the conjecture proves to be be correcare proved by elementary computations [2].

Y =x4+

(4)



Lemma 1:The operators defined above are symmetri
with respect to the scalar producly, A;z) = (Ay,x),
<y,DtCE> = <Dty7x> and <yath> = <LtQ7p>

Lemma 2:There holds

@Dt ag =5 [ aap) () £2(9).

Theorem 2:The system (4) does not produce cycles (ex
cept for fixed points). Moreover, the following quantity
decays to 0 whem — oo

/ au(0, B) (Ay(@) + Az (8))°.
(a,B)€I?

Proof: We consider the nonnegative function

! min z(a) — ¢ 2
/w)e,z (1, ((a) = 2(8))?) . (8)

(®)

Vx) 5

¢ Lemma 3:If x¢() < 24(B), thenzyiq(a) < xp41(0).

Lemma 4:1f z, is continuous and piecewise differentiable
with a derivative bounded from below and above by positive
numbers, so i1, provided thatzr;(1) — z,(0) > 2.

In the sequel we can thus assume without loss of
generallty that allz; are nondecreasing. lf, satisfies
the hypotheses of Lemma 4 (continuity and piecewise
differentiability with positive lower and upper bounds
on the derivative), so do al;; as long as the range of
opinions is no smaller than 2. However, the existence
of a function z, satisfying the hypotheses of Lemma
4 and leading to a sequence of functioms such that
max, ¥+(a) — min, 2¢(or) > 2 for all ¢ has not been
proved yet. Similarly, it is not known whether there exists
a continuous initial opinion function:, for which we fall

and we prove that it decreases at each iteration of (4), wiy obtain convergence to a “state” where all opinions are

ar(, B) (A (a) + Azy(5))”
Y)

It can be seen that wheAz, # 0, V decreases strictly.

1
V(o) Viz) 2 5 [

(a,3)€I?

equal.

Conjecture 3:There exist continuous and piecewise
differentiable initial opinion functionsz, with positive

This implies that the system cannot produce any non-trividbwer and upper bounds on their derivative such that

cycles. Furthermore, sindé is non-negative and decreasing,
it converges to a limit. Therefor& (z;41) — V(x:) tends to
0 and so does (5).

Consider an arbitrary but fixed time stepFor any time
s, V(z5) can be rewritten as

min (

f(aﬁe]z a(a,B)= (
For s = t, (zs(a) — xs(ﬁ))2 > 1 for all a, such that

f(a BIET? ai(a,B)=1
+

NI= N

max,, z¢(a) — min, x¢(«) > 2 for all ¢.

We now prove that under certain conditions the continuous
system equilibria always satisfy the stability conditioofs
Theorem 1. Analogously to the discrete system, we say that
a real number is a clusterif z;(a) — ¢, for all « in a
positive length interval contained ih, and we callcluster
weightthe lengthW,. of this interval.

Theorem 3:Suppose that the initial opinion function is

at (o, 5) = 0, and the second term above takes its maximauch that allz, are continuous and strictly increasing.af

value f B)EI? ay(c,8)=0 | and cannot increase between
andt+1. ConS|der now the first term. For arythere holds

f(aﬁ)elz,at(a,ﬁ):l min (1’ (Z‘S(Oz) - xq(ﬂ))2)>
f(a’ﬁ)elz ar(a, B)(zs() — :175(5))2> = (wy, Lyxs)

where the inequality follows frona(«, ) < 1 and the last
equality follows from Lemma 2 and fromk; = D, — A;.
For s = t, (zs(a) — 24(B3))? < 1 for all a,3 such that
a:(a, 3) = 1. The above inequality is thus an equality for
s =t, and we have

V(zir1) = V() < (@pg1, Lewigr) —

By symmetry (Lemma 1) and by the update rule (4) which

N|— N|—

<

<=’Ut, Ltﬂft> .

implies D, Ax;, = —L,x,, this becomes
V(It+1) — V(If) S <Al’t, LtAIEt> 4+ 2 <AI[;, tht>
= <Al’t, LtAl't> — <Al’t, QDtAfL't> .
Since Lt = .Dt — At, we haVe<Ath, (At -+ Dt)Ax > <
V(z¢) — V(2¢41), which by Lemma 2 proves that (7) holds..

The following lemmas can be proved by explicit compu-
tations [2].

converges to a set of clusters whose distance from each other
is at leastl, then any two clusterst and B are separated

by at leastl + min (WA We

Wg Wa
Proof: We show that if two clustersA,B (A < B
without loss of generality) do not satisfy this conditioh,
contains a positive length interval of agents whose opmion
remain betweemd and B but do not converge tol nor to
B. But this is impossible becaust and B are separated by
less tharp.

Since zy is increasing, it follows from Lemma 3 that
if @ < 0 <7, z(a) < x(B) < x(y) for all t. The
set of agents converging td and B are thus intervals,

which we denote by 4 andIp (W4 = |14|, W5 = |I5]).
We call their infimum and supremum respectivefy, 4
and fg,lg. Consider arbitrarily small but fixed and e.
Because all agents ifif4,l4) have opinions converging to
A, there is a time after whichw.(fa +0) — A] < e and
|z+(la — ) — A| < e. As almost all agents outside df,
converge to clusters distant from by at leastl, there
is also a time after whiche;(f4 —0) < A—1+ ¢ and
2¢(la+6) > A+1—€> B —1+ e Applying the same
argument forB, we conclude that after a sufficiently large
time, the following hold:



« The difference betweerd, and the intervall’,, = upper bounds on its derivative’. ThenU is continuous at
z;'([A — €, A + €]) of agents with an opinion close z. As a result, ifz is has also the property that for every

to A at timet has measure smaller thaa. finite t > 0, max, U'z(a) — min, Uz(a) > 2, the self
« The difference betweerds and the intervall; , = compositionU? is continuous at: for every finitet.

z;'([B — €, B + ¢]) of agents with an opinion close Proof: Consider such a and let 2’| be a positive

to B at timet has measure smaller thaa. lower bound on its derivative. For any the set of agents

« The measure of the set of agenis with an opinion whose opinion is within a distance 1 of«) is an interval,
distant fromA and B by at least and that can interact and we denote by, , and f, . its supremum and infimum.
with agents having an opinion ilB —1+¢, A+1—¢ It follows from the continuity and differentiability of that

is smaller thants. for all «, lo» — fa is larger than some uniform bound
Consider now an agent with an opinion[ii—1+¢, A+1—¢  F()/|l2'[|. The update law (4) can be rewritten as
(The interval of such agents is of positive measure since fl"’“” 2(3)d3
is continuous). Its updated opinion is at most Uz(a) = lfwif ®)
Wa—20)(A+¢e)+ (Wp+20)(B+e)+40(A+2 . _ oz ~ oz . .
lf{e = W i o+ (Vs i 9 ( )7 We begin by showing that if a nondecreasing opinion

(Wa —20) + (W +20) + 49 function y satisfies ||z —y||,, < & := gze[a’], then
where agents of, ,, I, and J; have the largest possible |7, . —1,,| < e. To avoid edge effects, we define and
opinion A+¢, B+eandA+2, and were the sefty ,, J; with  y for o > 1 by z(a) = z(1) + (o — 1)|2'| andy(a) =

a large opinion have the largest possible measrgst 26 y(1) + (« — 1)|2’]. All values I, , andl,, smaller than
and4¢ while the I, , with a small opinion has the smallest1 are unaffected. Those which are equal ltoare here

possible measurd’, — 26. Similarly, a lower bound on the overestimated, but this can only result in an overestimatio

updated opinion is of |la,o — la,y| SiNCe|min(a, ¢) — min(b, ¢)| < |a — b|. Note
_ (WA +20)(A—e)+ (Wg —20)(B —¢) + 40(B — 2) that z(la,,) — z(la,) Can be rewritten as
" (Wa +20) + (Wi —20) + 49 - 2(lay) = W)+ D) +1+y(@) —3(0) +3(0) ~2(laq). (9)

Both x5, andz}, tend to WA ¥eE whene and 6 tend By continuity of z and sincer has been redefined so that it
to 0, and since the condition of this theorem is assumed ngt unbounded, there holds(l,, ) = z() + 1. Note thaty

to be satisfied, this value belongs(t6 — 1, A + 1]. So, for  is not necessary continuous, but due to the definitioh, gf
sufficiently smalle andd, [xg’e, nge] C[B—1+¢A+1—€]. we have

The agent opinions in this last interval remain thus forever

inside this interval and do not converge fonor to B. ® yi+1le [ng}y y(ﬁ),ﬁggyy(ﬁ)]-
V. RELATION BETWEEN THE DISCRETE AND But, again by continuity of: and becausgz — y|| <9,

CONTINUOUS MODELS
A discrete system can be simulated by a system involving B<la,y B<la,y ’

a continuum of agents. Indeed, a vector of discrete opinioRS§mij|arly, limgsr, y(8) < a(lay) + 6, so that
& € RN can be represented by taking a piecewise constaftl () + r) — z(l,,)| < 6. Using this, the expression of

function = on I = [0, 1], with x(a) = &(i) for & € (i — (1, ,) and the bound oflz — y||__, we obtain from (9)
1,4). It follows from (4) that allz; are constant on these .
intervals, and their value corresponds to the discreteiamsn [2(lay) — 2(law)] < 20 = €2’

x; obtained by the discrete system. Different weights can alsg,q SO|lay — lax| < L= < €. Exactly the same results can
be given to the discrete agents by varying the length of the, jhtained fOlT}”a . 7"Lfa .- The updated valu&y(a) can
interval on whichz is constant. be rewritten ' ’

Before analyzing further the link between continuous o Iy
and discrete systems, we prove a result on the opinion luy ~ fa. ; Jiory(B)dB+ [, y(B)ds
functions on which the update operator is continuous. Let [, , — f, . zla) + '
U : (Uxt)(a) = x441(c) be the update operator defined

on the set ofnondecreasing opinion functionst follows an upper bound proportional t and the multiplicative

from Lemma 3 that ifz is nondecreasingl/x is also ) o
nondecreasing. The operatr can thus be comoosed with factor of the first term is different from one by at most
9. P P 2¢k(z) - Since Ur is bounded, this implies that for ail,

itself arbitrarily many times {(**'z = UU'(z)). We say [z’ i o
thatU is continuous at a certain opinion functierif for any |Uy(0) — Us(a)| < Ke, which proves the continuity of

. . t
e > 0 there exists @& > 0 such that for any non-decreasingfU”V\"ththres%(?Ct ;OHBHOC foré[such v. The resutlts _f%rU d
opinion functiony, ||z — y||. < & = |[Uz — Uyl < . ollow then directly becaus& preserves monotonicity an

2 satisfies the conditions of Conjecture 3. [ ]

lavy - fa,y
If ||z —y|l., < [2']e, the second term of the sum has

Proposition 1: Let 2 be a continuous piecewise differen- Consider now an initial opinion functionzg on
tiable opinion function o’ = [0, 1] with positive lower and [0, 1] satisfying the conditions of Conjecture 3, and let



L = x0(1) — 20(0). This system can be approximated by a The analysis of these problems is not yet complete. We

discrete one with initial opiniort, € RV, 2o (i) = o ().

have proved that the continuous model cannot produce

The discrete system is then equivalent to a continuouycles and that the amplitude of the changes at each step

system where the initial opinion function, is piecewise
constant, with||zg — Zo|| < ||2']|,, /N. Thus,z, can be
made arbitrarily close ta;y. Since by Proposition 1/¢ is
continuous atry for any fixedt, we can havet, = Ul
arbitrarily close tox, by taking z, sufficiently close tox,
which can be accomplished by taking a sufficiently lafge

decays to zero, but have not yet established convergence. It
is an open question whether a continuous strictly increasin
initial opinion function can converge to more than one
cluster. Finally, the link between the discrete and cortirsu
systems needs to be further studied, in order for example to
prove that the discrete system equilibria are stable with a

This supports the intuition that for a largé, the continuous high probability when the numbers of agents increases.
systems behaves approximatively as the discrete one for a

certain number of time-steps. In view of Theorem 1, this Acknowledgements.We wish to thank Raplé Jungers,
suggests that the discrete system should always convelgeonard Schulman and Jeff Shamma for their interest in
to a stable equilibrium (in the sense defined in Section Ihe problems described in this paper and for some of their
when N is sufficiently large. However, this argument is notsuggestions. RapBhJungers did some of the numerical sim-

rigorous, because the continuity 6f for any ¢ does not
imply the continuity ofU*® := lim;_., U¢. To summarize:

ulations that we refer to in the text. Prof. Leonard Schulman
suggested the connection between finite and infinite inierva
Prof. Jeff Shamma suggested looking at possible connection

Fact 4: A discrete system can approximate arbitrarily wellwith stochastic stability questions.

the behavior of a continuous system for a fixed number of

time-steps. 1]
The comparison between discrete and continuous systems

provides a new result about discrete systems. Consider

a discrete distributioni, of N agents approximating a |
continuous distributionzy as above. Until any time stefy

z, is approximated arbitrarily well by, if N is sufficiently Ed
large, butx; never reaches the equilibrium. For ahythere

is thus aN above whichz; has not yet reached equilibrium.
Therefore, by increasing the numbeé¥ of agents in a 5]

discrete system (in a way that approximates a continuous
distribution xy), the convergence time will increase to
infinity (even though it is finite for any particular finit&). (6]

Fact 5: The finite convergence time of a discrete system([7]
tends to infinity when the number of agents grows (for some[8]
choices of the initial opinions).

V. CONCLUSIONS [9]

In this paper, we have analyzed the equilibria of the Krause
model of opinion dynamics. We have focused our attentioPO]
on the inter-cluster distances, and on the experimentally
observed dependence of the number of clusters on the param-
eters of the model. We have attempted to justify the observ&aﬂ]
inter-cluster distances; first by comparison with a semi-
infinite opinion distribution, and second by introducing &2l
notion of stability of equilibria which assesses the rohass
of an equilibrium with respect to the addition of an agent
with arbitrarily small “weight”. We have given a necessaryl13]
and sufficient condition for an equilibrium to be stable in
terms of inter-cluster distances, requiring for instanog a [14]
pair of identical clusters to be separated by at I@asiVe
have also considered a version of the model involving As)
continuum of agents and continuous opinion distributidos,
which we have proved that the stability of the equilibrium
is under certain assumptions guaranteed. Finally we ha}ﬁ%
studied the relation between the discrete and the contsuou
models, seeking to use the results for the second on the first.
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