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Abstract We introduce a cut-balance condition for continu-
ous time consensus seeking systems, which generalizes weak
forms of symmetry and of average preservation. We show
that, if a system satisfies the cut balance condition, it always
converges to a set of clusters, and we characterize the clus-
ters in terms of the graph describing the infinite interactions
between the agents.

We consider continuous-time consensus seeking systems of
the following form: each of n agents maintains a value xi(t)
(i = 1, . . . ,n) which is a continuous function of time and
evolves according to

ẋi(t) = ∑
j

ai j(t)(x j(t)− xi(t)) , (1)

with ai j(t)≥ 0. Systems of the form (1) have attracted a con-
siderable attention in recent years (see [2, 3] for surveys).
Their study is relevant to decentralized coordination or data
fusion, but also to the analysis of animal flocking and so-
cial behavior. The results available in the literature usually
guarantee (exponential) convergence to a state of consen-
sus between the agents under some persistent or intermit-
tent connectivity conditions related to the evolution of the
ai j(t) [1].

We make the additional assumption that the ai j(t) are cut-
balanced: there exists a K ≥ 1 such that for all t and any
partition of {1, . . . ,n} into S∪Sc, there holds

K−1
∑

i∈S, j∈Sc
a ji(t)≤ ∑

i∈S, j∈Sc
ai j(t)≤ K ∑

i∈S, j∈Sc
a ji(t). (2)

Intuitively, no group of agents can exert an influence on the
other agents without being at least proportionally influenced
themselves by these other agents. It can be shown that sys-
tems satisfying this condition include symmetric systems
(ai j(t) = a ji(t)), type-symmetric systems (ai j(t)≤ Ka ji(t)),
and any system whose dynamics preserve a weighted aver-
age with positive coefficients (∑i wiai j(t) = 0).

Under the assumption (2), we prove that each value xi un-
conditionally converges to a limit. We show moreover that
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xi and x j converge to the same limit if i and j belong to
the same connected component of the so-called unbounded
interactions graph, and generically to different values other-
wise. By contrast, classical results in the absence of cut bal-
ance show convergence to consensus under some non-trivial
condition, but do not conclude anything when the condition
is not satisfied, and therefore do not apply to clustering phe-
nomena. This aspect is significant in the study of systems
for which the evolution of ai j(t) is a priori unknown, and in
particular for systems where ai j actually depends on x, as is
the case in many interesting models. Checking whether a
connectivity condition is satisfied would indeed in the latter
case require some non trivial information about the evolu-
tion of x, which a priori forbids the use of classical conver-
gence results.

Our main result is the following.

Theorem 1 Let x : ℜ+ → ℜn be a solution of (the inte-
gral version of) (1), and suppose that there exists some
K ≥ 1 such that (2) holds for all t and every subset S of
of {1, . . . ,n}. Then,

i) x∗i = limt→∞ xi(t) exists, and x∗i ∈ [min j x j(0),max j x j(0)].

Moreover, define the directed graph G=({1, . . . ,n},E) by
( j, i) ∈ E if

∫
∞

0 ai j(t)dt = ∞, and suppose that
∫

I ai j(t)dt
is bounded for every finite interval I and i, j. Then, ev-
ery weakly connected component of G is strongly connected.
And,

ii) If i and j belong to the same connected component of G,
then x∗i = x∗j ,
iii) Else, x∗i 6= x∗j , unless x(0) is in a particular proper sub-
space of ℜn, determined by the functions ai j.
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