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Abstract— In the development of the electricity grid, Demand
Response is a current subject of research for reasons of
robustness, efficiency and renewable energy integration. Among
the aspects of Demand Response, dynamic pricing is critical,
and real-time pricing is a favored way of implementing it. The
efficiency of such methods would however rely crucially on the
ability and willingness of the end-user to react to varying prices.

For this reason, we look at the problem of automatically
scheduling the appliances that a user needs to run when the
energy price is sent by the provider. We propose a discrete-
time formulation for this problem, show how it can be solved
by a minimum cut algorithm and compare it with previously
proposed techniques. Compared to an exact method requiring
a mixed integer programming solver, our approach produces
solutions very close to optimal in shorter running times and
does not require proprietary software.

I. INTRODUCTION

The growing penetration of intermittent sources of renew-
able energy in the grid and the benefits in efficiency and
robustness of flattening peak loads have spurred tremendous
interest in Demand Response. Demand Response consists in
finding ways of influencing the electricity consumption of
end-users in (near) real-time [1]. One means of influencing
demand is by dynamic pricing, where prices can change on
short notice, e.g, a few hours or a day ahead. Among dynamic
pricing options, real-time pricing is a favored approach [2].
Real-time pricing consists in setting a price for a specific
future period, e.g., adjusting the price every hour or setting
hourly-based prices for the following day. Such pricing
policies have become realizable thanks to the advent of cheap
smart-meters and means of communication, and are a current
subject of research [3]. Hence, dynamic pricing is realizable
and could be very advantageous, but it would be useful
only if the end-users are willing and able to react to these
incentives. It is this part of the problem with which we are
concerned.

To this end, different solutions have been proposed to
efficiently and automatically control energy-consuming tasks
in homes or facilities. For instance, [4] develops a system to
analyze and optimize user consumption given hourly-based
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day-ahead prices. In [5] and [6] the authors treat the problem
of scheduling home appliances when price and demand are
stochastic. Another example comes from the Automatic Con-
trol Lab at KTH in the context of the Royal Seaport Project
(www.stockholmroyalseaport.com) [7]. There, the authors
propose a method to optimally schedule home appliances
when the prices are given one day ahead.

In the present paper we consider the problem of scheduling
different energy-consuming tasks when the energy price
profile is given and fixed for a prescribed period. We show
that this problem can be formulated in discrete-time as a
certain job scheduling problem which can be solved via a
minimum cut algorithm [8]. We give a bound on the loss
of optimality that the use of discretized starting-times could
cause. We provide a specialized implementation of a min-cut
algorithm and compare its performance with the continuous-
time method in [7].

We show that the discretization introduced by our formula-
tion has a very limited effect on the cost of the solution found
and comes with an improved computation time. Computation
time is important in this real-time setting, especially if
one further aims at joint optimizing for a large number
of users. Moreover, our algorithm is easily implementable
and does not require proprietary software as opposed to the
specialized Mixed Integer Linear Programming solvers used
in other approaches [4], [7], [9]. The latter issue might be
of importance if a large deployment is envisioned.

II. SETTING

We use the same setting as in [7] as it is well documented
and stems from collaboration with different actors on the
Royal Seaport Project (www.stockholmroyalseaport.com).
We are concerned with the problem of scheduling a list of
user-specified home-appliances in a certain period of time
[0,T ] when the electricity price is varying and known over
that period. That is, we suppose that the user has chosen
a list of appliances, which we index by i = 1, . . . ,Napp, that
need to be run during the concerned period. We suppose that
there is some freedom in the time to process them, T lb

i is the
earliest starting-time and T ub

i is the latest ending-time. The
user can also specify precedence relations between certain
appliances. For instance, appliance 3 may not start until
appliance 5 has finished. The price per kWh is received from
the energy provider, c : [0, T ]→R+, and the optimization is
run to propose (and implement) an optimal schedule.

Running these appliances requires some energy, but the
power load is not necessarily constant over the time of
processing. This is modeled by defining ni ordered phases for



each appliance during which the power load is assumed con-
stant. These energy phases (sometimes abbreviated e.p.’s),
indexed by j = 1, . . . ,ni, have certain times of processing,
Ti j in hours, and a certain energy requirement Eri j in Wh.
The power load of an energy phase is thus considered equal
to Eri j/Ti j. The time separating the energy phases might
be flexible, this is modeled by a minimum delay Di j and a
maximum delay Di j j = 1, . . . ,ni−1 between the end and the
beginning of two consecutive energy phases of an appliance
i. For instance, one cycle of a washing machine might be
broken down in a pre-washing phase followed by a heating
phase, a maintenance phase and then different rinsing phases
that could be delayed within some time interval [7]. The
notation is summarized in Table I.

TABLE I
CONTINUOUS-TIME PARAMETERS.

Specifications of the appliances

i ∈ {1, . . . ,Napp} Index for the Napp appliances

j ∈ {1, . . . ,ni} Index for the ni energy phases (e.p.) of appliance i

Eri j Total energy required by e.p. j of appliance i, in Wh

Ti j Time of processing of e.p. j of appliance i, in h

Di j Minimum delay between e.p. j and j+1, in h

Di j Maximum delay between e.p. j and j+1, in h

User preferences

[i1, i2] Precedence; appliance i2 may not start before the end of i1

T lb
i Earliest starting time for appliance i, in h

T ub
i Latest ending time for appliance i, in h

Cost

c : [0,T ]→R+ Price of energy during the day, in SEK/Wh (SEK = Swedish krona)

We provide an algorithm for finding a minimum cost
schedule of such energy phases. Note that in [7], the authors
also consider that the energy provider sends a profile of
the CO2 production per kWh over the period. This situ-
ation is justified by the case of Sweden where generally,
during the day a large part of the energy is provided by
renewable sources whereas during the night it is mainly
bought from neighboring countries relying more on fossil
fuels. The authors then compute the Pareto frontier between
the economical and the low-CO2 objectives and provide
the user with a choice. We do not explicitly treat the CO2
objective here but the computation of a Pareto frontier can
be carried out within our framework by optimizing with
costs that correspond to different convex combinations of
the economical and CO2 cost or by fixing a price per g of
CO2.

III. DISCRETE-TIME FORMULATION AND
EQUIVALENT MIN-CUT PROBLEM

We express the problem of finding an optimal schedule
by discretizing the set of starting times and obtain a Binary
Linear Program. This program can be efficiently solved, even
though it is combinatorial. We then link this problem with
one already treated in the literature that can be solved by
finding a minimum s− u-cut in a suitably defined digraph.
Finally, we explain how to construct this digraph in our case.

A. Discrete-time formulation

The decision variables over which we optimize are the
starting-times of the energy phases. We discretize the prob-
lem by restraining these starting-times to multiples of a
chosen ∆T with Nt∆T =T and we index them by t = 1, . . . ,Nt ,
corresponding to the (continuous) times 0,∆t,2∆t, . . .(Nt −
1)∆t. We then define a binary variable for each starting-time
of each energy phase,

xi j,t =

{
1 if e.p. j of appliance i starts at t
0 otherwise .

In continuous-time, xi j,t = 1 means that energy phase i j starts
at time (t−1)∆T .

In fact, the earliest starting-times T lb
i and latest ending-

times T ub
i of each appliance, together with the precedence

relations, the times of processing and the minimum delays
induce earliest and latest starting-times for each energy
phase. These can be computed by updating them through
a breadth-first search in the directed forest of precedence
relations and its reverse. From now on, we will consider that
we have these and denote them by ei j for the earliest and li j
for the latest integral starting-times. Therefore, we eliminate
all xi j,t for t < ei j and t > li j and this implicitly implements
the constraints on the time frame for running each appliance.

We associate a cost wi j,t to each feasible starting-time of
each energy phase. This cost is equal to the cost of providing
the energy through a constant power load of Pi j = Eri j/Ti j
over its continuous time of processing,

wi j,t =
∫

∆T (t−1)+Ti j

∆T (t−1)

Eri j

Ti j
c(s)ds t = ei j, . . . , li j.

So, the cost of a schedule can be expressed linearly in the
xi j,t ,

Napp

∑
i=1

ni

∑
j=1

li j

∑
t=ei j

wi j,txi j,t . (1)

It remains to constrain the precedences between energy
phases and between appliances. To express all these in one
set of constraints, let us define a set of time-lags. These
time-lags are such that if ti1 j1 and ti2 j2 are two feasible
integral starting-times for two energy phases with time-lag
di1 j1,i2 j2 they must satisfy ti1 j1 + di1 j1,i2 j2 ≤ ti2 j2 . We define
the following time-lags,

• for each appliance i and for its e.p.’s j = 1, . . . ,ni− 1,
we define di j,i( j+1) =

⌈
Ti j+Di j

∆T

⌉
to enforce the minimum

delay between two subsequent e.p.’s,
• for each appliance i and for its e.p.’s j = 2, . . . ,ni, we

define di j,i( j−1) =−
⌊

Ti( j−1)+Di( j−1)
∆T

⌋
to enforce less than

the maximum delay between two subsequent e.p.’s,
• for each precedence relation between appliances, [i1, i2],

we define di1ni1 ,i21 =

⌈
Ti1ni1

∆T

⌉
to enforce the timely order

between these appliances.



The constraints on the precedence and min and max delays
can now be expressed by

t

∑
s=ei1 j1

xi1 j1,s ≥
t+di1 j1,i2 j2

∑
s=ei2 j2

xi2 j2,s (2)

for all couples i1 j1, i2 j2 with a time-lag and for t going from
max{ei1 j1 , ei2 j2 −di1 j1,i2 j2} to min{li1 j1 , li2 j2 −di1 j1,i2 j2}. In-
deed, the left-hand side is one if i1 j1 has started at or before
time t and the right-hand side is one if i2 j2 has started at or
before t + di1 j1,i2 j2 . Hence, these inequalities encode that if
i1 j1 has not been started at or before t then i2 j2 cannot have
been started at or before t + di1 j1,i2 j2 , or conversely, if i2 j2
has been started at or before t+di1 j1,i2 j2 then i1 j1 must have
been started at or before t. The last constraints to be added
are that all e.p.’s have to be started once during the period,

li j

∑
s=ei j

xi j,s = 1, (3)

and the implicit constraint that all xi j,t are binary.
The program is

minxi j,t∈{0,1} (1)
s.t. (2), (3) .

(4)

One should note that this program is feasible if there are no
cycles in the precedence relations and if one has chosen a
sufficiently small ∆T . Such a ∆T always exists if there is an
interval of feasible continuous starting-times for each energy
phase. From now on we assume that this is the case, if it
were not the case there would be no room for optimizing.

Program (4) is a Binary Linear Program and as such
would not be easy to efficiently solve. However, its particular
structure allows us to design efficient algorithms for solving
it. As a first hint on this, if one applies the change of variables
zi j,t = ∑

t
s=ei j

xi j,s one could verify that the constraints Az≥ b
of the LP relaxation are such that A is Totally Unimodular,
meaning that its determinant is either 1 or -1, and b is
integral, so that the LP relaxation has an integral optimal
solution [10]. That said, we do not prove it here but rather use
the fact that our formulation highlights the correspondence
with the problem in [8, Sec. 2.] for which a minimum s−u-
cut equivalent problem is given.

B. Minimum cut

Our discretized problem is equivalent to the Project
Scheduling with Start-Time Dependent Costs described in
[8, Sec. 2.]. Indeed, this problem consists of scheduling a
set of jobs J = {1, . . . ,n} with integral processing times pk,
k ∈ J. Each job causes a cost wkt if it is started at integral
time t ∈ {0, . . . ,T} and there are prescribed maximum and
minimum time-lags between some jobs. The set of jobs with
time-lags is denoted by L ⊆ J× J, i.e., a set of ordered job
pairs. For each pair (k, l) in L there is an integral time-lag dkl
that can be either positive or negative. So that if tk, tl denote
feasible integral starting-times for jobs k, l with (k, l)∈ L then
one must have tl ≥ tk +dkl . With the notation introduced in

the last Section one can see that our problem is equivalent
by replacing the jobs by our energy phases.

It is proven in the same paper that an optimal schedule
for this problem can be retrieved from a minimum cut in a
suitably defined digraph. For the sake of completeness, we
provide the definition of this digraph in our case.

We define the node set V = {vi j,t | i = 1, . . . ,Napp; j =
1, . . . ,ni; t = ei j, . . . , li j +1}∪{s}∪{u}, i.e., for each energy
phase we have a node for each feasible starting-time plus
one, and we have a source s and a sink u. The set of arcs
is best understood when separated in three classes. We give
some intuition on the rationale behind their definition, more
details can be found in [8].

• Assignment arcs: (vi j,t ,vi j,(t+1)) for each energy phase
i j and for t = ei j, . . . , li j, with cost equal to wi j,t . Each of
these represents the feasible starting-time t for energy
phase i j, if it is in the minimum cut then the optimal
starting-time for i j is t. These arcs will be the only one
to be cut as the others have infinite cost.

• Temporal arcs: (vi1 j1,t ,vi2 j2,(t+di1 j1 ,i2 j2 )
)

for all time-lags di1 j1,i2 j2 and t from
max{ei1 j1 +1, ei2 j2 +1−di1 j1,i2 j2} to
min{li1 j1 , li2 j2 −di1 j1,i2 j2}, with infinite cost.
These arcs impose the time-lags. When there is a
(vi1 j1,t ,vi2 j2,(t+di1 j1 ,i2 j2 )

) arc with infinite cost, then if a
certain assignment arc (vi2 j2,s,vi2 j2,(s+1)) is in the cut
with s < t + di1 j1,i2 j2 (implying that i2 j2 starts in s),
then an assignment arc (vi1 j1,r,vi1 j1,(r+1)) must be in
the cut for some r < t (implying that i1 j1 starts before
t) for the cut to have a finite cost.

• Auxiliary arcs: (s,vi j,ei j) and (vi j,(li j+1),u) for all en-
ergy phase i j, with infinite cost. These link the source
and sink to the earliest and latest nodes of each energy
phase. Because s and u have to be separated by the
s−u-cut and because these arcs have infinite cost they
force to cut an assignment arc for each energy-phase.

Example 1. To illustrate this definition consider a simple
case with two appliances as described in Table II and T =
Nt = 24 (∆T = 1h). We set user-preferences to the precedence
[1, 2] between the appliances and times of use T lb

1 =9:00,
T ub

1 =16:00, T lb
2 =9:00 and T ub

2 =19:00. We can easily
compute the earliest and latest starting-times; e = [9, 12, 13]
and l = [12, 15 ,17]. The digraph for this case is pictured on
Fig. 1.

TABLE II
SPECIFICATIONS FOR EXAMPLE 1.

Appliance 1: e.p. 1 e.p. 2
T1 j [h] 1 1
D1 j [h] 2
D1 j [h] 3
Appliance 2: e.p. 1
T2 j [h] 2

Remark. The network construction allows more general
constraints on the time of use of appliances. Indeed, with



Fig. 1. Digraph for Example 1. The arcs with white arrowheads are
temporal and auxiliary arcs with infinite capacity, the ones with black
arrowheads are assignment arcs.

s u

9 10 11 12 13 14 15 16 17Time

App. 1, e.p. 1

App. 1, e.p. 2

App. 2, e.p. 1

v11,9 v11,10 v11,11 v11,12 v11,13

v12,12 v12,13 v12,14 v12,15 v12,16

v21,13 v21,14 v21,15 v21,16 v21,17 v21,18

some care, one could implement a constraint such as “ap-
pliance i has to run in [T lb

i ,T ub
i ] or in [T lb′

i ,T ub′
i ]” for non-

overlapping intervals by adding assignment arcs with infinite
cost.

IV. COST OF DISCRETIZATION AND ALGORITHM

A. Bound on the cost of discretization

We now provide a bound on the additional cost that might
be endured when forcing a schedule to use starting-times that
are multiples of ∆T instead of any continuous time.

Proposition 1: If c∗ct and c∗dt are the cost of an optimal
continuous-time and an optimal discrete-time schedule re-
spectively then

c∗dt − c∗ct ≤
Napp

∑
i=1

ni

∑
j=1

hi j∆T
Eri j

Ti j

(
max

s∈[(ei j−1)∆T ,(li j−1)∆T+Ti j ]
c(s)− min

s∈[ec
i j ,l

c
i j ]

c(s)

)
,

(5)

where hi j is the maximum of the maximum number of
ordered energy phases that have to run before energy phase i j
and after energy phase i j (counting itself as one), ei j, li j and
ec

i j, l
c
i j are respectively the discrete and continuous earliest

and latest starting-times of energy phase i j.
Note that all these parameters can be computed by Breadth
First Search in the forest of precedence relations and its
reverse.

Proof: We show how to construct a discrete-time
feasible schedule with starting-times that are displaced by at
most hi j∆T from the optimal continuous starting-times. If an
energy phase has no precedence with regard to any other one
its continuous-time can be rounded to the next or previous
multiple of ∆T so that it is displaced by less than ∆T . Recall
that we assumed in Section III-A that the time frame is large
enough and ∆T small enough to make one of these feasible.
Let us then consider a sequence of k chronologically ordered
energy phases with continuous starting-times S1, . . . ,Sk. Sup-
pose that S1 is the earliest feasible continuous starting-time,
we can place 1 to the next multiple of ∆T which displaces
it by less than ∆T . If the subsequent energy phase followed
at the earliest it has to be delayed by the same amount and

then this time has to be rounded to the next multiple of ∆T .
Which displaces it by less than 2∆T . If the second energy
phase did not follow at the earliest it can also be set within
2∆T . One can carry this procedure on along the sequence.
The same propagation of displacements could happen in the
other direction, if the k optimal continuous starting-times
were the latest possible. This is the reason why hi j has to be
the maximum between the maximum number of sequential
energy phases that have to run before i j and the maximum
number of sequential energy phases that have to run after i j
(counting itself as one).

Since this discrete-time schedule is feasible, its additional
cost is an upper bound for the one of the optimal discrete-
time schedule. The difference between the cost of the con-
structed discrete-time schedule and the continuous-time one
can be bounded by the added cost of running all the displaced
loads at the most expensive time instead of the cheapest one,

Napp

∑
i=1

ni

∑
j=1

hi j∆T
Eri j

Ti j

(
max

s
c(s)−min

s
c(s)

)
. (6)

We can further refine this expression, if we have the discrete
and continuous earliest and latest starting-times of each
energy phase, by taking the maximum and minimum between
them so as to obtain Eq. (5).

We will see in the simulations that this bound is usu-
ally very conservative. Nevertheless, the following example
shows that it can be reached in some pathological cases.

Example 2. The scheduling problem with two energy
phases represented on Fig. 2 shows that the bound of Prop.
1 can be tight.

Fig. 2. Sketch of a schedule with two energy phases which is pathological
for the cost of discretizing. The lower bound T lb on the first starting time
is just above 0, and the first e.p. lasts for just above ∆t. In continuous time,
the first e.p. can thus start just after 0 and the second one a bit after ∆t.
However, when discretizing with a period ∆t, the constraint on the starting
time of the first e.p. forces it to start at ∆t, and to finish a bit after 2∆t.
As a result, the second e.p. starts at 3∆t, similarly to what happens in the
construction of the bound of Prop. 1.
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Cost profile

Continuous-time optimal
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T lb

�T

m
�T
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m
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B. Algorithm and complexity

There exist many polynomial-time algorithms for solving
the maximum s− u-flow/minimum s− u-cut problem. Our
problem has the specificity that the capacities/costs of the



arcs are real numbers, and some have to be very high
(infinite). These features make augmenting-path algorithms
unsuitable [11]. For our problem, one can compute that the
number of nodes is n = O(N ·Nt) and the number of arcs
is m = O(N ·Nt +N + npredNt) where N is the number of
energy phases, Nt is the number of time intervals in the
discretization, and npred is the number of precedence rela-
tions between appliances. Hence, based on the comparison of
complexities in [11, Fig 7.19], we chose to implement the
highest-label variant of the preflow-push algorithm (a.k.a.
push-relabel). It has a worst case complexity of O(n2√m)
for n the number of nodes and m the number of arcs. Our
implementation is based on the survey [12] and uses the
global-relabeling and gap-relabeling heuristics. Indeed, we
could observe their substantial benefits on the computation
time of the algorithm on our type of networks. Even more
advanced algorithms with better theoretical bounds exist
and could be implemented with the use of advanced data
structures [13], [14].

As a comparison, [7] uses a formulation involving type
2 special ordered set (SOS2) constraints, which impose that
at most two of the variables in a vector are nonzero, and
that these variables must be consecutive. Such formluations
require a specialized branching technique. The number of
variables on which one has to branch is proportional to the
number of energy phases and the number of break-points
in the cost. We will observe in the simulations that its
computation time can explode when the number of energy
phases grows.

V. SIMULATIONS AND COMPARISON

We now test and compare our method. We use
cplexmilp (with SOS2 constraints) through a mex-file in
Matlab for solving the continuous-time formulation from
[7]. We implemented our algorithm in C++ to also use it in
Matlab through a mex-file. The graph class we implemented
is based on [15] and parts of the implementation are
inspired from the push relabel max flow method of
the Boost Graph Library [16]. Our code is available at
perso.uclouvain.be/raphael.jungers/contents/App Sched.zip.
All computations were performed on a 64bits Windows
system with an Intel Core i7-3770, 3.40GHz and 16.0 Gb
of RAM.

A. Computation time and optimality versus discretization

1) Setup: We use an instance introduced and solved in
[7] to compare our optimal cost with the one obtained there
in continuous-time and compare the solving times, both as a
function of our level of discretization.

We look at the schedule of three appliances; a dishwasher
with 6 energy phases, a washing machine with 8 energy
phases and a dryer with a single energy phase. The spec-
ifications of these appliances are detailed in Table III. The
user preferences are that the dryer cannot start before the
washing machine has finished, both must run between 00:00
and 23:00, and the dishwasher should run between 19:00
and 24:00. The cost of the energy is hourly based and

corresponds to the day-ahead price in Sweden on January
5, 2010. It is pictured on Fig. 31.

We solve this instance with the continuous-time formula-
tion and our formulation for values of Nt ranging from 24 ·30
to 24 ·120 by steps of 5.

TABLE III
SPECIFICATIONS OF THE APPLIANCES.

Dishwasher: e.p. 1 e.p. 2 e.p. 3 e.p. 4 e.p. 5 e.p. 6
Er1 j [Wh] 16 751.2 17.3 1.6 572.6 1.7
T1 j [h] 0.248 0.535 0.1683 0.072 0.305 0.873
D1 j [h] 0 0 0 0 0
D1 j [h] 0.083 0.083 0.083 0.083 0.083
Washing machine: e.p. 1 e.p. 2 e.p. 3 e.p. 4 e.p. 5 e.p. 6 e.p. 7 e.p. 8
Er2 j [Wh] 118 5.5 2054.9 36.6 18 18 17 78
T2 j [h] 0.433 0.11 0.995 0.332 0.167 0.173 0.172 0.33
D2 j [h] 0 0 0 0 0 0 0
D2 j [h] 0.167 0.167 0.167 0.167 0.167 0.167 0.167
Dryer: e.p. 1
Er3 j [Wh] 2426.3
T2 j [h] 2.01

Fig. 3. Day-ahead electricity price in Sweden on January 5th, 2010. Data
from Nordpool Spot (www.nordpoolspot.com).
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Fig. 4. Left: optimal schedule from [7]. Right: optimal schedule from
discretized formulation with ∆T = 1/50h.
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2) Results and observations: The optimal continuous-
time schedule derived in [7] is pictured on the left of Fig. 4,
it has a cost of 2.6755 SEK, the optimal schedule obtained
from our discretized formulation with ∆T = 1/50 is pictured
on the right of Fig. 4, it has a cost of 2.6773SEK, i.e.,
100.0703 percent of the optimal continuous-time cost.

Fig. 5 shows the comparison of the computation time (left)
and the optimal value (right). We observe that the min-cut

1Given the data, we use Swedish Kronor (SEK). On January 5, 2010
1SEK was worth 0.14USD.



Fig. 5. Comparisons as a function of the discretization, circles correspond
to the min-cut formulation and lines to the continuous-time values (con-
stant). Left: comparison of the total computation time (from plain data to
solution), right: optimal values.
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formulation is faster than the continuous-time formulation
until Nt ≈ 24 · 70, which corresponds to a discretization
period of less than one minute. As the complexity analysis
predicted, the evolution is slow with respect to Nt and the
computation-time of our formulation stays low (below 1sec)
even for a finer discretization. Regarding the optimal value,
we see that on this instance of the problem the cost of
discretizing is below 0.1% of the optimal cost for Nt = 24 ·40
(∆T = 1.5min) and after. This shows that very little is lost
from discretizing the starting-times. We computed the bound
(5) for this case and found it to be 22.5021∆T = 22.5021 24

Nt
.

Hence, one can compute that to ensure from this bound that
the discretized solution is no more than 0.1SEK larger than
the optimal continuous-time solution, we should take Nt ≥
226 ·24 = 5424. For Nt = 24 ·50 the bound is 0.45SEK but
the real additional cost from discretizing is only 0.0024SEK.
So, on this instance, our method performs much better than
the worst case scenario provided by Prop. 1.

B. Computation time and optimality versus number of energy
phases

1) Setup: We compare the solving time and optimality
of the solution when the number of ordered energy phase
grows. That is, we start with one appliance with 5 energy
phases and solve for a growing number of energy phases in
one appliance.

We add energy phases by five. More precisely, at each
step we add five more energy phases, with a duration equal
to 1,2,3,4 and 5 minutes, minimum delays of 1 minute
and maximum delays are 60 and 30 minutes alternatively.
The total energy requirements are uniformly distributed on
[0,500] Wh. The cost is the one from Fig. 3. We performed
10 such trials and plotted the average time of computation
and the standard deviation on the left of Fig. 6. For each
number of jobs, the right of Fig. 6 shows the maximum,
among the trials, of the optimal cost obtained as a percentage
of the continuous-time optimal cost. We discretized with
Nt = 40 ·24 (∆T = 1.5 min) for the min-cut formulation.

2) Results and observations: Regarding the computation
time, one can observe that the continuous time formulation
becomes intractable from circa 130 energy phases and more.
That is due to the branch and bound algorithm of the SOS2

Fig. 6. Comparison as a function of the number of ordered jobs,
circles correspond to the min-cut formulation, squares to the continuous-
time formulation. Left: comparison of the computation time (average and
standard deviation on 10 trials), right: max suboptimality of the discrete-
time optimal among trials.
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constraints. Having seen that explosion, let us zoom in to
compare the computation times before it. This is pictured
on Fig. 7. It shows that from the beginning the min-cut
formulation is faster.

Fig. 7. Zoom in Fig. 6, left.
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Regarding the optimal value with discrete starting-times as
compared to the optimal continuous-time cost, we observe
that the error grows with the number of energy phases. This
is not surprising as a long sequence of ordered energy phases
might propagate the cost of the discretization as shown in
Prop. 1. However, the error stays below 3% of the cost even
with 150 energy phases.

C. Computation time and optimality versus number of ap-
pliances

1) Setup: We compare the computation time and opti-
mality when the number of appliances to schedule grows
but, without precedence relations between them. This is
different from Section V-B as for a same total number of
energy phases the maximum size of an ordered sequence
stays constant and small here. Moreover, one can see that
a problem with k unrelated appliances is equivalent to k
problems with one appliance each.

We grow the number of appliances by adding one appli-
ance with five energy phases at each step. The energy phases
added have a random duration distributed uniformly on
[0,20] minutes. Their minimum delays are [2,2,2,1] minutes,
maximum delays are 60 and 30 minutes alternatively. Their
total energy requirement is uniformly distributed on [0,500]



Wh. The appliances can be started and ended anytime during
the day. The cost is the one from Fig. 3. We performed 10
such trials and plotted the average time of computation on
the left of Fig. 8. For each number of appliances, the right of
Fig. 8 shows the maximum, among the trials, of the optimal
cost obtained as a percentage of the continuous-time optimal
cost. We discretized with Nt = 40 ·24 (∆T = 1.5 min) for the
min-cut formulation.

Fig. 8. Comparison as a function of the number of appliances, circles
correspond to the min-cut formulation, squares to the continuous-time
formulation. Left: comparison of the time to treat the data and total time
(average on 10 trials), right: max suboptimality of the min-cut optimal
among trials.
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2) Results and observations: We observe that both com-
putation times grow linearly in the number of unrelated
appliances. This is consistent with the fact that solving the
problem for k unrelated appliances is equivalent to solving
k problems with one appliance each. We also see that the
computation time of the min-cut formulation increases less
steeply than that of the continuous time formulation.

Regarding the error, it is surprising that the maximum
error among trials decreases with the number of appliances.
Anyway, we see that the error always stays below 0.015% of
the optimal continuous time cost for these numbers of appli-
ances. This is much lower than in the case of long sequences
of ordered energy phases, which is not surprising given our
analysis of the discretization cost and its propagation.

VI. CONCLUSIONS

In this work, we studied how to facilitate Demand Re-
sponse from the end-user side when dynamic pricing is
implemented. Our context relies on real-time pricing, in
the sense that the price profile is fixed for a certain future
period, such as a day, and communicated to the users. In this
context, we have presented, analyzed and tested a new way
of expressing and solving the optimal scheduling of home-
appliances.

The discretization of the problem that we formulate can
be efficiently solved by finding a minimum-cut in a suitably
defined digraph. The simulations show that the optimal cost
of our discrete-time optimum is near-optimal and that they
can be found with a reduced time of computation.

We believe that this kind of approach could be adapted
to other scheduling problems in the smart-grid, and can for

example open the way towards joint scheduling of appliances
at a large scale.
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