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Abstract— The question addressed in this paper is to de-
termine what is the input/output information that must be
acquired in order to identify a network of dynamical systems,
or part of such network. More specifically, which nodes must be
excited and which nodes must be measured in order to render
a network, or a given piece of a network, identifiable. We show
that identification of a given set of edges requires that all nodes
connected to these edges must be either excited or measured
or both. We study in detail the identifiability of four types of
edge sets: edges arriving at a given node, edges leaving a given
node, edges forming a tree and edges forming a loop. For each
case, we characterise excitation and measurement patterns that
provide identifiability.

I. INTRODUCTION

This paper deals with the identifiability of dynamical
networks in which the node signals are connected by causal
linear time-invariant transfer functions and are excited by
known external excitation signals. Such networks can be
looked upon as connected directed graphs in which the edges
between the nodes (or vertices) are scalar transfer functions,
and in which known external excitation signals enter into the
nodes.

Over the last few years, a significant literature has been
developed about the identifiability of such networks [1]–
[7]. A number of conditions for the identifiability of the
whole network have been derived under prior assumptions
on the structure of the network, involving either its external
excitation structure, or possibly also its internal structure [5],
[6]. In addition to the identification of the whole network,
a number of papers have also adressed the identifiability of
a single module, or of a subset of modules, typically the
incoming edges or the outgoing edges of a given node [6],
[8], [9].

Up until recently, the common assumption in this work on
identifiability of networks was that all nodes were measured.
In [7], [10], this assumption was relaxed and a number of
new results were developed for the situation where only a
subset of nodes are measured, but all nodes are excited.
These results were expanded in [11]. In both these papers
it is assumed that the topology of the network is known: one
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knows which nodes are connected by directed edges, which
corresponds to knowing which of the transfer functions of the
network matrix describing the connections between the nodes
are nonzero. A number of necessary and sufficient conditions
for identifiability of a particular edge, or of a set of edges,
that leave a specific node have been obtained in [11]. An
important contribution of that paper is that these results are
described in terms of the existence of mutually vertex disjoint
paths between the measured nodes and the out-neighbors of
the node of interest. Thus, identifiability can be checked by
inspection of the local topology of the network around the
node of interest. The necessary and sufficient conditions just
described have led to a number of other results in [11] in the
form of either necessary conditions or sufficient conditions.

All the results of [11] have been obtained under the
assumption that only a subset of nodes are measured but that
all nodes are excited by sufficiently rich known external ex-
citation signals, so that the closed-loop transfer matrix from
all nodes to the measured nodes can be exactly identified.

In this paper, we relax that assumption, and present
identifiability results for situations where not all nodes are
measured and not all nodes are excited. In the spirit of [11],
these results are all in the form of conditions on the local
topology, with the overall goal of trying to minimize the ex-
citation/measurement requirements. They can be subdivided
into three parts.

After stating the problem formally in Section II, we first
present in Section III easy to check but important necessary
conditions for the identifiability of the network : (i) all source
nodes must be excited, and all sink nodes must be measured
(See Section II for the definition of sources and sinks); (ii)
each node must be either excited or measured.

Our next set of results, presented in Section IV, are an
extension of results in [11]: they consider the identifiability
of some or all of the outgoing edges of a node on the basis
of a subset of measured nodes, but without the assumption
that all nodes are excited. A sufficient condition is derived
first, which is based on the local topology and on knowledge
of a subset of the closed-loop transfer functions that relate all
nodes to each other. The dual of these results are also derived:
they consider the identifiability of the incoming edges of a
given node on the basis of a subset of excited nodes, when
not all nodes are measured. In passing, our results allow us
to show that a single embedded module (i.e. edge) may be
identifiable by simply exciting its input and output node,
and measuring its output node, provided some topological
properties are satisfied.

Our third set of results, presented in Section V, concern the
identifiability of parts of the network that have the structure



of a tree or of an isolated loop1. We show that a tree is
identifiable if and only if all its sources are excited, all its
sinks are measured, and every other node is either excited or
measured. For isolated loops we present a simple sufficient
condition stating that all transfer functions in such loop
are identifiable if one node in the loop is both excited and
measured, and all others are either excited or measured. In
addition, we show that an isolated loop with an even number
of nodes, larger than 3, is identifiable if all nodes in the
loop are alternately excited or measured. We conclude in
Section VI.

II. STATEMENT OF THE PROBLEM

We consider the identification of elements of a network
matrix G(z), where the network is made up of n nodes,
with node signals denoted {w1(t), . . . , wn(t)}, and where
these node signals are related to each other and to external
excitation signals rj(t), j = 1, . . . , n by the following
network equations, which we call the network model:

w(t) = G(z)w(t) + Br(t) + v1(t) (1)
y(t) = Cw(t) + v2(t) (2)

The matrix B is a binary selection matrix having full column
rank, and each of its columns contains one 1 and n−1 zeros.
The matrix C is a binary selection matrix having full row
rank, and each of its rows contains one 1 and n − 1 zeros.
These matrices define which of the n nodes are excited
and which are measured, respectively. y(t) is the vector of
measured nodes, while v1(t) and v2(t) are possible noise
vectors. The matrix G(z) is called the network matrix. To
the network matrix one can associate a directed graph, in
which a directed edge (j, i) is present if Gij(z) 6= 0. Thus,
the graph defines the topology of the network. The network
matrix is assumed to have the following properties:
• its diagonal elements are zero.
• its off-diagonal elements Gij(z) are proper rational

transfer functions.
• it is well-posed: (I−G(z))−1 is proper and stable [12].
• the graph defined by the network matrix is weakly

connected2.
The selection matrices B and C define two subsets B and
C of nodes corresponding, respectively, to the nodes that are
excited by an external signal and those that are measured.

Define
T (z)

∆
= (I −G(z))−1. (3)

The input-output model corresponding to the network
model (1) is then given by

y(t) = M(z)r(t) + v(t) with M(z)
∆
= CT (z)B (4)

where v(t) is the effect of noises v1(t) and v2(t) on the
output y(t). To keep things simple, we assume throughout

1A loop whose nodes do not belong to another loop.
2A directed graph is weakly connected if, for any partition of its vertices

in two sets, there is at least one edge starting in one of the sets and ending
in the other one.

this paper that the vector r(t) is sufficiently rich so that,
for all choices of C and B, M(z) can be consistently
estimated by standard open loop MIMO (Mulitple Input
Multiple Output) identification techniques from {y(t), r(t)}
data. Our identifiability results will be based on assuming
that, for a given selection of excited and measured nodes,
the input-output matrix M(z) has been first consistently
estimated from a (possibly infinite) set of sufficiently rich
Input-Output (I/O) data. This is always possible, even in the
presence of noise.

We now define the generic identifiability of the network
matrix G(z) from {y(t), r(t)} data (or equivalently from
M(z) given the above assumption), and from the knowledge
of the graph structure.

Definition 1. The network matrix G(z) is generically identi-
fiable from excitation signals applied to B and measurements
made at C if, for any rational transfer matrix parametrization
G(P, z) consistent with the directed graph associated to
G(z), there holds

C(I−G(P, z))−1B = C(I−G̃(z))−1B ⇒ G(P, z) = G̃(z)

for all parameters P except possibly those lying on a zero
measure set in RN , where G̃(z) is any network matrix
consistent with the graph.

The focus of this paper is on the selection of the sets B
and C that will ensure network identifiability. The notion
of generic identifiability, first introduced in [11], is used
because certain networks will always be identifiable except if
the transfer functions satisfy some very specific equalities;
see [11] for a complete discussion and motivation for this
notion.

Notations and definitions
Consider the network matrix G(z) of size n× n defined in
(1) and its associated graph. Define the following:
• W is the set of all n nodes
• B is the set of m nodes with excitation
• C is the set of p measured nodes
• F is the set of sources, i.e. nodes with no incoming

edges
• S is the set of sinks, i.e. nodes with no outgoing edges
• N+

i , N−i are, respectively, the set of out- and in-
neighbors of node i, i.e. the set of nodes j for which
Gji 6= 0 and the set of nodes j for which Gij 6= 0.

• | A | is the cardinality of the set A.
• For any matrix T , TD,A denotes the submatrix of T

formed by the rows defined by a set D and the columns
defined by a set A.

It follows from these definitions that m ≤ n and p ≤ n. We
shall also use the notion of vertex disjoint paths: a group
of paths in a graph are mutually vertex disjoint if no two
paths of this group contain the same vertex (such a group
is sometimes referred to as a linking). Consider two subsets
of nodes A and B. We then denote by bA→B the maximum
number of mutually vertex disjoint paths starting in A and
ending in B.



III. NECESSARY CONDITIONS FOR IDENTIFIABILITY

We first recall a fact proved in [10].

Theorem III.1. The network matrix G(z) is generically
identifiable from excitation signals applied to B and mea-
surements made at C only if F ⊆ B and S ⊆ C, i.e. all
sources are excited and all sinks are measured.

We now provide a necessary condition for the identfiability
of the in-neighbors and the out-neighbors of a given node.

Theorem III.2. Suppose a node is neither excited nor mea-
sured. Then none of the corresponding ingoing or outgoing
edges can be identified.

Proof: Without loss of generality let the last node, n,
be neither excited nor measured. Now partition the vector w
of node signals into a subvector w1 made up of its first n−1
elements and the element w2 which is the last element of w.
Partition G(z) correspondingly; it has the form

G(z) =

(
G11 G12

G21 0

)
. (5)

Correspondingly, partition T (z) as

T (z)
∆
= (I −G(z))−1 =

(
T11 T12

T21 T22

)
. (6)

Now observe that from the I/O data we identify y(t) =
M(z)r(t) exactly, where

M(z) = C1T11(z)B1, (7)

where C1 and B1 are the selection matrices that define the
measured nodes and the excited nodes, respectively, among
the first n−1 nodes. It follows from (5)-(6) that T11(z) takes
the form T11 = [I−G11−G12G21]−1. Now consider a Ḡ(z)
defined as

Ḡ(z)
∆
=

(
G11 Ḡ12

Ḡ21 0

)
∆
=

(
G11 G12Q

Q−1G21 0

)
(8)

where Q is any real, complex, or rational scalar transfer
function Q(z). It then follows that

T̄11 = [I−Ḡ11−Ḡ12Ḡ21]−1 = [I−G11−G12G21]−1 = T11

Hence G12 and G21 are not identifiable because they produce
the same M(z) as Ḡ12 and Ḡ21 in (7).

An important consequence of Theorem III.2 is that the
network matrix G(z) can be identified only if each node is
either excited or measured. This extends directly to generic
identifiability, as stated in the next corollary. A similar result
was proved for the case of graphs represented by state-space
representations with positive off-diagonal elements in [13].

Corollary III.1. The network matrix G(z) is generically
identifiable from excitation signals applied to B and mea-
surements made at C only if B 6= ∅, C 6= ∅ and B ∪ C =W .

Proof: Without any measurement or excitation, one
cannot estimate any element of T (z); the last condition is
an immediate consequence of Theorem III.2.

IV. IDENTIFIABILITY OF ELEMENTS OF A COLUMN OR
ROW OF G(z)

In this section we present results on the identifiability of
outgoing and, respectively, incoming edges of a given node.
This corresponds to elements that are all in the same column,
respectively all in the same row, of the network matrix G.

A. Identification of outgoing edges

We first consider the relatively simpler situation where it
is desired to identify all outgoing edges of a given node.

Theorem IV.1. Consider a node i and its out-neighbors N+
i .

If there exists a subset C ⊂ W of measured nodes such that
1) bN+

i →C
= |N+

i |,
2) the elements of TC,N+

i
and TC,i are known from the

topology or can be identified from the data,
then the transfer functions from node i to its out-neighbors
N+

i can be generically identified from I/O measurements
{y, r}.

Proof: Recall that bN+
i →C

denotes the maximum num-
ber of mutually vertex disjoint paths from the set N+

i to the
set C. Consider the system of equations for transfer matrices
Ḡ consistent with the graph defined by G(z)

CT (z)(I − Ḡ(z)) = C, (9)

of which Ḡ(z) = G(z) is an obvious solution since T (z) =
(I − G(z))−1. We desire to recover GN+

i ,i, i.e. the i-th
column of G, from CT . In the i-th column of I − Ḡ, the
only nonzero elements are the 1 at position (i, i), and the
Gji corresponding to the out-neighbors of i. The columns
of T corresponding to the zero elements of the i-th column
of Ḡ do not contribute to the computation of Ḡji using (9).
The solution set of (9) for the i-th column of Ḡ can then be
rewritten as

TC,N+
i
ḠN+

i ,i = TC,i − Ci (10)

where Ci is the i-th column of the measurement selector
matrix C. Note that Ci is zero if node i is not measured. This
system always admits at least one solution ḠN+

i ,i = GN+
i ,i

since Ḡ = G is a solution to the initial system (9). The
solution GN+

i ,i of this set of equations is unique and can be
computed from (10) if and only if TC,N+

i
has full column

rank and if all elements of TC,N+
i

and TC,i are known. It
has been shown in Proposition V.1 of [11] that TC,N+

i
has

full column rank if and only if condition 1) of the theorem
holds.

We note that condition 2) of Theorem IV.1 is sufficient
but not necessary, as will be seen in Example V.1. Also, the
theorem extends a result in [11] showing that condition 1) is
necessary and sufficient when all nodes in the network are
excited, which corresponds to B = I in (4). Condition 1)
remains thus necessary in general, when B 6= I .

Comment about the meaning of condition 2
Condition 2) of the theorem means that the submatrices
TC,N+

i
and TC,i can be computed. This can be by identifi-

cation of the required elements, in which case the condition



is a requirement on the presence of the excitation signals
necessary for such identification. A simple way - but not
the only way - to identify an element Tji is to excite node
i and measure node j. However, some columns of TC,N+

i

may be known a priori on the basis of local information
about the graph structure linking the out-neighbors to the
measured nodes. In such case, these columns need not be
identified and the corresponding nodes need not be excited.
The following Lemma can be proved by direct inspection.

Lemma IV.1. Let j ∈ N+
i be an out-neighbor of node i.

If there is no loop around node j and if there is no path
from this out-neighbor to any measured node in C (except
possibly j if it is measured), then Tjj = 1 and Tkj = 0 for
all k ∈ C \ j.

It follows from this simple result that, for all out-neighbors
j ∈ N+

i that satisfy the conditions of Lemma IV.1, the
corresponding columns of TC,N+

i
are known by the local

graph structure and that they therefore need not be identified.
This means that the corresponding nodes need not be excited.

A sufficient condition for the identification of all outgoing
edges of a given node i is given by the following Corollary.

Corollary IV.1. Consider a node i with out-neighbors N+
i .

If there exists a subset C ⊂ W of measured nodes such that

1) bN+
i →C

= |N+
i |

2) i ∈ B
3) N+

i ⊂ B

then the transfer functions from node i to its out-neighbors
N+

i can be generically identified from I/O measurements
{y, r}.

Proof: We apply Theorem IV.1. Condition (1) states
the existence of at least one set of |N+

i | vertex disjoint paths
from N+

i to C. Moreover, conditions 2) and 3) imply that the
transfer function matrices TC,N+

i
and TC,i can be consistently

estimated from the data. Hence conditions (1) and (2) of
Theorem IV.1 are satisfied, and the result follows.

A simple solution that satisfies the conditions of this
theorem consists in measuring all out-neighbors N+

i , and
exciting node i and all its out-neighbors N+

i . This solution
was presented as Theorem 5.1 in [9].

The excitation conditions of Corollary IV.1 are a simple
solution for the identification of the outgoing edges of a given
node. However, these conditions are not necessary. First, as
we have shown in Lemma IV.1, some columns of TC,N+

i

may be known on the basis of local information about the
topology, in which case the corresponding nodes need not
be excited. But in addition, computation of the elements of
TC,N+

i
and TC,i may be achieved from knowledge of transfer

functions Tkl other than those appearing in TC,N+
i

and TC,i,
and these other transfer functions are then identified by
exciting node signals other than node i and its out-neighbors.
We illustrate this with an example.

Example IV.1. Consider the network defined by the follow-

ing network matrix G:

G =



0 0 0 G14 0 0 0
G21 0 0 0 0 0 G27

G31 0 0 0 0 0 0
0 G42 0 0 0 0 0
0 G52 G53 0 0 0 0
0 0 0 G64 0 0 0
0 0 0 0 0 0 0


We want to identify the outgoing edges of node 1, i.e. the first
column of G. We illustrate Theorem IV.1 and Corollary IV.1
by describing combinations of measured nodes, i.e. C, and
excited nodes, i.e. B, that yield identifiability of G21 and
G31.
(1) Consider first C = {2, 3}. By Theorem III.2 we know
that B must contain node 1. The system of equations (10)
becomes (

T22 0
T32 1

)(
G21

G31

)
=

(
T21

T31

)
In accordance with Lemma IV.1, the second column of
TC,N+

i
is known because there is no loop around node 3 and

no path from 3 to 2. Thus G21 and G31 can be identified
with a choice B = {1, 2}. Node 3 need not be excited.
(2) Consider now C = {3, 6}, i.e. out-neighbor 2 is not
measured. By Theorem III.2 we know that it must be excited,
thus B must contain at least nodes 1 and 2. Equations (10)
yield (

T32 1
T62 0

)(
G21

G31

)
=

(
T31

T61

)
The second column is again known from structural informa-
tion, because node 3 has no loop around it and has no path to
the other measured node. An excitation scenario B = {1, 2}
again yields identifiability.
(3) Next consider C = {2, 5}. By Theorem III.2 we know
that B must contain nodes 1 and 3. This scenario yields(

T22 0
T52 T53

)(
G21

G31

)
=

(
T21

T51

)
The two columns of TC,N+

i
now need to be identified, in

addition to TC,i. An excitation scenario B = {1, 2, 3} will
yield identifiability.
(4) Our final example shows that knowledge of the columns
of TC,N+

i
does not necessarily require that the input nodes of

the corresponding Tjk be excited. Let C = {2, 3} as in case
(1) but assume that, instead of exciting nodes 1 and 2, we
excite nodes 1 and 7, i.e. B = {1, 7}. This means that the
transfer functions T21, T27, T31, T37 can all be consistently
estimated. Some straightforward calculations then show that
the required T22 and T32 can be computed from those as
follows:

T22 =

(
1− T21T37

T31T27

)−1

, T32 =
T37T22

T27

This case shows that all elements of TC,N+
i

can be computed
even though condition 3) of Corollary IV.1 is not satisfied.



We turn next to the case where one wants to identify only
a subset of the outgoing edges of a node, in the situation
where not all nodes are excited.

Theorem IV.2. Consider a node i with out-neighbors N+
i .

Let N∗i ⊆ N+
i be a subset of N+

i and denote N̄∗i
∆
= N+

i \N∗i .
If there exists a subset C ⊂ W of measured nodes such that

1) bN∗
i→C = |N∗i |,

2) bN+
i →C

= |N∗i |+ bN̄∗
i→C ,

3) the elements of TC,N∗
i

, TC,N̄∗
i

and TC,i are known from
the topology or can be identified from the data,

then the transfer functions from node i to N∗i can generically
be identified from I/O measurements.

Proof: Let GN∗
i ,i

denote the elements of the i-th
column of G that correspond to the selected out-neighbors
N∗i and GN̄∗

i ,i
be the remaining nonzero elements. By

splitting GN+
i ,i into these two subvectors, one can now

rewrite (10) as

TC,N∗
i
GN∗

i ,i
+ TC,N̄∗

i
GN̄∗

i ,i
= TC,i − Ci. (11)

This set of equations has a unique solution GN∗
i ,i

if and only
if TC,N∗

i
has full column rank, the image sets of TC,N∗

i
and

TC,N̄∗
i

do not intersect, and all elements of TC,N∗
i

, TC,N̄∗
i

and
TC,i are known. The result then follows from the proof of
Theorem V.1 of [11] where it has been shown that the first of
these conditions is equivalent to condition 1) of the theorem
while the second condition is equivalent to condition 2).

We note again that conditions 1) and 2) were shown in
[11] to be necessary and sufficient for identifiability when
all nodes are excited (B = I) and remain thus necessary in
general. The next corollary is an interesting special case of
Theorem IV.2.

Corollary IV.2. Consider that it is desired to identify a
single module Gji in a network. Let N+

i be the out-neighbors
of node i and denote by N̄+

i = {N+
i \ j}, i.e. the set made

up of the other out-neighbors of node i. Suppose that these
nodes have no path to node j. Then Gji can be identified by
exciting nodes i and j and measuring node j, as the solution
of

Gji =
Tji

Tjj
. (12)

Proof: Consider equation (11) with the choice C = j
and N∗i = j. Under the assumptions of the theorem, the row
vector TC,N̄∗

i
is zero, while Ci = 0 since C selects the j-th

row of the identity matrix. Hence (11) reduces to (12).

Example IV.2. We illustrate this corollary using the same
example as before. Suppose we only want to identify G21.
Since node 3 has no loop around it and no path to node
2, it follows that G21 is obtained simply as the solution of
T22G21 = T21. Hence the identification of the single module
G21 can be achieved by simply exciting nodes 1 and 2 and
measuring node 2.

B. Identification of incoming edges
For a given choice of measured nodes determined by C, the

identification of the outgoing edges of a node i have been
based on solving equation (9) for its i-th column. In this
subsection we examine the dual situation where one wants
to identify the |N−i | incoming edges of a node i. For a given
set B of excited nodes, the identification of these incoming
edges are based on solving the equation

(I −G(z))T (z)B = B (13)

for its i-th row, where B is the excitation node selection
matrix corresponding to the set B. In the i-th row of G, the
only nonzero elements are the 1 in position (i, i) and the
Gij corresponding to the in-neighbors of i. Thus (13) can
be rewritten as

Gi,N−
i
TN−

i ,B = Ti,B −Bi (14)

where we denote by Bi the i-th row of B. Note that Bi = 0
unless node i is excited.

The following results are dual to Theorem IV.1, Corol-
lary IV.1 and Theorem IV.2, and are proved in an exactly
parallel way.

Theorem IV.3. Consider a node i and its in-neighbors N−i .
If there exists a subset B ⊂ W of excited nodes such that

1) bB→N−
i

= |N−i |
2) the elements of TN−

i ,B and Ti,B are known from the
topology or can be identified from the data,

then the transfer functions to node i from its in-neighbors
N−i can be generically identified from I/O measurements.

Corollary IV.3. Consider a node i with in-neighbors N−i .
If there exists a subset B ⊂ W of excited nodes such that

1) bB→N−
i

= |N−i |
2) i ∈ C
3) N−i ⊆ C

then the transfer functions to node i from its in-neighbors
N−i can all be generically identified from I/O measurements
{y, r}.

Theorem IV.4. Consider a node i with in-neighbors N−i .
Let N∗i ⊆ N−i be a subset of N−i and denote N̄∗i

∆
=

{N−i \N∗i }. The transfer functions to node i from N∗i can be
generically identified from I/O measurements if the following
three conditions are satisfied

1) bB→N∗
i

= |N∗i |
2) bB→N−

i
= |N∗i |+ bB→N̄∗

i

3) the elements of TN∗
i ,B, TN̄∗

i ,B and Ti,B are known from
the topology or can be identified from the data.

We note that a simple solution that satisfies the conditions
of Corollary IV.3 consists in exciting all in-neighbors N−i ,
and measuring node i and all its in-neighbors N−i . This
solution was presented as Theorem 5.2 in [9].

V. PARTICULAR STRUCTURES WITHIN A NETWORK

Unlike the situation that prevails in the context of generic
identifiability, we assume in this section that Gij(z) cannot
be zero if the edge (i, j) is present in the graph.



A. Trees
A tree is a weakly connected graph which has no loops

even if one were to change the edges directions. Direct
consequences of this definition are the following:

1) for any pair of nodes i and j there is at most one path
from i to j;

2) if there is a path from node i to node j, then there is
no path from j to i;

3) if i is an in-neighbor of j then Tji = Gji;
4) if there is a path from node i to node j passing through

node k then Tji = TjkTki.
A tree is composed of branches: a branch is a walk

P = {k1, . . . , km} between a source k1 and a sink km. All
nodes of a tree belong to at least one branch. We now state
a necessary and sufficient condition for the identifiability of
a tree.

Theorem V.1. A tree is identifiable if and only if the
following conditions are satisfied

1) F ⊆ B: all sources are excited
2) S ⊆ C: all sinks are measured
3) B ∪ C =W: each node is either measured or excited.

Proof: Necessity: We know from Corollary III.1 that
every node must either be measured or excited, which is
condition 3. Moreover, if a source is not excited, then the
identified closed loop transfer functions present in CT (z)B
are totally independent of the transfer function corresponding
to the edge leaving that source, and therefore do not allow
recovering it. The same holds true if a sink is not measured.
Sufficiency: Because the sources are excited and the sinks
are measured, for each branch P = {k1, . . . , km} between
a source k1 and a sink km, the transfer functions Tkmk1

between them are known and given by

Tkmk1
= Gkmkm−1

Gkm−1km−2
. . . Gk3k2

Gk2k1

In general, for all j > i we have:

Tkjki
= Gkjkj−1

. . . Gki+1ki
.

Now take node k2. If it is measured, then we know Tk2k1

which is equal to Gk2k1
; if it is excited then we know Tkmk2

and Gk2k1 can be obtained as

Gk2k1
=

Tkmk1

Tkmk2

.

Next, take node k3. If it is measured, then we know Tk3k1 ,
and then Gk3k2

can be obtained as

Gk3k2 =
Tk3k1

Gk2k1

;

if k3 is excited, then we know Tkmk3
, and Gk3k2

can be
obtained as

Gk3k2
=

Tkmk1

Gk2k1
Tkmk3

.

Applying this same reasoning sequentially for all nodes in
the branch, for all branches in the tree, proves the theorem.

The same properties hold for a tree that is a sub-graph of
a larger graph, provided that all paths leaving the tree never
come back to it (and vice-versa).

B. Loops

A “loop graph” is a graph that consists of a single loop
and nothing more. Its network matrix is in the form

G =


0 0 . . . 0 G1n

G21 0 . . . 0 0
0 G32 . . . 0 0
...

...
0 0 . . . Gn(n−1) 0

 (15)

The loop we are interested in can be a graph by itself, as
in (15), or part of a larger graph. When the loop of interest
is part of a larger graph, some of its nodes may belong to
other loops. When this is not the case - that is, no other loop
in the graph contains any of the nodes of the loop of interest
- we will say that it is an isolated loop. All results in this
subsection pertain to the identifiability of isolated loops.

The necessary condition B ∪ C = W means that all
nodes must be involved in the identification process: they
must be either measured or excited. The question is then
whether we can identify the loop under this minimum
excitation/measurement condition - as we can for trees - or if
we need to have nodes that are both measured and excited.
Our main result about identifiability of loops states that a
loop graph is identifiable if at least one node is both excited
and measured.

Theorem V.2. All transfer functions in an isolated loop are
identifiable if B ∪ C =W and B ∩ C 6= ∅.

Proof: Assume, without loss of generality, that the node
indices go from 1 to n and that the arrows go from i to i+1
in the cycle, as in (15). Let P = G1nGn,n−1 . . . G32G21 be
the product of all transfer functions in the loop. Observe that
the closed loop transfer function from one node to itself is

Tii = R := (1− P )−1 (16)

For distinct i, k, we also let

Pik = Gi,i−1Gi−1,i−2 . . . Gk+1,k if k < i

Pik = Gi,i−1Gi−1,i−2 . . . G1nGn,n−1 . . . Gk+1,k if k > i.

Observe that the closed-loop transfer function from k to i is

Tik = PikR (17)

Moreover, by definition, for every distinct k and i, there holds

P = PkiPik. (18)

We let a be a node that is both measured and excited. We
therefore know Taa = R = (1−P )−1 by (16), and hence P .
Consider now an arbitrary node i. If it is measured, we know
Tia = PiaR by (17), and hence Pia, since we know R. The
knowledge of P together with (18) gives us Pai. Similarly, if
i is excited, we know Tai, and we can recover Pai and Pia.
We can then sequentially recover Pai and Pia for all i and
then all the Gi+1,i using the relation Pi+1,a = Gi+1,iPia.

Notice from the proof that only one node (any node) needs
to be both measured and excited, and how this node is of



fundamental importance, for it provides the loop transfer
function P . The next theorem shows that, when the number
of nodes in the loop is even, there may be an alternative
way to determine P , which corresponds to the minimum
excitation/measurement condition mentioned above. Thus,
the sufficient condition B ∩ C 6= ∅ of Theorem V.2 is not
necessary.

Theorem V.3. Let n be even and larger than 3. All transfer
functions in an isolated loop can be identified if its nodes
are alternately measured and excited.

Proof: We assume without loss of generality that nodes
are numbered sequentially, with odd nodes being excited and
even ones measured. Then the closed-loop transfer functions
that are identified are all Tji with j even and i odd. For
each even node k, the closed-loop transfer functions from
its in-neighbor k − 1 and out-neighbor k + 1 are

Tk,k−1 = Gk,k−1R (19)

Tk,k+1 =
P

Gk+1,k
R. (20)

We now form the product∏
k even

Tk,k+1

Tk,k−1
=

∏
k even

P

Gk+1,kGk,k−1

=
P

n
2∏

k even Gk+1,kGk,k−1
=

P
n
2

P
(21)

and thus P can be calculated from the identified transfer
functions. Once P is known, each Gji arriving at an even
node - that is, the Gk,k−1 - can be calculated from (19) and
each Gji leaving an even node - that is, the Gk+1,k - can be
calculated from (20).

The following example shows that Theorem V.3 does not
hold without the interleaving condition.

Example V.1. Consider a 4-node cycle where we excite
nodes 1, 2 and measure nodes 3, 4. Denoting again P =
G21G32G43G14 and R = (1− P )−1, we now identify

T31 = G32G21R T41 = G43G32G21R (22)
T32 = G32R T42 = G43G32R (23)

Observe that G32 and R always appear together, and G14

only appears as part of R; define G32R =: Q. Any modifi-
cation of G32 to G′32 and G14 to G′14 that leaves G′32R

′ = Q
(for R′ defined analogously to R) is undetectable. Observe
now that G′32R

′ = Q is equivalent to

G′32 =
Q

1−QG21G43G′14

Hence for any arbitrary G′14, we can find a G′32 that leaves
G′32R

′ = Q and leads thus to the same identified closed loop
transfer function as our initial transfer functions G14, G32.
The network is therefore not identifiable, and we can in
particular not recover G14 and G32.

This example also shows that condition 2) in Theorem
IV.1 is not necessary. Dividing the two transfer functions in

(23) shows that G43 = T42/T32 can be recovered. However,
condition (2) of Theorem IV.1 does not hold for C = {3, 4}.
Indeed we cannot recover neither T33 nor T43 from the
chosen excitation/measurement pattern.

VI. CONCLUSIONS

In [11] we had analyzed in detail the problem of which
nodes must be measured to identify parts of a network where
all the nodes are excited with persistently excited signals. In
this paper we have extended in some directions the results
of [11] to the case where not all nodes are excited. We
have given conditions on the excitation and measurement
pattern that provide identifiability for different sets of edges:
a row of the network matrix, a column of the network
matrix, a tree and a loop. For trees we have provided a
necessary and sufficient condition, whereas for loops we
have given a tight sufficient condition - which requires only
one additional excitation or measurement with respect to the
minimal excitation/measurement requirement imposed by the
necessary condition. For the case of a column - and its dual
of a row - we have also given tight sufficient conditions,
but a general characterisation of the necessary and sufficient
conditions in these cases has so far shown to be elusive.
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