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Abstract— This paper investigates the asymptotic behavior of
some common opinion dynamic models. We show that as long
as interactions in a continuum of agents are symmetric, the
distribution of the agents’ opinions converges, but that there
exist examples where the opinions themselves do not converge.
This phenomenon is in sharp contrast with symmetric models
on finite numbers of agents where convergence of opinions is
always guaranteed.

However, as long as every agent in the continuum interacts
with those whose opinions are close to its own (a common
assumption in opinion modeling), or that the interactions are
uniquely determined by their opinions, the opinions of almost
all agents will in fact converge.

I. INTRODUCTION
There has been much recent interest within the control

community in the study of multi-agent systems in which
the agents interact according to simple, local rules, resulting
in coordinated global behavior. Unfortunately, the dynamics
describing the interactions of such systems are often time-
varying and nonlinear and their analysis appears to be at
present impossible without making considerably simplifying
assumptions. For instance, it is a common assumption in
much of the literature on multi-agent control that the graphs
governing the inter-agent interactions satisfy some sort of
long-term connectivity condition. This assumption is neces-
sary due to the apparent intractability of analyzing the long-
term connectivity properties associated with the graph of a
multi-agent system governed by time-varying and nonlinear
local interactions.

Encouraging results allowing avoiding long-term connec-
tivity conditions have however been obtained for opinion dy-
namics models, one of the simplest and most natural classes
of multi-agent systems with time-varying interactions. These
models have been recently proposed (see [7], [9], and the sur-
vey [11]) to model opinion changes resulting from repeated
personal interactions among individuals and have attracted
considerable attention within the control community (see [4],
[5], [6], [10]). Much of this attention is due to the similarities
between opinion dynamics models and various large-scale
multi-agent systems arising in control applications. Opinion
dynamics are nonlinear because the inter-agent interactions
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change with time and depend on on the states of the agents,
just as many multi-agent systems of interest. Consequently,
it is believed that the techniques developed to rigorously
analyze the asymptotic behavior of these models will be
useful in the analysis of more complex multi-agent systems
whose nonlinearity arises from the dynamics of the inter-
agent interactions.

It has recently been shown for opinion dynamics systems
with finitely many agents that the symmetry of the inter-agent
interactions (or actually a weak symmetry condition called
“cut-balance”) was sufficient to guarantee the convergence
of all agents, independently of any long-term connectiv-
ity condition [8], something which makes the analysis of
the asymptotic behavior of numerous systems considerably
easier. Related observations for discrete-time systems were
made in [3], [10], [12], (see also references in [8]).

Such general results are lacking for systems involving
infinitely many agents, or a continuous mass of agents,
whose behavior is usually thought to approximate that of
systems with a finite but very large number of agents. Partial
results have however been obtained. For example [6] proves
the convergence of the distributions of the agents (i.e. the
“density” of agents converges but not necessarily of the
agents themselves) under the assumptions that the interac-
tions between any two agents are entirely determined by
their difference of opinions via a smooth symmetric function
with a positive value at the origin. Similarly, convergence is
established in [4] for a very specific law of interactions, and
under some smoothness and monotonicity assumptions on
the initial condition.

Our goal in this paper is to analyze the extent to which the
results obtained for finitely many agents [8] or for specific
models [4], [6] remain valid for general opinion dynamics
model allowing for continuous mass of agents. We will
see that the results obtained for finitely many agents can
only be partly generalized to systems involving continuous
masses, exposing important differences between the finite
and continuous cases.

A. Problem statement

We now give a precise statement of the dynamics that we
study. We consider the functions xt(α) : [0, 1] → R which
are solutions of the equation

ẋt(α) =

∫ 1

0

w (t, α, β, xt(α), xt(β)) (xt(β)− xt(α)) dβ,

(1)
with initial condition x0(α) = x0. Here w(·, ·, ·, ·, ·) is a non-
negative function. The equation has a natural interpretation:



each agent α continually adjusts its “opinion” xt(α) to move
closer to the opinions of other agents, giving to each agent
β a weight w (t, α, β, xt(α), xt(β)), i.e. a weight that may
depend on the identities of the two agents, their opinions,
and on time.

In particular, the function w(·, ·, ·, ·, ·) is often taken to
be 1|xt(α)−xt(β)|<r for some “opinion radius r,” which
corresponds to every agent adjusting its opinion based only
on the opinions of other like-minded agents, see for example
[5]. We will not be making such assumption here and will
instead study the more general case.

Several technical assumptions are necessary for Eq. (1) to
make sense. We will not be studying questions of existence
and uniqueness; rather we will assume that each xt(α) is
a (Borel) measurable function such that Eq. (1) is satisfied.
The function w(·, ·, ·, ·, ·) will be assumed to be measurable
as well. Moreover, an additional constraint on w(·, ·, ·, ·, ·) is
needed to ensure that the integral in Eq. (1) is finite; we will
assume that w(·, ·, ·, ·, ·) is bounded, i.e., there exists some
constant W so that w(t, α, β, xt(α), xt(β)) ≤ W for all
values of t, α, β, xt(α), xt(β). Finally, we will assume that
the initial distribution of opinions is bounded, i.e., x0(α) ∈
[0, 1] for all α ∈ [0, 1], where the choice of the specific values
of the bounds on x0(α) is made without loss of generality. We
will be making these assumptions throughout the remainder
of this paper without mention.

B. Outline and main results

In general, Eq. (1) is not guaranteed to converge in
any meaningful sense. Indeed, it is not hard to see that
consensus of finitely many agents is a special case of Eq. (1)
and consequently all the counterexamples to convergence of
finitely many agents from [1] immediately carry over to this
setting. Nevertheless, we will show in Section II that under
the assumption that w(·, ·, ·, ·, ·) is symmetric, i.e.,

w(t, α, β, xt(α), xt(β)) = w(t, β, α, xt(β), xt(α))

the distribution of the agents is guaranteed to converge. This
means that even though the agents’ opinions xt(α) do not
necessarily converge, the mass of agents having their opinion
in any given set (satifsying some conditions) does converge.

This result is significantly stronger than the results previ-
ously available in the literature. As already mentioned, [6]
proves for example a version of Theorem 1 in a similar
model under the additional assumptions that w(·, ·, ·, ·, ·)
depends only on |xt(β) − xt(α)| (so it is a function of
just one argument), is continuous, supported on some ball
centered at the origin, and in addition satisfies w(z) =
w(−z). Our contribution here is to note that most of the
technical conditions hitherto used to establish convergence
in distribution may simply be omitted without affecting the
result.

We next turn to the question of whether it is possible to
improve upon the conclusion of convergence in distribution.
In fact, convergence in distribution does not seem to be the
most natural notion of convergence for this class of systems;
the more plausible notion would be convergence of almost

all agents, i.e., that xt(α) converges for almost all α. We
show in Section III, however, that convergence in this sense
may not occur, i.e. that there exist symmetric nonnegative
w(·, ·, ·, ·, ·) and functions xt satisfying Eq. (1) for such that
the set of α where xt(α) does not converge has positive
measure, even though xt converges in distribution.

Nevertheless, it may be possible that a stronger form of
convergence holds in many natural settings. The extent to
which this is true remains an open question. But, we can
prove that as long as agents with similar opinions exert a
non-negligible pull on each other, almost all of the xt(α)
will indeed converge. The same holds true as long as the
interactions depend only on time and on the opinions of
the agents via a sufficiently smooth function. These results
are presented in Section IV. Their proofs, longer and more
complex than those of the other results, are omitted for
space reasons and will be presented in a separate publication
extending this work.

We finish by offering some conclusions and describing
some open questions in Section V.

II. CONVERGENCE IN DISTRIBUTION

Before establishing the convergence in distribution of (1)
under the assumption of symmetry of the interactions, we
first review the relevant notion of convergence of distribu-
tions. Every function xt(α) defines a measure µt on the real
line in the natural way

µt(A) = L({α | xt(α) ∈ A}) (2)

where L(·) refers to the Lebesgue measure on the real line.
µt(A) represents thus the “mass” of agents lying in the
set A at time t. These measures µt are a natural way to
summarize the concentrations of the values xt(α). The most
natural definition of convergence of distributions would be
that limt µt(A) = µ∞(A) for any Borel measurable set A;
this is referred to as strong convergence of measures and it
is usually too restrictive to be used in practice (under this
definition, for example, defining µy(A) = 1y∈A, it is not true
that µ1/t converges to µ0 as t→∞, (where the functions 1/t
and 0 are defined on <+

0 ). Consequently, the most commonly
used notion is convergence in distribution (sometime referred
to in this context as weak-∗ convergence): µt approaches µ∞
in distribution if and only if limt µt(A) = µ∞(A) for all sets
A whose boundary has measure 0 under µ∞.

We can now state our first main result.

Theorem 1 Suppose w(·, ·, ·, ·, ·) is nonnegative and sym-
metric and let xt(α) be a solution of Eq. (1) and µt be
defined as in Eq. (2). Then there exists a measure µ∞ on
[0, 1] such that µt approaches µ∞ in distribution.

Our proof is quite short and rests on a novel combination
of two techniques: a simple exchange of integrals to establish
that every convex function is a Lyapunov function (see proof
of Lemma 1) coupled with an appeal to some results of
Haussdorff about the moment problem (see proof of Theorem
1 below).



Definition 1 Given a Borel measurable function f : R→ R
define

Vf (t) =

∫ 1

0

f(xt(α)) dα

Lemma 1 If f is convex, then for all t ≥ 0, V̇f (t) ≤ 0.

Proof: In what follows, we use the abbreviation w̃z,α to
denote w(t, z, α, xt(z), xt(α)). We argue as follows. V̇f (t) =∫ 1

0

f ′(xt(α))ẋt(α) dα

=

∫ 1

0

f ′(xt(α))

∫ 1

0

w̃z,α(xt(z)− xt(α)) dz dα

=

∫
[0,1]2

f ′(xt(α))w̃z,α(xt(z)− xt(α))

=
1

2

∫
[0,1]2

w̃z,αf
′(xt(a))(xt(z)− xt(α))

+
1

2

∫
[0,1]2

w̃z,αf
′(xt(z))(xt(α)− xt(z))

=
1

2

∫
[0,1]2

w̃z,α(f ′(xt(α))− f ′(xt(z)))(xt(z)− xt(α))

Since w(·, ·, ·, ·, ·) is nonnegative and f ′(·) is an increasing
function due to the convexity of f , the integrand is always
nonpositive.

Remark 1 As a consequence of Lemma 1, the functions
mt(k) =

∫ 1

0
xt(α)k dα are nonincreasing for each k ≥

1. Viewing xt as a random variable with state-space [0, 1],
mt(k) has the interpretation that it is the k’th moment of
this random variable.

Our next lemma formally states the obvious fact that
because the values x0(α) are assumed to lie in [0, 1], we
have that xt(α) remains in [0, 1] for all α.

Lemma 2 For any t ≥ 0 the measure of the set of α with
xt(α) /∈ [0, 1] is zero.

Proof: Since x0 has range [0, 1], we have that m0(k) ≤
1 for all k ≥ 1. By Remark 1, we have that mt(k) ≤ 1 for
every t ≥ 0 and k ≥ 1. But if there was a time t with
a positive measure of agents α such that xt(α) > 1 then
mt(k) would be strictly larger than 1 for all k large enough.
This is a contradiction.

By observing that yt(α) = 1− xt(α) is a solution of Eq.
(1) with initial condition 1− x0 and applying the argument
of the previous paragraph, we also obtain that the measure
of the set of agents α with xt(α) < 0 is zero for any t.

We can now prove the main result of this section.

Proof: [Proof of Theorem 1] Let us view each xt as
a random variable defined on the state-space Ω = [0, 1].
Remark 1 implies that the moments mt(k) are nonincreasing

for k ≥ 1; consequently, limt→∞mt(k) exists for each
k ≥ 1. We next argue that there exists a random variable
x∞ whose k’th moment is limt→∞mt(k). This follows
from a result of Haussdorff, which is that a sequence s =
s0, s1, s2, . . . is a valid moment sequence for a random
variable with values in [0, 1] if and only if a certain infinite
family of linear combinations of the si are nonnegative;
each of these combinations has only finitely many nonzero
coefficients (see [14], Theorem 1.5). Clearly, the moments
of each xt satisfy this condition since each xt defines such
a random variable. Moreover, it follows from Lemma 2 that
these moments are all in the compact set [0, 1]. Therefore, the
limiting moments limt→∞mt(k) also satisfy the condition
of Haussdorff’s result (and are in [0, 1]). We conclude that
there is a random variable x∞, satisfying x∞(α) ∈ [0, 1] for
all α ∈ [0, 1], such that the moments of xt converge to the
moments of x∞.

Next, convergence of moments xt to the moments x∞
implies convergence in distribution of xt to x∞ if x∞
is uniquely defined by its moments ([2], Theorem 30.2).
However, any random variable supported on [0, 1] is uniquely
defined by its moments ([2], Theorem 30.1). Thus xt con-
verges to x∞ in distribution. By the Portmanteau theorem
([13], Section 7.1) , this immediately implies the conclusion
we are trying to prove.

As a final remark about Theorem 1, we note that even
though it is stated for one-dimensional opinions (xt(α) ∈ R),
it can directly be extended to opinions in xt(α) ∈ Rq

satisfying a q−dimensional version of (1) provided that the
interactions weights w remain scalar or q−dimensional di-
agonal matrices. Indeed, one can in that case apply Theorem
1 to each component of xt(α) separately.

III. ABSENCE OF CONVERGENCE

We now show that Theorem 1 cannot be strengthened to
establish convergence for almost all α without additional
assumptions. Indeed, quite surprisingly, there exist systems
satisfying its hypotheses and converging in distribution,
but for which a significant set of agents’ opinions do not
converge.

Theorem 2 There exists a symmetric, nonnegative
w(·, ·, ·, ·, ·) and functions xt satisfying Eq. (1) with
this w(·, ·, ·, ·, ·) such that the set of α where xt(α) does
not converge has positive measure.

Proof: We first describe an evolution x for which a
positive measure set of agents does not converge. We then
define some symmetric weights w(t, α, β), and show that
this evolution x is a solution of (1) for those weights.

For the clarity of exposition, the agents are separated in
three distinct sets, and x0 is bounded but its image is not
included in [0, 1]. The first two sets are CR and CL, for
right and left cluster respectively, both of measure 1. The
third set is I = [0, 2]. Our system can be recasted in the
form (1) with agents indexed on [0, 1] by a simple change of
variable. Besides, when there is no risk of ambiguity, we will
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that allows defining the trajectory of the agents’ opinions.

sometimes refer to the agents as moving instead of as having
their opinions changing, and call “velocity” the variation rate
ẋt(α) of their opinions.

A. Definition of x

The evolution x is represented in Fig. 1. The idea is
that agents in I move between − 1

2 and 1
2 without ever

converging, while those in the cluster set CR (resp. CL) all
share the same opinion, start at some positive (resp. negative)
opinion and move toward 0 without ever reaching 1/2 (resp.
−1/2).

Formally, we select a function v : R+ → R+ such that∫∞
0
v(t)dt diverges, but

∫∞
0
v3/2(t)dt < ∞ (for example

v(t) = (t+1)−3/4). Let then S(t) = − 1
2 + |1− (t mod 2)|,

where t mod 2 denotes the unique value in [0, 2) equal to
t− 2k for some integer k. The function S is represented in
Fig. 2. Observe that S(t) ∈ [− 1

2 ,
1
2 ], and that dSdt (t) is defined

everywhere except for integer t, with dS
dt (t) = 1 when btc is

odd and −1 when btc is even. We now define x, represented
in Fig. 1, in the following way:

• If α ∈ I , then xt(α) = S
(
α+

∫ t
0
v(s)ds

)
.

• If α ∈ CL, then
xt(α) = xt(CL) := −C0 +

∫ t
0

2
√
2

3 v(s)3/2ds.
• If α ∈ CR, then
xt(α) = xt(CR) := C0 −

∫ t
0

2
√
2

3 v(s)3/2ds,

x
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Fig. 3. Representations of the interactions in the example used in the proof
of Theorem 2. The agent α1 moves to the right hand side, and is attracted
by all the agents moving on the left hand side that are in front of it and
distant by less than ε form it, guaranteeing a speed v. The agent α2 is a
distance smaller then ε from the edge of the distribution, so there are not
enough agents to attract it with a speed v (if interactions have the same
intensity). This is compensated by interactions with the cluster CR.

for some C0 > 1/2 +
∫∞
0

2
√
2

3 v(s)3/2ds.
Observe that x does not converge, as the agents in I keep

moving with speed v, the integral of which diverges. The
evolution x converges however in distribution, consistently
with Theorem 1. Indeed, one can verify that the density of
agents on [−1/2, 1/2] remains constant at 2 for all t. At the
same time, the opinions of the agents in CL and CR converge
monotonously to some points out of the interval [−1/2, 1/2]
due to our assumption on C0.

In order to describe precisely the velocities and to later
define the interaction weights, it is convenient to separate I
in two time-varying disjoint sets. For every t, we let IR(t)
be the set of those α ∈ [0, 2] for which bα +

∫ t
0
v(s)c is

odd, and IL(t) the set of those for which this expression is
even. Observe that since the shift

∫ t
0
v(s) is the same for

all agents, which are all initially in [0, 2], IR(t) and IL(t)
both have the same measure 1, and the “density” of agents
of IR and IL on [− 1

2 ,
1
2 ] are both uniform and equal to 1

at all time. Besides, one can verify using the definition of
xt(α) on I that ẋt(α) = v(t) for every α ∈ IR(t) and
ẋt(α) = −v(t) for every α ∈ IL(t) (except for the two
agents for which α +

∫ t
0
v(s) is an integer, which we will

neglect in this proof). Similarly, ẋt(α) = 2
√
2

3 v(t)3/2 for
every α ∈ CL, and ẋt(α) = − 2

√
2

3 v(t)3/2 if α ∈ CR. These
four equalities actually entirely characterize ẋt(α) (up to the
two points where it might not be defined).

B. Interaction weights

We now define some symmetric weights w in order to
later show that xt is a solution to (1) for these weights. The
idea is that agents in I will move thanks to an attraction
exerted by agents moving in the other direction and lying in
an interval of length ε(t) ahead of them, for an appropriately
chosen ε(t). Agents at distance less than ε from the edge of
the interval to which they are moving are in addition attracted
by the clusters CL or CR, as represented in Fig. 3. These
clusters are attracted in return, but move sufficiently slowly
so that they never reach the interval [− 1

2 ,
1
2 ].

The interactions between the agents of I are defined by
w(t, α, β) = 1 if α ∈ IR(t),β ∈ IL(t) and 0 < xt(β) −
xt(α) < ε(t), and w(t, α, β) = 0 else, where we remind the



reader that all weights are symmetric. In addition, agents of
IR(t) with opinions above 1

2 − ε(t) interact with those of
IR(t) with weights

w(t, α, β) =
ε(t)2 −

(
1
2 − xt(α)

)2
2 (xt(CL)− xt(α))

(3)

for α ∈ IR(t), β ∈ CR and xt(α) ≥ 1
2 − ε(t). Similarly,

w(t, α, β) =
ε(t)2 −

(
1
2 + xt(α)

)2
2 (xt(α)− xt(CR))

if α ∈ IL(t), β ∈ CL and xt(α) ≤ − 1
2 + ε(t).

C. x solution of (1) for these weights w.

To show that x is a solution of the system (1) for these
weights, we just need to show that the right-hand side term of
(1),

∫
w(t, α, β)(xt(β)−xt(α))dβ, is equal to the velocities

ẋt(α) computed in part A. This expression should thus be
equal to v(t) (resp. −v(t)) for α ∈ IR(t) (resp. IL(t)),
and to 2

√
2

3 v(t)3/2 (resp. − 2
√
2

3 v(t)3/2) for α ∈ CL (resp.
CR), neglecting again the two agents for which ẋt(α) is not
defined.

We first consider an agent α ∈ IR(t) distant from the
boundary 1

2 by more than ε(t), and interacting thus only
with those agents of IL(t) having opinions between xα(t)
and xα(t) + ε(t). Its velocity ẋt(α) is∫
β∈IL(t):xt(β)∈[xt(α),xt(α)+ε(t)]

w(α, β, t) (xt(β)− xt(α)) dβ.

Since the density of IL(t) is 1 over the whole interval
(− 1

2 ,
1
2 ), we have

=

∫ xt(α)+ε(t)

y=xt(α)

(y − xt(α)) dy =
1

2
ε(t)2 = v(t), (4)

consistently with the definition of x. Let us now consider an
agent α ∈ IR(t) distant from the boundary 1

2 by less than
ε(t). Such agents interact with agent in IL(t) and with the
agents in CR. There holds thus ẋt(α) =∫
β∈IL(t):xt(β)∈[xt(α),xt(α)+ε(t)]

w(α, β, t) (xt(β)− xt(α)) dβ

+

∫
γ∈CR

w(α, β, t) (xt(γ)− xt(α)) dγ.

Taking into account that the density of IR(t) is 1 in (− 1
2 ,

1
2 ),

the fact that xt(α) > 1
2 − ε(t) and the fact that all agents

in CR have the same opinion Xt(Cr), and interact with α
according to (3), we obtain again

ẋt(α) =

∫ 1/2

y=xt(α)

(y − xt(α)) dy

+
ε(t)2 −

(
1
2 − xt(α)

)2
2 (xt(CR)− xt(α))

(xt(CR)− xt(α))

∫
γ∈Cr

dγ

=
1

2

(
1

2
− xt(α)

)2

+
1

2

(
ε(t)2 −

(
1

2
− xt(α)

)2
)

=
1

2
ε(t)2 = v(t).

We now consider an agent α in the right cluster CR.
All agents in CR have the same opinion xt(CR) and are
interacting with agents in IR(t) at a distance less than ε(t)
from 1/2, with the weights (3), so that ẋt(α) =∫
β∈IR(t):xt(β)≥ 1

2−ε(t)

ε2 −
(
1
2 − xt(β)

)2
2 (xt(CR)− xt(α))

(xt(β)−xt(CR))dβ

Using again the the density of IR(t) is 1 over (− 1
2 ,

1
2 ), we

obtain

ẋt(α) = −1

2

∫ 1/2

y=1/2−ε

(
ε2 −

(
1

2
− y
)2
)
dy

=
1

3
ε(t)3 = −2

√
2

3
v(t)3/2.

consistently with our definition of x. We have thus proved
that x satisfies (1) with the symmetric weights that we
have defined for all agents in IR(t) and CR. A symmetric
argument applies to agents in IL(t) and CL, so that x is
indeed a solution of (1), which achieves the proof, since
we have already seen that xt(α) does not converge for any
α ∈ I = IL(t) ∪ IR(t).

IV. CONVERGENCE UNDER ADDITIONAL
ASSUMPTIONS

We have seen in the previous sections that the symmetry
of w guarantees the convergence in distribution of xt, but
not necessarily the convergence of almost all the opinions
xt(α) themselves. Our construction required defining the
interactions in an ad-hoc manner. In particular, two agents
with the same opinions would often interact with totally
disjoint sets of agents, resulting in opposite variations of
opinions.

The results that we present here show that, provided that
some common and reasonable assumptions on the model of
opinion dynamics hold, almost all the opinions xt(α) do in
fact converge. The first one concerns systems where agents
with similar opinions exert a non-negligible (i.e. positive with
a positive lower bound) pull on each other. Formally, let us
define the set of functions Γ(r,∆) for r > 0,∆ > 0 to be
the set of w(t, α, β, xt(α), xt(β)) which satisfy the following
property: if

|xt(α)− xt(β)| ≤ r
then

w(t, α, β, xt(α), xt(β)) ≥ ∆.

We then have the following theorem.

Theorem 3 If w(·, ·, ·, ·, ·) is symmetric, nonnegative, and
belongs to some Γ(r,∆) for r > 0,∆ > 0, then any soluton
xt(α) of (1) converges for almost all α.

Moreover, for almost all couples (α, β), either
limt→∞ xt(α) = limt→∞ xt(β) or | limt→∞ xt(α) −
limt→∞ xt(β)| ≥ ∆, so that almost all xt(α) converge to a
finite set of values distant from each other by at least ∆.

The second result concerns systems where the interactions
only depend on time and on the opinions via a sufficiently



smooth and bounded function, and states that the conver-
gence of xt(α) for almost all α is again guaranteed in that
case. Intuitively, it relies on the idea that the order of the
opinions is preserved in that situation (i.e. if xt(α) > xt(β)
for some t, this inequality remains satisfied for all further
times), and that it is impossible to converge in distribution
without converging for almost all α while preserving the
order of opinions.

Theorem 4 Suppose that the interaction weights
w(., ., ., ., .) are symmetric, nonnegative, and depend
only on time and the positions:

w(t, xt(α), xt(β), α, β) = w̃(t, xt(α), xt(β)).

If w̃ is in addition
• bounded: |w̃(t, x, y)| ≤ W̄ for all t, x, y for some W̄ ,
• Lipschitz continuous: |w̃(t, x, y) − w̃(t, x, z)| ≤
L |y − z| for all t, x, y, z, and some L.

then any soluton xt(α) of (1) converges for almost all α.

We note that as a particular case of both results above,
convergence of xt(α) for almost all α is guaranteed for
the one-dimensional versions of the systems considered in
[6], where the authors proved convergence in distribution.
They were however considering multi-dimensional opinions,
and unlike Theorem 1, it is not clear at this stage whether
Theorems 3 and 4 can be extended to such multi-dimensional
cases.

V. CONCLUSIONS

Our goal in this paper has been to analyze the asymptotic
behavior of opinion dynamics. We have been able to resolve
several questions implicit in the previous literature on the
subject. In Theorem 1 we proved that symmetry alone
appears to suffice for the convergence in distribution of such
systems (in addition to the usual conditions of nonnegativity
and such). Moreover, we showed in Theorems 2, 3 and 4 that
while these systems converge in the sense of distributions,
convergence for almost all agents is not automatic but
rather crucially depends on additional assumptions, in sharp
opposition with the results obtained for systems with finitely
many agents [8].

Our results also cast a new light on those obtained in
[8]. Convergence there is indeed first established for a
sorted version of the vector containing all opinions, which
is equivalent to proving the convergence of the opinions in
distribution as in Theorem 1. Convergence of the opinions
themselves then only follows from a continuity argument
relying crucially on the discrete nature of the agents. This
a priori artificial separation of the argument appears much
more fundamental in view of the possibility for system with
a continuous mass of agents to converge only in distribution.

Our motivation for studying these systems has been in the
similarity they share with other multi-agent systems, namely
the presence of a nonlinearity due to a time-varying update
rule. We hope that the techniques we have developed to
analyze these systems will find applications in the analysis

of other multi-agent systems. We note that Theorem 1 was
proved without precise Lyapunov estimates on the decay
by relying simultaneously on a large class of Lyapunov
functions coupled with an appeal to results concerning the
Haussdorff moment problem; to our knowledge, this is a
new approach. Similarly, the proof of Theorem 3 (which
will appear in a separate publication) relies on an “interval
crossing” lemma bounding the mass of agents which can
cross an interval infinitely often, which is new as well.

We conclude with some open questions. The contrast
between Theorem 2 on the one hand and Theorems 3 and
4 on the other hand leads one to wonder whether a precise
characterization of the settings in which convergence occurs
for almost all agents is possible. Moreover, we wonder
when it is possible to establish convergence time bounds
on continuum opinion dynamics. Such bounds are likely
to be useful in the analysis of convergence times in the
case of finitely many agents. Other research directions could
include the extension of our results to discrete-time systems,
or the extensions of Theorems 3 and 4 to multi-dimensional
opinions.
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