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Abstract— Different recent works have studied polarized
versions of models of opinion dynamics, in which an agent
opinion can be attracted by the opinions of some agents and
by the opinions opposite to those of some others, representing
a form of antagonism.

We show that these systems correspond to the projection
of specific trajectories of classical opinion dynamics systems
involving twice as many agents, to which a large number of
existing results apply. We take advantage of this to prove several
convergence results for models with antagonisms, extending
those previously available. Our approach can be applied in
both discrete and continuous time.

I. INTRODUCTION

We propose a lifting-based approach to analyze models of
opinion dynamics with antagonisms

ẋi =

n∑
j=1

|aij(t)| (sign (aij(t))xj − xi) (1)

where xi(t) ∈ < represents the opinion of an agent i ∈
{1, . . . , n} at time t, and the aij are interaction coefficients.
Specifically, aij(t) > 0 means that the opinion of agent i is
attracted by that of agent j, while aji(t) < 0 mans that it is
attracted by the opinion opposite to that of agent j.

Over the last decade, different authors have studied models
describing the dynamics of opinions of the form

ẋi(t) =
∑
j

aij(xj − xi),

(or their discrete time counterpart) where the dependence of
the aij ≥ 0 on time, on x, or on some pre-specified social
network depends on the specific models, see for example
[3]–[5], [7], [8], [13].

Although these models are based on the attraction of
opinions, they also allow for persistent disagreement. They
typically lead to the emergence of multiple clusters of agents,
where all the agents of a cluster eventually share a same
opinion, different from that in the other clusters. These
disagreements and clustering phenomena do however almost
always result from the lack of interactions between agents
or the inhibition of their mutual attractions; agents end
up disagreeing because they do not influence each other
sufficiently. In [4], [7], [8] for example the agents only
influence each other if their opinions are sufficiently similar.
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As a result, when groups of agents develop opinions that are
too different, they do not influence each other anymore and
keep disagreeing, leading to different clusters.

Real-life phenomena can be much more complex, and one
observes that people can often continuously influence each
other while persistently disagreeing, or even be negatively
influenced by each other. In [1], [2], Altafini has introduced
and studied a model of opinion dynamics with antagonisms
of the form (1). For constant interactions weights aij , he has
shown that such models could lead either to a consensus at
0 or to a bipartite consensus in which one part of the agents
agree on a value x∗ ∈ < while the other part of the agents
agree on the opposite value −x∗. Moreover, he provided
a combinatorial condition that determines the regime of
convergence based on the signed graph G associated to
the interaction weights, where (j, i) is a positive edge if
aij > 0 and a negative edge if aij < 0: Assuming that
it is connected, if G contains a cycle with an odd number of
negative edges, all agents’ opinions converge to 0. Otherwise,
it can converge to a bipartite consensus. The addition of
one single negative edge can thus dramatically affect the
asymptotic behavior of the system. He partially extended
his results to systems where the coefficients aij(t) switch
in a finite set, provided that the associated graph remains
connected at all time. He also considered certain systems
with state-dependent coefficients.

The model (1) with constant coefficients was further
studied, for example by Hu and Zheng [10], who established
convergence to 0 or to bipartite consensus for different
classes of (constant) interactions, using signed and signless
Laplacian matrices.

Similar results were obtained by Xia and Cao [20] for
an analogous discrete time model with switching interaction
weights. This discrete time model is further studied in a
recent preprint by Meng et al. [14] who show that the
absolute values |xi| of the opinions converge to a common
value under some repeated connectivity assumptions.

Contribution and outline

In this work, we show that the analysis of systems such as
(1) can be made easier by considering an associated classical
consensus system on 2n agents. More specifically, we show
in Section II that the trajectories of models of opinion
dynamics with antagonisms can be seen as the projection of
those of a lifted classical model of opinion dynamics on 2n
agents, to which results on classical consensus can directly
be applied. We take advantage of this representation to
derive general convergence results for the case of reciprocal
interactions in Section III, and for non-reciprocal interactions



in Section IV, extending several of those presented in [2],
[10]. We show how similar results can be obtained for
discrete time systems in Section V, and conclude by a
discussion in Section VI.

Note that there exist other models of negative interactions.
In the context of multi-agent control, the authors of [18] con-
sider for example systems where one faulty agent is linearly
repulsed by the other agent opinions (ẋi =

∑
j(xi − xj)).

II. MODEL DESCRIPTION AND LIFTING

We consider the continuous-time system

ẋi(t) =

n∑
j=1

|aij(t)| (sign (aij(t))xj(t)− xi(t)) , (2)

where the aij(t) are arbitrary functions measurable on any
bounded interval. We remind that when aij(t) is positive the
opinion of agent i is attracted by that of agent j, and when
aij(t) is negative it is attracted by the opinion opposite to that
of agent j. System (2) generalizes that initially considered
by Altafini [2] by allowing for arbitrary time-dependent
interaction coefficients aij(t).

Since the interaction coefficients aij(t) can be discon-
tinuous, we will consider Caratheodory solutions to (2).
A Caratheodory solution is a locally absolutely continuous
function x : <+ → <n : t → x(t) satisfying (2) at almost
all times t. It can be equivalently defined as the solution to
the integral version of (2). It follows from Theorem 54 and
Proposition C.3.8 in [17, pages 473-482] that there exists
a unique Caratheodory solution to (2). In the sequel, we
only consider Caratheodory solutions to the systems that
we introduce, but do not mention it explicitly. We also
assume that all the time-varying coefficients are measurable
on bounded intervals.

We now show that every solution of (2) is the projection
on its first n coordinates of the solution of a usual consensus
system with only positive interactions and involving 2n
agents. Observe first that system (2) is a particular case of
the following system

ẋi =

n∑
j=1

pij(t) (xj(t)− xi(t))+
n∑
j=1

rij(t) (−xj(t)− xi(t)) ,

(3)
where the functions pij(t) and rij(t) are nonnegative and
represent respectively the positive attractions and the reverse
attractions. Indeed, one can obtain system (2) by taking
pij(t) = max (0, aij(t)) and rij(t) = max (0,−aij(t)).
Multiplying (3) by −1, one gets

d

dt
(−xi) =

n∑
j=1

pij ((−xj)− (−xi))+
n∑
j=1

rij (xj − (−xi)) ,

(4)
where we omit the dependence of t for the sake of concision.
Together with (3), this implies that the vector (xT ,−xT )T

is a solution of the system

żi =

n∑
j=1

pij (zj − zi) +
n∑
j=1

rij (zj+n − zi) ,

żi+n =

n∑
j=1

pij (zj+n − zi+n) +
n∑
j=1

rij (zj − zi+n) .

Taking zi = xi and zi+n = −xi for i = 1, . . . n, one re-
obtains indeed (3) and (4). The equivalence that we have
shown is summarized in the following proposition.

Proposition 1: x : <+ → <n is a solution of (2) for
certain functions aij(t) if and only if z = (xT ,−xT )T is a
solution of the “classical” consensus system

żi(t) =

2n∑
j=1

ãij(t) (zj(t)− zi(t)) , (5)

with ãij(t) = ãi+n,j+n(t) = max (0, aij(t)) ≥ 0 and
ãi+n,j(t) = ãi,j+n(t) = max (0,−aij(t)) ≥ 0.

In the following sections, we use Proposition 1 to trans-
late results on classical consensus systems available in the
literature into results on systems with antagonisms as (2).

Remark 1: The approach behind Proposition 1 can be seen
as a generalization of the gauge transformation used for some
results in [2]. The latter corresponds indeed to building a
classical consensus system on n agents by picking for each
i either zi (corresponding to xi) or zi+n (corresponding to
−xi).

III. RECIPROCAL INTERACTIONS

The main results of this section rely on the following
theorem from [9].

Theorem 1: Let x : <+ → <n : t→ x(t) be a solution of

ẋi(t) =

N∑
j=1

aij(t) (xj(t)− xi(t)) ,

where the aij(t) ≥ 0, and let G∞({1, . . . , N}, E) be the
undirected graph of persistent interactions defined by letting
(j, i) ∈ E if

∫∞
t=0

aij(t)dt is infinite.
If there exists a K > 0 such that

aij(t) ≤ Kaji(t) (6)

holds for all t ∈ R+ and i, j, then
(a) The system converges: x∗ = limt→∞ x(t) exists.
(b) If two agents i, j belong to the same connected compo-

nent of G∞, that is, are connected by a path in G∞,
there holds x∗i = x∗j .

(c) If i and j do not belong to the same connected compo-
nent of G∞, then x∗i 6= x∗j unless the initial condition
x(0) belongs to a specific vectorial subspace of <n of
dimension n− 1 or less.

Part (b) of Theorem 1 means thus that a local consensus is
attained in each connected component of the graph G∞ of
persistent interactions, and part (c) states that the consensus



values of the different connected components are generically
different. Note that we restrict here our attention to bounded
ratio symmetric interactions (aij ≤ Kaji) for the sake of
simplicity, but Theorem 1 is proved in [9] under the weaker
assumption that the interactions are cut-balance. We now
show how it can be used to treat systems with antagonisms.

Proposition 2: Suppose that the coefficients aij(t) in sys-
tem (2) have symmetric signs sign (aij(t)) = sign (aji(t))
and satisfy the bounded ratio symmetry condition |aij(t)| ≤
K |aji(t)| for some constant K > 0 and all i, j and t.
Then x∗i = limt→∞ xi(t) exists for every i, and
(a) x∗i = x∗j if

∫∞
0

max(0, aij(t))dt is infinite,
(b) x∗i = −x∗j if

∫∞
0

max(0,−aij(t))dt is infinite.

Proof: It follows from Proposition 1 that (xT ,−xT ) is a
solution of the system (5). We first show that the coefficients
ãij(t) of that system satisfy the bounded ratio symmetry
condition (6) with the same K. Indeed, suppose that aij(t) ≥
0 and therefore that aji(t) ≥ 0 since they are assumed to
have the same sign. It follows from the definition of the ãij
that ãij(t) = ãi+n,j+n(t) = aij(t) ≤ Kaji(t) = Kãji(t) =
Kãj+n,i+n(t), and ãi+n,j(t) = ãi,j+n(t) = 0 ≤ K.0 =
ãj,i+n(t) = ãj+n,i(t), so that the bounded ratio symmetry
condition 6 holds. A symmetric argument applies to the case
where aij(t) < 0.

It follows then from an application of Theorem 1 to
system (5) that z = (xT ,−xT )T converges to some z∗ =
(x∗T ,−x∗T )T , and that z∗i = z∗j if

∫∞
0
ãij(t)dt is infinite.

Consider now i, j ∈ {1, . . . , n} and remember that ãij(t) =
max(0, aij(t)). Therefore, if

∫∞
t=0

max(0, aij(t))dt is infi-
nite, there holds z∗i = z∗j and thus x∗i = x∗j , which establishes
condition (a). On the other hand, we have ai,j+n(t) =
ai+n,j(t) = max(0,−aij(t)). So if

∫∞
t=0

max(0,−aij(t))dt
is infinite, there holds z∗i = z∗j+n and therefore x∗i = −x∗j ,
which establishes condition (b).

Proposition 2 provides a set of equality constraints on
the different limiting values x∗i . To analyze their conse-
quences, it is convenient to represent them by a graph
with two sorts of edges. We define the graph of persis-
tent interactions G∞({1, . . . , n}, P,R) containing positive
edges P and negative (or repulsive) edges R by letting
(j, i) ∈ P if

∫∞
0

max(0, aij(t))dt is infinite, and (j, i) ∈ R
if
∫∞
0

max(0,−aij(t))dt is infinite. Note that a pair of
nodes can simultaneously belong to P and R. Under the
assumptions of Proposition 2, this graph is symmetric, in
the sense that (i, j) ∈ P (resp. R) if and only if (j, i) ∈ P
(resp. R). In the sequel, we consider paths (and cycles) in
G∞ that can contain both sorts of edges. In particular, a
connected component C of G∞ is a subset of nodes such
that (i) any two of them are connected by a path of edges
of P ∪R, and (ii) no edge of P or R connects any node of
C to a node out of C.

Theorem 2: Under the assumptions of Proposition 2
(symmetric signs and bounded ratio symmetry), x∗i =
limt→∞ xi(t) exists for every i, and

(a) If (i, j) ∈ P then x∗i = x∗j . If (i, j) ∈ R, then x∗i = −x∗j .
As a result, If i and j belong to the same connected
component of G∞ there holds |x∗i | =

∣∣x∗j ∣∣.
(b) If a connected component C contains a cycle with an

odd number of edges in R, then x∗i = 0 for every i ∈ C.
(c) Conversely, if a connected component C contains no

cycle with odd number of edges in R, then |x∗i | > 0
for all i ∈ C, except if the initial condition x(0) belongs
to a certain vectorial subspace of <n of dimension n−1
or less.

Note that the situation described in part (c) is often called a
“bipartite consensus”.

Proof: Part (a) follows directly from Proposition 2
and the definition of G∞. For part (b), consider a cycle Q
consisting of edges {(q0, q1), (q1, q2), . . . (q|Q|−1, q|Q|)} ∈
P ∪R with q|Q| = q0, and let rQ be the number of edges of
Q belonging to R. It follows from the application of part (a)
to every edge of Q that x∗q0 = x∗q|Q|

= xq0(−1)rQ . Therefore,
if rQ is odd, we have x∗q0 = 0, and as a result x∗i = 0 for
every node i of connected component to which q0 belongs.

To prove part (c), suppose now that the connected compo-
nent C contains no cycle with an odd number of edges in R
(and in particular, no edge that belongs to both P and R). In
that case, it follows from a classical result of graph theory
(see for example [6]) that C can be partitioned into two
disjoints subsets C+, C− such that no negative edge connects
two nodes of the same subset, and no positive edge connects
two nodes of different subsets, that is, i ∈ C+, j ∈ C−

implies that (i, j) 6∈ P and i ∈ C+, j ∈ C+ or i ∈ C−, j ∈
C− implies that (i, j) 6∈ R.

We claim that there exists an initial condition x(0) for
which limt→∞ xi(t) = xC if i ∈ C+ and limt→∞ xi(t) =
−xC if i ∈ C−, for some nonzero xC ∈ <. If the interactions
were constant or restricted to their long term behavior
(nonnegative values aij for pairs (j, i) ∈ P , nonpositive
values for pairs (j, i) ∈ R, and aij = 0 for other pairs) this
could directly be established by selecting an initial condition
where xi(0) = xC > 0 if i ∈ C+ and xi = −xC < 0 if
i ∈ C−, and observing that xi(t) would then remain constant
for every i ∈ C. The difficulty here comes from the need
to take into account the “non-persitent” interactions whose
integral is bounded, and that do not correspond to edges in
P or R. The proof of our claim in the general case involves
several technical aspects and is deferred to the Appendix.

Fix now an index i ∈ C and let ei be the ith unit vector. To
conclude the proof of (c), we note that the function that sends
x(0) onto the limiting value is linear and can be represented
by a matrix L. Since there is an initial condition x(0) for
which x∗i 6= 0, we have eTi Lx(0) 6= 0. Therefore eTi L 6= 0,
and the set of initial conditions x(0) for which eTi Lx(0) = 0
is a vectorial subspace of <n of dimension n−1 or less. For
any x(0) out of that set, we have x∗i 6= 0, and x∗j = ±x∗i 6= 0
holds thus for all j ∈ C by part (a) and (b), which concludes
the proof of part (c) of this theorem.

Using an argument similar to that of part (c), one can
show that when the opinions of the agents in a connected



component of G∞ do not converge to 0, their limiting value
is generically different from that of the other connected
components. Note also that part (c) of Theorem 1 cannot
directly be applied to our systems with antagonisms because
all the initial conditions z(0) of (5) are of the form zT =
(xT ,−xT ), and belong thus to a specific common subspace.

IV. NON-RECIPROCAL INTERACTIONS

To demonstrate the application of our approach to systems
where interactions are not necessarily reciprocal, we use the
following convergence result which is a particular case of
Theorem 1 in [15] from Moreau.

Theorem 3: Suppose that the aij(t) are piecewise contin-
uous with respect to t and are uniformly bounded. If there
exist a T > 0 and a δ > 0 such that the directed graph G̃δ,Tt
defined by connecting (j, i) if

∫ t+T
t

aij(s)ds ≥ δ is strongly
connected for every t, then all xi(t) converge to a common
value, limt→∞ xi(t) = x∗ for some x∗.

We remind the reader that a directed graph is strongly
connected if every node is connected to every other node
by a directed path. Note that the connectivity condition
in Theorem 3 does not require the interactions to form a
strongly connected graph at every time, but only on average
over every interval of length T .

To apply Theorem 3 to our system (2), we define for
all δ, T > 0 the graph Gδ,Tt ({1, . . . , n}, P,R) with pos-
itive and negative (repulsive) edges by letting (j, i) ∈
P if

∫ t+T
t

max(0, aij(t))ds ≥ δ and (j, i) ∈ R if∫ t+T
t

max(0,−aij(t))ds ≥ δ.
Consider now the coefficients ãij(t) defined in Proposition

1, and define the graph G̃δ,Tt ({1, . . . , 2n}, Ẽ) by letting
(j, i) ∈ Ẽ if

∫ t+T
t

aij(s)ds ≥ δ. One can verify that G̃δ,Tt is
strongly connected if and only if Gδ,Tt is strongly connected
and contains at least one directed cycle with an odd number
of edges of R. Combining this observation with Theorem 3
and Proposition 1 leads to the following result.

Theorem 4: Consider the system with antagonisms (2)
and suppose that the aij(t) are uniformly bounded and piece-
wise continuous. If there exist δ, T > 0 such that for every
t, the graph Gδ,Tt is strongly connected and contains a cycle
with an odd number of edges of R, then limt→∞ xi(t) = 0
for every i.

We can also treat the case of convergence to a “bipartite
consensus”, although the assumptions that need to be made
are somewhat stronger. The following theorem is proved by
observing that under its assumptions, the system defined in
Proposition 1 can be decomposed into two strictly indepen-
dent subsystems to each of which one can apply Theorem 3.

Theorem 5: Consider the system with antagonisms (2)
and suppose that the aij(t) are uniformly bounded and
piecewise continuous.

Suppose in addition that the agents can be partitioned in
two groups V1, V2 such that aij ≥ 0 if i, j belong to the

same group and aij ≤ 0 if they belong to different groups.
If there exist δ, T > 0 such that for every t, the graph Gδ,Tt
is strongly connected, then there exists x∗C ∈ < such that
limt→∞ xi(t) = x∗C for every i ∈ V1 and limt→∞ xi(t) =
−x∗C exists for every i ∈ V2. Moreover, x∗C 6= 0 except if
the initial condition x(0) belongs to a certain specific linear
subspace of <n of dimension n− 1 or less.

Theorem 4 and 5 extend Theorem 2 and Remark 4 in [2]
that apply respectively to constant interactions and to switch-
ing interactions satisfying a permanent strong connectivity
condition.

V. DISCRETE TIME SYSTEMS

Our approach also applies to discrete time models. Fol-
lowing Xia and Cao [20], we consider the system

xi(t+ 1) =

n∑
j=1

aij(t)xj(t) (7)

with
∑n
j=1 |aij(t)| = 1. This means that the new opinion of

agent i is a weighted average of the opinions of some agents
(when aij(t) > 0) and of the opinions opposite to those of
some others (when aij(t) < 0).

System (7) is a particular case of

xi(t+ 1) =

n∑
j=1

pij(t)xj(t) +

n∑
j=1

rij(t)(−xj(t)), (8)

where
∑n
j=1(pij + rij) = 1, and pij , rij ≥ 0. One re-

obtains indeed (7) by taking pij = max(0, aij) and rij =
max(0,−aij). By considering (8) together with its opposite
describing the evolution of −xi(t) as in Section II, we obtain
the following result analogous to Proposition 1.

Proposition 3: x : N→ <n is a solution of (7) for certain
functions aij(t) if and only if z = (xT ,−xT )T is a solution
of the “classical” discrete time consensus system

zi(t) =

2n∑
j=1

ãij(t)zj(t), (9)

with ãij(t) = ãi+n,j+n(t) = max (0, aij(t)) ≥ 0 and
ãi+n,j(t) = ãi,j+n(t) = max (0,−aij(t)) ≥ 0.

Based on this equivalence, convergence results for discrete
time systems can be derived exactly as in Sections III and IV.
We can for example apply the following result on consensus
systems with so-called “type-symmetric” interactions, proved
in [12].

Theorem 6: Suppose that x : N→ <n satisfies xi(t+1) =∑
j=1 aij(t), and that the coefficients aij(t) ≥ 0 satisfy the

three following conditions
(i) Lower bound on positive coefficients: There exists an

α > 0 such that if aij(t) > 0, then aij(t) ≥ α.
(ii) Positive diagonal coefficients: aii(t) ≥ α.

(iii) Type symmetry: aij(t) > 0⇔ aji(t) > 0.
Then x∗i = limt→∞ xi(t) exists for every i, and x∗i = x∗j

if the set of times at which aij(t) > 0 is infinite.



We define here the (undirectd) graph of persistent inter-
actions G∞({1, . . . , n}, P,R) of the system (8) by letting
(j, i) ∈ P if aij(t) > 0 infinitely often and (j, i) ∈ R if
aij(t) < 0 infinitely often. A reasoning parallel to that of
Section III (to the exception of part (c) of Theorem 2) leads
to the following convergence result.

Theorem 7: Suppose that the coefficients aij(t) in the
system (7) satisfy the three following conditions.

(i) Lower bound on nonzero coefficients: There exists an
α > 0 such that if aij(t) = 0 then |aij(t)| ≥ α.

(ii) Positive diagonal coefficients: aii(t) ≥ α > 0.
(iii) “Type-symmetry”: aij(t) 6= 0 ⇔ aji(t) 6= 0, and in

that case sign (aij(t)) = sign (aji(t)).
Then every trajectory of the system converges: x∗i =

limt→∞ xi(t) exists for every i and every initial condition.
Moreover,
(a) If (i, j) ∈ P then x∗i = x∗j . If (i, j) ∈ R, then x∗i =
−x∗j . As a result, If two nodes i, j belong to the same
connected component of G∞ then |xi| = |xj |.

(b) If the connected component C contains a cycle with an
odd number of edges in R, then x∗i = 0 for every i ∈ C.

The following example shows that part (c) of Theorem 2,
stating that the opinions generically do not converge to 0 in
the absence of cycles with an odd number of edges in R,
does not extend to discrete time systems.

Example 1: Consider a system with two agents where the
coefficients aij(0), aij(1) are summarized in these matrices

A(0) =

(
1
2

1
2

1
2

1
2

)
, A(1) =

(
1
2 − 1

2
− 1

2
1
2

)
.

There holds
∑
j |aij(t)| = 1 for t = 0, 1 and the assumptions

of Theorem 7 are satisfied. Nevertheless, we have x1(2) =
x2(2) = 0 and thus x∗1 = x∗2 = 0 for all initial conditions,
irrespectively of the further interactions, and thus of the
structure of G∗ and the presence or absence of cycles with
an odd number of edges in R.

The mathematical reason for which part (c) of Theorem 2
cannot be extended is that the linear function that sends the
initial condition x(0) onto x(t) is not necessarily invertible
in discrete time, unlike in continuous-time. As a result, one
cannot apply the argument developed in the Appendix to
prove part (c) of Theorem 2.

Our approach can also be applied to discrete time systems
without reciprocity conditions such as type-symmetry.
Results analogous to those in Section IV and similar to
those in [10] can for example be obtained by combining
Proposition 3 with consensus results available in the
literature such as those in [11], [16], [19].

Finally, we note that a result related to Theorem 7 for
a single connected component was proposed in a recent
preprint by Meng et al. [14]. By analyzing the evolution
of the absolute values |xi(t)| of the opinions, they show
that these all converge to a same value (asymptotic modulus

consensus) when the graph of persistent interactions G is
connected. Their result is valid under the same assumptions
as Theorem 7 except that condition (iii) is relaxed: aij(t)
and aji(t) are not required to have the same sign when
they are nonzero. They also provide a convergence result
for non-reciprocal systems, guaranteeing the convergence of
all |xi(t)| to a same value under some (uniform) repeated
connectivity assumption that makes no distinction between
positive and negative interactions.

VI. DISCUSSION

We have shown that the trajectories of systems of opinion
dynamics with antagonisms such as those studied in [1],
[2], [10], [20] can be seen as the first n components of
the trajectories of an associated classical model of opinion
dynamics on 2n agents with a specific structure.

By applying results on classical consensus systems avail-
able in the literature to that associated system, we were able
to obtain different general convergence results for the initial
model, extending several of those previously available.

On the one hand, the relative simplicity of our proofs and
the large number of results on consensus available in the
literature suggest that our approach is a very convenient way
of analyzing opinion dynamics models with antagonism.

On the other hand, separating the positive and negative
interactions in the associated system could be a drawback in
certain situations. It might for example prove harder to treat
systems where the presence of interactions is symmetric but
theirs signs are not (as in [14]), that is, aij 6= 0 ⇔ aji 6= 0
but aij and aji may have different signs. This symmetry
would indeed not imply a symmetry of the associated system
on 2n agents.
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APPENDIX

We prove that under the assumptions of Theorem 2, there
exists an initial condition x(0) such that the opinion of at
least one agent in the connected component C (and in fact
all of them) does not converge to 0.

We begin by selecting a time after which the integral of
the “non-persistent” interactions is sufficiently small. Let

α(t) =
∑

i,j:(j,i)6∈P

max(0, aij(t))+
∑

i,j:(j,i)6∈R

max(0,−aij(t)).

(10)
It follows from the definition of P and R in Section III
that

∫∞
t=0

α(t)dt < ∞. We can thus select a T1/4 such that∫∞
t=T1/4

α(t)dt < 1/4.

Now, since
∫ t
0
|aij(t)| dt < ∞ for every t and i, j, it can

be proved that the state transition (or fundamental) matrix,
which maps the initial conditions x(0) to x(t) has full
rank for any finite t, see [17] (specifically, Theorem 54,
Proposition C3.8, appendix C3, and appendix C4). Therefore,
we can chose x(0) in such a way that xi(T1/4) = 1 for every
i ∈ C+, −1 for every i ∈ C− and 0 for every i 6∈ C, where
C+ and C− have been defined in the main part of the proof
of Theorem 2. As a consequence, xi(t) ∈ [−1, 1] for all
t ≥ T1/4. We show that |xi(t)| ≥ 1/2 holds for all t > T1/4
and i ∈ C.

Consider a t∗ > T1/4 such that for every t ∈ [T1/4, t
∗],

there holds xi(t) > 0 if i ∈ C+ and xi(t) < 0 if i ∈ C−.
The existence of such t∗ follows from the continuity of x.
For every t ∈ [T1/4, t

∗], let m(t) = argmini∈C |xi(t)| be the
index of the agent in C with the smallest opinion in absolute
value (using the order of the indices to break ties). The
pattern of change of m(t) can be very complex. However,
it follows from Proposition 2 in the extended version of [9]

that∣∣xm(t)(t)
∣∣ = ∣∣∣xm(T1/4)(T1/4)

∣∣∣+ ∫ t

s=T1/4

dxm(s)(τ)

dτ
|τ=sds,

(11)
that is, the smallest opinion (in absolute value) in C at
time t can be obtained by integrating over s ∈ [T1/4, t] the
derivative dxm(s)(τ)

dτ |τ=s of the opinion of the agent m(s)
that happens to have the smallest opinion at that time s.

Let us now fix a s and assume without loss of generality
that m(s) ∈ C+ so that xm(s)(s) > 0. By definition of the
system (2), this derivative dxm(s)(τ)

dτ |τ=s can be written as
(omitting s for brevity)

n∑
j=1

(max(0, amj)(xj − xm) + max(0,−amj)(−xj − xm))

=
∑

j:(j,m)∈P

max(0, amj)(xj − xm) (12)

+
∑

j:(j,m)∈R

max(0,−amj)(−xj − xm) (13)

+
∑

j:(j,m)6∈P

max(0, amj)(xj − xm) (14)

+
∑

j:(j,m)6∈R

max(0,−amj)(−xj − xm). (15)

Remember that |xm| = argmini∈C |xi|, and that we have
assumed that m ∈ C+ so that xm > 0. Therefore, there
holds xj − xm ≥ 0 for every j ∈ C+ and −xj − xm ≥
0 for every j ∈ C−. Moreover, by definition of C+ and
C− and since m ∈ C+, (j,m) ∈ P implies that j ∈ C+,
and (j,m) ∈ R implies that j ∈ C−. The terms in the
sums (12) and (13) are thus all nonnegative. Consider now
the terms of (14) and (15). Since xj(t) ∈ [−1, 1], we have
(±xj − xm) ≥ −2. It follows then from the definition (10)
of α(s) that the sum of all the terms in (14) and (15) is lower
bounded by −2α(s). Combining all these bounds, we obtain
d|xm(s)(τ)|

dτ |τ=s =
dxm(s)(τ)

dτ |τ=s ≥ −2α(s) if m ∈ C+. A
similar argument applies if m ∈ C−. Therefore, it follows
from (11) that∣∣xm(t)

∣∣ (t) ≥ ∣∣∣xm(T1/4)(T1/4)
∣∣∣− 2

∫ t

s=T1/4

α(s)ds

≥ 1− 2
1

4
=

1

2
,

holds for all t ∈ [T1/4, t
∗], where we have used the definition

of T1/4 and the fact that
∣∣∣xm(T1/4)(T1/4)

∣∣∣ = 1 by construc-
tion. By definition of m(t), this implies that |xi(t)| ≥ 1/2
for all t ∈ [T1/4, t

∗] for every i ∈ C. It follows then from
the continuity of x that t∗ can be taken arbitrarily large, and
that |xi(t)| ≥ 1/2 holds for every i ∈ C and t ≥ T1/4. In
particular, |x∗i | = |limt→∞ xi(t)| ≥ 1/2 for every i ∈ C.


