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Abstract— Interested in scalable topology reconstruction
strategies with fast convergence times, we consider network
cardinality estimation schemes that use, as their fundamental
aggregation mechanism, the computation of bit-wise maxima
over strings. We thus discuss how to choose optimally the
parameters of the information generation process under fre-
quentist assumptions on the estimand, derive the resulting
Maximum Likelihood (ML) estimator, and characterize its
statistical performance as a function of the communications
and memory requirements. We then numerically compare the
bitwise-max based estimator against lexicographic-max based
estimators, and derive insights on their relative performances
in function of the true cardinality.

Index Terms— distributed estimation, size estimation, bitwise
max consensus, quantization effects, peer-to-peer networks.

I. INTRODUCTION

Information on the topology of a communication network
may be instrumental in distributed applications such as
optimization and estimation tasks. For example, in distributed
regression frameworks, knowing the number of active sen-
sors allows to correctly weight prior information against evi-
dence in the data [1]. Moreover, continuously estimating the
number of active nodes or communication links corresponds
to monitoring the network connectivity and thus to being
able to trigger network reconfiguration strategies [2].

The focus is then to understand how to distributedly
perform topology reconstruction given devices with bounded
resources (e.g., battery/energy constraints, communication
bandwidth, etc.). Of course, considering different trade-offs
leads to different optimal strategies. Here we are motivated
by real-world applications such as vehicular traffic estimation
and specifically consider the case of peer-to-peer networks
where all the participants are required to: i) share the same
final result (and thus the same view of the network); ii) keep
the communication and computational complexity at each
node uniformly bounded in time; iii) reach consensus on
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the estimates using the smallest number of communications
possible.

Since aggregation mechanisms scale better than flooding
or epidemic protocols (at the cost of some loss of infor-
mation) [3], [4], the aforementioned objectives are usually
addressed using order statistics consensus aggregation mech-
anisms (like max, min, and ranges). Natural questions are
then: which one is the scheme that leads to topology estima-
tors that are optimal in Mean Squared Error (MSE) terms?
And what are the fundamental limitations of information
aggregation for topology estimation purposes, i.e., what can
be estimated and what not?

Towards answering what is the maximum achievable ac-
curacy of aggregation-based estimators, here we focus on
max-consensus strategies and pursue to characterize the fun-
damental properties of aggregating maxima for cardinality
estimation purposes.

Literature review: if the network’s agents are not
constrained to keep their communication and memory re-
quirements fixed at every iteration, then it is known that
one can reconstruct the whole topology of a network by
both exchanging tables of the agents IDs, if these IDs are
unique, or using simple randomized techniques to generate
these IDs [5]. If instead communications and memory re-
quirements have to stay constant in time, and IDs are not
guaranteed to be unique, there exists no algorithm that always
computes correctly with probability one, in finite time and
with a bounded average bit complexity, even just the size of
the network [6], [7].

These results motivate the existence of probabilistic count-
ing algorithms, where agents estimate the size of their
network by either performing different actions based on the
perceived events (as in interval sampling, capture-recapture
or random walks [8]–[13]) or performing the same actions
in parallel (as in the case where all the agents are required
to share the same knowledge) [14]–[16].

The particular scenario considered in this manuscript is
usually approached endowing each agent with (possibly non-
unique) IDs and letting then the network compute opportune
statistics of these IDs. Estimators of this kind have three
building blocks: 1) an initialization phase, where the local
memory yi of each agent i is initialized locally using some
probabilistic mechanism; 2) an aggregation phase, where the
network distributedly computes an opportune function of the
initial yi’s and eventually reaches consensus on a value y;
3) an estimation phase, where each agent infers the size of
the network from y.

Aggregating the yi’s using average consensus is then



known to lead to estimators whose statistical performance
improve either linearly [17]–[20] or exponentially [21] with
the size of the yi’s (depending on how the yi’s are initial-
ized). Averaging nonetheless has the big drawback of slow
convergence dynamics.

Aggregating the yi’s using order statistics consensus (e.g.,
max-consensus) has the advantage of converging in a smaller
number of communication steps then is required by an
averaging process. Specifically, the computation of maxima
over the yi’s can be performed in two different ways: 1)
using a lexicographic order; 2) bitwise, when the yi are
viewed as a string of bits.

The properties of estimation strategies using the lexi-
cographic order have been analyzed in the literature and
variants of these schemes have been proposed to address
specific tasks. Statistical characterizations can be found
in [20], [22]–[24], and have been improved in [25] by
exploiting the aggregation of order statistics (i.e., computing
the k-th biggest maximum of the various yi instead of
just the maximum value. This leads to an estimator that
is a perfect counter for small networks and with the same
estimation performance of the aforementioned methods for
big networks). [26], [27] exploit instead temporal repetitions
of the max-consensus strategy to build estimators that are
tailored for dynamic networks with size changing in time.

In contrast, the literature on bitwise strategies is not so
abundant: at the best of our knowledge the unique manuscript
is [28] where the authors generate the yi’s with Bernoulli
trials similarly to what we propose here, but do not consider
the optimal design of the Bernoulli parameters.

Statement of contributions: we consider network size
estimation based on bitwise max-consensus strategies. This
focus is motivated by the fact that the literature dealing with
lexicographic max consensus is at the best of our knowledge
neglecting the discrete nature of the yi’s and obtains approx-
imate results that are based on the assumptions that the yi’s
are absolutely continuous r.v.s; in other words the literature
ignores quantization effects. With analyzing bitwise max-
consensus schemes we thus both begin accounting for the
discrete nature of the yi’s and work towards understanding
the performance limitations of computing maxima bitwise or
lexicographically. Our contributions are thus:

• extending [28] by considering potentially non-
identically distributed bits, and determining the optimal
Bernoulli rates using frequentist assumptions in (8);

• obtaining the novel ML estimator (18), different from
the one in [28], characterizing its statistical properties
in Propositions 2 and 3, and verifying that it practically
reaches its Cramér-Rao (C-R) bound;

• comparing bitwise and lexicographic estimators and col-
lecting numerical evidence on which strategy is optimal
in Sec. VII.
Organization of the manuscript: Sec. II introduces our

assumptions, while Sec. III formally casts the cardinality
estimation problem. Sections IV, V and VI address different
aspects of the estimation problem, by respectively design-
ing the structure of parameters dictating the information

generation scheme, determining the functional structure of
the estimator, and characterizing its statistical performances.
Sec. VII then compares the performance of our bitwise-max
estimator with that of lexicographic-max strategies. Finally,
Sec. VIII collects a few concluding remarks and discusses
future directions.

II. BACKGROUND AND ASSUMPTIONS

We model a distributed network as a connected undirected
graph G = (V,E) comprising N = |V | collaborating agents.
We assume that the network operates within the following
shared framework:

Memory model: the generic agent i ∈ V avails locally
of a memory storage of M -bits that is represented by the
vector

yi =
[
yi,1 yi,2 . . . yi,M

]T ∈ {0, 1}M . (1)

Communication model: time is partitioned into an
ordered set of equally lasting intervals indexed by t =
0, 1, 2, . . ., each referred to as an “epoch”. During each
epoch, randomly, uniformly and i.i.d. during the epoch, each
agent i ∈ V broadcasts its whole yi to all its neighbors
through a perfect channel (i.e., without collisions, delays, or
communication errors).

Aim of the agents: to estimate the cardinality of the
network N while being subject to the following constraints:
C1) obtain the same estimate when the algorithm terminates

(i.e., letting N̂i denote the final estimate for the generic
agent i, it is required that N̂i = N̂ , ∀i ∈ V );

C2) obtain this estimate in d epochs, where d is the net-
work’s diameter (notice that in our synchronous pro-
tocol d is the minimum number of epochs such that
information generated at any node is propagated to the
remaining nodes in the network).

We moreover assume that N is unknown but deterministic.
Agents have no a-priori knowledge on the network topology
and thus on its cardinality except for an upper bound on
the network size, i.e., there exists a number Nmax such that
N ≤ Nmax and Nmax is available to the network.

III. PROBLEM FORMULATION:
SIZE ESTIMATION WITH BERNOULLI TRIALS

Statistical size estimation schemes that are based on ag-
gregation strategies share the following common structure:

1) at initialization, each agent independently initializes its
memory yi by extracting a value from a probability
distribution P that is independent of N ;

2) then the agents aggregate the various yi (i.e., dis-
tributedly compute a function of y1, . . . ,yN ) and reach
consensus on the value y;

3) since N parameterizes the previous aggregation process,
N becomes statistically identifiable through y.

Thus, even if the yi’s do not depend statistically on N , y
does, and thus y conveys statistical information on N .

The design of size estimators is then possible on 3 levels:
1) which P to use to initialize the yi’s; 2) which aggregation



scheme to use; 3) how to map the final aggregate y into a
point estimate N̂ of N .

As for the first design level, we consider the specific
P for which the yi’s are initialized bit-wise, i.e., for
which each smallest atom of available information is initial-
ized independently. More specifically, we assume that each
M -dimensional memory yi = [yi,1, . . . , yi,M ] is initialized
with M i.i.d. Bernoulli samples, i.e., through

yi,m =

{
1 with probability 1− θm
0 with probability θm

m = 1, . . . ,M .

(2)
As for the second design level, we consider the bit-wise

max consensus of the yi’s, an aggregation operation that
eventually yields (in finite time and at each agent) the vector

y = [y1, . . . , yM ]T , ym := max
i∈V

{yi,m}, m = 1, . . . ,M

(3)
with probability

P [y ; N,θ] =
∏

{m : ym=1}

(1− θNm)
∏

{m : ym=0}

θNm (4)

with θ := [θ1, . . . , θM ]. The generated information y is thus
statistically dependent on the unknown network cardinality,
so that N is statistically identifiable through y.

As for the third design level, given our lack on a-priori
knowledge on N , we make the classical choice of letting N̂
be the ML estimator of N given y.

From these considerations arise the following three ques-
tions:
Q1) what is the functional structure of N̂?
Q2) What is the θ that minimizes the MSE of N̂?
Q3) Does N̂ have some optimality property?

IV. DESIGNING θ

Before answering Q1 we proceed to answer Q2. Our
approach to the design of θ in (4) is then to consider the
so-called C-R inequality [29, Eq. 4.1.61], i.e., the notion that
the smallest variance that can be achieved by any estimator
N̂ (y) of N given y is bounded below. Specifically, under
mild assumptions holding in our framework, it holds that

var
(
N̂ (y)

)
≥

1 +
∂E
[
N̂ (y)−N

]
∂N

2

I (N ;θ)
(5)

where I (N ;θ) is the Fisher Information (FI) [29, Def. 4.1.4]
about N given y, i.e.,

I (N ;θ) := E

[(
∂ lnP [y ; N,θ]

∂N

)2
]
. (6)

Neglecting the bias term, (5) implies immediately that a
small FI I (N ;θ) induces estimators with high variance.

Our choice is then to consider the bias term negligible,
select that θ that minimizes the worst C-R bound over all
the possible N ’s, and thus to solve

θ∗ := arg max
θ∈(0,1)M

min
N∈{1,...,Nmax}

I (N ;θ) . (7)

Lemma 1 The optimum in (7) is attained by

θ∗ =
[
α1/Nmax , . . . , α1/Nmax

]
(8)

where

2− 2− lnα

α
= 0 ⇒ α ≈ 0.2031878699 . . . (9)

Proof Instrumental to (8) we first show that problem (7)
reduces to

arg max
θ∈(0,1)M

I (Nmax;θ) . (10)

Indeed, since the ym’s in (3) are independent, we have

I (N ;θ) =

M∑
m=1

E

[(
∂ lnP [ym ; N, θm]

∂N

)2
]

=

M∑
m=1

i(θm, N)

(11)

where the map i : (0, 1)× N 7→ R+ is defined by

i(θ,N) :=
θN (ln θ)2

1− θN
.

It follows that for any fixed θ ∈ (0, 1)M , the FI (11) is
strictly decreasing in N and thus, by recalling (7), we get
(10).

(10) together with (11) imply that the vector θ∗ must have
all entries identical. Letting

ω(θ,N) := 2− 2 + ln θN

θN
(12)

we may write

∂i(θ,N)

∂θ
=

ω(θ,N) ln θ

θ(1− θ−N )2
, (13)

implying that i (θ,N) is maximized for θN = α with α
satisfying condition (9). ♦

V. THE ML ESTIMATOR

Given (8), in what follows we assume θm = θ, for m =
1, . . . ,M , and analyze the estimation strategy for a generic
θ ∈ (0, 1). Thus (2) specializes to

yi,m =

{
1 with probability 1− θ
0 with probability θ

m = 1, . . . ,M,

(14)
while the joint distribution of y in (4) simplifies to

P [y ; N ] =
∏

{m : ym=1}

(1− θN )
∏

{m : ym=0}

θN . (15)

It is a classic result showing that the sample average

y = y (y) :=

∑M
m=1 ym
M

, (16)

is a minimal complete sufficient statistic for N . We may in
fact write (4) in terms of y as P [y ; N ] = (1 − θN )My ·
θNM(1−y), so that, conditionally on the sample average, the
probability of observing a given y is independent of θN



(indeed one can regard y as the main output of the bitwise
aggregation scheme (3)).

Starting then from the score of N

`(y;N) :=
∂ lnP [y ; N ]

∂N
=

(
1− y

1− θN

)
M ln θ , (17)

the ML estimator follows as

N̂(y) := arg max
N∈[1,Nmax]

P
[
y ; N

]

=


1 if y ≤ 1− θ

logθ (1− y) if 1− θ < y < 1− θNmax

Nmax otherwise.
(18)
We notice that in the derivation of the ML estimator we
relaxed the integer constraint N ∈ {1, . . . , Nmax} by extend-
ing the search interval to the real segment [1, Nmax]. Indeed,
while a real size parameter does not match perfectly our in-
formation generation scheme, considering the unconstrained
estimator (18) allows us to devise closed-form performance
characterizations.

We also notice that by extending N̂(·) to be defined over
[0, 1] instead of over {0, 1/M, 2/M, . . . , 1}, and letting

ϑ := 1− θN , 1 ≤ N ≤ Nmax (19)

be the success rate of each of the generic experiment ym,
it holds N̂(ϑ) = logθ (1− ϑ) = N ; Indeed the empirical
success rate y is a consistent estimator of the success rate
ϑ. This motivates (18) also as an intuitive estimator of the
network size.

VI. CHARACTERIZATION OF N̂ (y)

On one hand, the distribution of the ML estimator (18)
can be numerically computed for every θ given the fact that
My ∼ Bin

(
M, 1− θN

)
. On the other hand, there is no

dedicated literature reporting closed form characterizations
of logarithms of binomial random variables. Since a com-
prehensive analysis of those variables is beyond the scope of
this paper, we resort to a simplified statistical characterization
of the ML estimator N̂(y) w.r.t. the classical performance
indexes

E

[
N̂ −N

N

]
, var

(
N̂ −N

N

)
. (20)

Proposition 2 For all 1 ≤ N ≤ Nmax,∣∣∣E [N̂]−N
∣∣∣ ≤ O

(
1

M

)
. (21)

Proof Recall that in our assumptions N is an unknown but
fixed parameter. Let then Ñ(·) be a smooth approximation
of N̂(·), i.e., a function Ñ : R 7→ R satisfying

Ñ (ϑ) = N̂ (ϑ) , Ñ (y) = N̂ (y) , y = 0,
1

M
,
2

M
, . . . , 1

(22)

for all the potential outcomes y, and that is endowed for
every Y ∈ [0, 1] with k-th order derivatives

Ñ (k)(Y) :=
∂Ñ(Y)

∂Y
, ∀ k ≥ 1. (23)

Notice that such Ñ(·) can be chosen within the ring of
polynomials with degree at most M + 1.

Consider now the Taylor expansion of Ñ(·) around the
success rate ϑ in (19), valid in the whole unitary segment
[0, 1] by construction since Ñ is smooth [30, p. 286]. This
means that at the points where (22) holds we may rewrite
N̂(·) in terms of the Taylor expansion of Ñ(·), i.e.,

N̂(y) = Ñ(ϑ)− (y − ϑ)Ñ (1)(ϑ) +
(y − ϑ)2

2
Ñ (2)(ζ) (24)

where ζ = ζ(y) in the remainder is a real number between
ϑ and y.

Noticing that, by construction, Ñ(ϑ) = N , and taking the
expectation on both sides of (24) w.r.t. y yields then

E
[
N̂
]
= N +

c1
M

Ñ (1)(ϑ) +
c2

2M2
Ñ (2)(ζ) (25)

with

ck := MkE
[
(y − ϑ)k

]
(26)

and

c1 = 0, c2 = Mϑ(1− ϑ). (27)

We thus recover the assertion by considering that the
derivatives Ñ (k)(ϑ) are continuous in the compact [0, 1], and
that the coefficients ck are finite. ♦

To assess the role of the term O(1/M) in (21) and of
the derivative of the bias appearing in the C-R bound (5)
we plot in Figures 1 and 2 numerical evaluations of the
interested quantities computed through an opportune Monte
Carlo (MC) scheme.
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Fig. 1: MC evaluation (106 runs for each θ) of the relative
error mean of N̂ for Nmax = 2000 and different values of
N,M and θ.
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Fig. 2: MC evaluation (108 runs for each θ) of the derivative
of the bias appearing in the C-R bound (5).

Proposition 3 For all 1 ≤ N ≤ Nmax,

var
(
N̂
)

≤ 1− θN

MθN (ln θ)2
+O

(
1

M2

)
= (I (N ; θ))

−1
+O

(
1

M2

) (28)

Proof Reasonings similar to the proof of Prop. 2 provide
a lower bound on E

[
N̂
]
, an upper bound on E

[
N̂2
]
, and

thus inequality (28) through the equivalence

var
(
N̂
)
= E

[
N̂2
]
− E

[
N̂
]2

. (29)
♦
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Fig. 3: In solid lines, the MC evaluation (106 runs for each
θ) of the relative error variance of N̂ for Nmax = 2000 and
different values of N,M and θ. The dashed lines correspond
to the first term in the right-hand side of (28).

To assess the role of the term O(1/M2) in (28) we plot
in Fig. 3 both numerical evaluations of the performance

index var
(
N̂/N

)
and the inverse of the FI, i.e., I (N ; θ)

−1,
in (11). Together, the Figures 2 and 3 show that the actual
variance of the novel estimator N̂ practically reaches the C-R
bound (5).

Remark 4 We stress that the statistical performance of
N̂ (y) reported in Propositions 2 and 3 do not depend on the
precise communication topology. Indeed, different topologies
lead just to different convergence times and not different
statistics on the estimate.

VII. SIMULATIONS

Here we corroborate the characterization reported in
Propositions 2 and 3 through a numerical analysis. Specifi-
cally, we compare the estimator N̂ (y) in (18) against other
estimation strategies with equivalent convergence times and
bounded memory requirements. To this aim we consider
synthetic networks with variable sizes and study how the
performance of N̂ compares against the max-consensus
based estimator considered in [4], [20], [22], [27]. This
estimator, here called Nuni, can be implemented on top of
the synchronous framework of Sec. III through the following
specifics (c.f. also the general discussion of Sec. III):

i) every i-th agent initializes a local vector wi =[
wi,1 . . . wi,K

]
∈ RK by extracting a K-sample

from the uniform distribution U [0, 1];
ii) agents distributedly aggregate K maxima entry-wise

(rather then bit-wise). The consensus vector resulting
from this process is denoted by

w =
[
w1, . . . , wK

]
, wk = max

1≤i≤N
{wi,k} . (30)

iii) agents locally compute the ML estimator of N given w
through

Nuni = Nuni(w) :=


1 if χ(w) ≤ 1

χ(w) if 1 < χ(w) < Nmax

Nmax otherwise
(31)
where

χ(w) :=
K − 1

−
∑

k lnwk
. (32)

It is known that if the above estimator relies on r.v.s wi,k

with absolutely continuous distributions then it is irrelevant
from which exact absolutely continuous distributions one
extracts [20, Prop. 7]. E.g., sampling a Gaussian distribution
would lead to an alternative estimator with the same statisti-
cal performance of Nuni. Moreover, assuming Nmax = +∞
leads to [20, Eq. (9)]

var (Nuni) =
N2

K − 2
, ∀N. (33)

We then notice that the literature dedicated to (31) neglects
addressing the problem of how to optimally encode each
wi,k with a finite number of bits. Nonetheless, to compare
N̂ and Nuni in terms of estimation performance vs. memory
usage we should address this issue. Since at the best of our
knowledge there is currently no dedicated literature on this



problem, we consider the most simple (and most unfair to N̂ )
comparison approach, namely we evaluate the performance
of Nuni without considering any quantization effects.

Specifically, to compare the statistical performance of N̂
against Nuni we:

1) assume that N̂ uses M bits;
2) consider several versions of Nuni, denoted with N

(b)
uni

for b = 2, 3, . . . and with b denoting how many bits one
would use to encode a single wk in (30). This means
that the generic N

(b)
uni uses K = ceil (M/b) different

wk’s – but at the same time we consider these wk’s
as non-quantized. In other words, we let N (b)

uni operate
on more scalars as b decreases but then we completely
discard the negative effects of quantization and let N (b)

uni
exploit absolutely continuous r.v.s..

We thus computed numerically the performance of N̂ and
of the various N

(b)
uni , and then compared them graphically in

Fig. 4. By construction, both estimators converge at the same
time and ideally require the same communication resources;
the metric used to compare the two strategies is the variance
of the relative estimation error.

The figure highlights an interesting numerical result: for
any b, N̂ has smaller error variance than N

(b)
uni when N

is large, while it performs worse when N is small. This
suggests that there may be a size N , possibly function of
Nmax, M and b, for which if N > N then using N̂ leads to
smaller error variances, while if N < N then it is better to
use N

(b)
uni .
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Fig. 4: MC evaluation (106 runs for point) of the statistical
performance of N̂ and N

(b)
uni for Nmax = 2000 and different

values of M,N . N (b)
uni denotes the estimator Nuni when the

number of real scalars wi,k stored at the i-th node is K =
ceil (M/b).

This intuition is motivated by the following argument:
selecting θ = θ∗ as in (8), neglecting the term O(1/M2)

in (28) (cf. Fig. 3), and equating the approximated var
(
N̂
)

to var
(
N

(b)
uni

)
in (33) (with K = ceil (M/b) ≈ M/b) leads

to an identity of the form

α−(N/Nmax) − 1

(N/Nmax)2
= (lnα)

2 Mb

M − 2b
(34)

where the left-hand side of the equation is strictly decreasing
in N , while the right-hand side is constant. The rule-of-
thumb (34) would then confirm that for each Nmax, M and
b there exists a value N for which if N < N then N

(b)
uni

performs better, while if N > N then N̂ does.
Nonetheless, we stress that both in our simulations in

Fig. 4 and in the reasoning that led to (34), only N̂ considers
the quantized nature of y, while the various N

(b)
uni do not.

We thus expect that actual implementations of N
(b)
uni will

perform worse then what is shown, i.e., that the variance
var
(
N

(b)
uni

)
in (33) represents a lower bound on the attainable

performance of actual implementations of N (b)
uni .

VIII. CONCLUSIONS

We aimed at improving the effectiveness of topology
inference techniques that aggregate information using max-
consensus schemes, starting from the consideration that
agents exchange information that is intrinsically quantized.
We thus departed from the literature, that usually analyzes
schemes based on lexicographic max-consensus operations,
and considered strategies that are based on bitwise max-
operations.

In particular, we considered frequentist assumptions on the
estimand (i.e., we considered the estimand network size N
to be a deterministic, unknown but fixed quantity) and then
characterized that particular estimation scheme where each
bit of the information generated during the initialization of
the algorithm is generated independently. We notice that the
frequentist assumption is fundamental for our discoveries,
since it leads to design the information generation scheme
so that the final a-consensus quantity has maximal Fisher
information content – a property that we found to hold when
each bit is generated as an i.i.d. Bernoulli trial.

Characterizing the resulting estimation scheme in terms
of its statistical performance shows then what we consider
being the major contribution of this manuscript: bitwise max-
operations are meaningful to build practical estimators, since
their MSE is often favorable against the MSEs of estimators
based on lexicographic computations of maxima (given the
same number of bits exchanged during the consensus proto-
col). Nonetheless the bitwise scheme seems to be not always
favorable, since lexicographic strategies potentially perform
better for small network sizes N .

Our major result thus opens more questions than how
many it closes: first of all, it calls for a precise analytical
characterization of when bitwise-max strategies are better
than lexicographic ones. Moreover, it calls for exploring also
Bayesian approaches, where the estimand N is assumed to
be a r.v. with its own prior distribution. Indeed we noticed
that having a good initial guess of the estimand N can be
exploited to direct the generation of the initial information,



and leads to final estimates with better statistical indexes.
Bayesian scenarios are also intrinsically connected to practi-
cal situations, e.g., when estimation rounds are continuously
repeated for network monitoring purposes so that information
on the estimand is accumulated from one step to the next one.
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