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Abstract— We search for the Markov chain with the optimal
mixing rate where transitions are restricted to happen along
a cycle of the states. We show that homogeneous, reversible
chains are locally optimal for perturbations that make them
inhomogeneous and non-reversible. Moreover, we show the
optimality holds globally if only a single type of perturbation
(either inhomogeneous or non-reversible) is applied. However,
we conjecture global optimality holds for mixed perturbations
as well, which is backed by simulation results. This paper
complements previous results on bounds for mixing times of
general Markov chains on the cycle [1].

I. INTRODUCTION

Markov chains appear as the essential building block
for several applications, mostly targeting a randomized
approach. Complicated simulations often benefit from the
Markov chain Monte Carlo framework, see Metropolis et al.
[2], Hastings [3] and Jerrum [4]. Distributed systems use av-
erage consensus for collaborative computation, Olfati-Saber
et al. [5] or Blondel et al. [6]. Similarly for networked control
systems, like flocking in Reynolds [7], these are all also often
based on Markov chain techniques. The performance of such
applications heavily rely on utilizing a proper Markov chain
with good mixing properties, see Olshevsky, Tsitsiklis [8]
and Boyd et al. [9] for details. In this paper we study the
challenge of optimizing this performance for the instructional
case when the connection graph forms a cycle.

Although sometimes we can only analyze a given Markov
chain, often we have the freedom to choose it according to
our taste, given some constraints on the allowed transitions.
It is a very natural approach to search for the one with
the best performance. However, as we will see, finding the
optimal chain is quite hard even in the simplest setting.
A Markov chain is efficient if it quickly approaches its
stationary distribution regardless of the initial condition. We
want to capture this speed via the asymptotic rate given as

γ̃ = −max
x

lim sup
k→∞

1

k
log ‖xP k − π‖, (1)

where x ranges through possible starting distributions, P is
the transition matrix, and π is the stationary distribution.
The larger this is, the faster the Markov chain mixes. This
is very straightforward to characterize given the eigenvalues
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1 = λ1, λ2, . . . , λn. By defining the spectral gap as

γ = 1−max
λi 6=1
|λi|,

we get a quantity that is essentially the same as the rate γ̃
defined above in (1) (the ratio γ/γ̃ is asymptotically 1 as they
approach 0, see [10] for a general introduction on Markov
chains). Maximizing γ for a given connectivity graph is not
an easy task in general. Computational schemes exists to
formulate the problem as an SDP, see Boyd et al. [11],[12].
However, for these methods we need to additionally impose
that the Markov chain must be reversible. By reversibility
we mean

πiPij = πjPji, ∀i, j.

This signifies a certain symmetry: on every edge, transitions
occur with the same frequency in the two directions. The
final goal would be to get an analytic solution, without
assuming the technical requirement of reversibility.

In this paper we target this ambitious goal for the simplest
case. Assume the connectivity graph is a cycle on the
n nodes. The simplest Markov chain to consider is the
symmetric random walk, where every transition happens
with a predefined probability d and the chain stays put with
probability 1 − 2d. It is well known that the spectral gap
of the symmetric random walk is Θ(1/n2). Previous work
[1] shows that the mixing time can be at most constant
factor better for any other Markov chain. Now we want
to show that the symmetric random walk is actually the
best possible choice. To do this, we start with benchmark
Markov chains. We choose those which are reversible and
which are homogeneous, meaning that the transition matrix
P is invariant under cyclic permutation of the nodes. We
then investigate the effect of perturbations which cause to
lose reversibility, homogeneity, or both. We will show that
reversible homogeneous Markov chains are globally optimal
if only one type of perturbation is allowed and they are
at least locally optimal when both types of perturbations
are present. Moreover, numerical experiments suggests that
global optimality also holds in this general case.

In the end, we demonstrate that there is no hope to speed
up a symmetric random walk on the cycle to improve the
mixing rate, we need to enrich the set of possible transitions
in order to achieve this.

The rest of the paper is organized as follows. In Sec-
tion II we introduce the tools required, also identifying the
inhomogeneity and non-reversibility in the transition matrix.
In Section III we analyze reversible homogeneous Markov
chains and find the fastest among them. Then in Section IV
we present the optimality results for different perturbations.



We complement our results with numerical simulations in
Section V, finally we conclude in Section VI.

II. PRELIMINARIES

We focus our attention to Markov chains on a cycle.
Therefore we consider the set S of transition matrices of
the type

S =


a1 b1 cn
c1 a2 b2

. . . . . . . . .
. . . . . . bn−1

bn cn−1 an

 (2)

where moreover S is non-negative and doubly stochastic, i.e.

eTS = eT , eTST = eT , eT := [1, 1, . . . , 1].

We want to capture separately the inhomogeneity and
the non-reversibility of these Markov chains. First, among
the matrices of S we select the subset S0 of reversible,
homogeneous transition matrices. These have the form

S0(d) =


1− 2d d d
d 1− 2d d

. . . . . . . . .
. . . . . . d

d d 1− 2d

 ,

0 ≤ d ≤ 1

2
.

(3)

As we will see soon, the two types of perturbations corre-
spond to adding some element from two sets of matrices.
First, inhomogeneity will be captured by adding an element
from the set H of the following (symmetric) matrices:

−δn − δ1 δ1 δn
δ1 −δ1 − δ2 δ2

. . . . . .
. . . δn−1

δn δn−1 −δn−1 − δn

 ,
∑
i

δi = 0.

(4)

The non-reversibility effect will be represented by a single
matrix R as follows:

R =


0 1 −1
−1 0 1

. . . . . . . . .
. . . . . . −1

1 −1 0

 . (5)

We show that it is indeed possible to separate the inhomo-
geneous and non-reversible effects from the homogeneous
reversible part. The following lemma is an extension of
Lemma 1 of [1].

Lemma 1: Given S ∈ S there exist unique S0 ∈ S0, H ∈
H, r ∈ R such that

S = S0 +H + rR. (6)

Moreover, this decomposition is orthogonal w.r.t. the Frobe-
nius norm ‖.‖F .

Proof: Let us take the decomposition

S =
S + ST

2
+
S − ST

2
=: S̃ +Q.

We claim the part Q is of the form rR. Observe that

Q = −QT ,
eTQ = eTQT = 0T .

Let us denote Q12 by r, then by the skew-symmetry we get
Q21 = −r, and based on the row sums we further arrive at
Q23 = r. By repeating this argument we finally get Q = rR.

The remaining part S̃ is symmetric. Choose d such that
1−2d = 1

n tr(S̃). It is easy to verify that 0 ≤ d ≤ 1/2. Take
S0 = S0(d) using this d and define H = S̃ − S0. Clearly
S0 ∈ S0 by explicitly defining it this way. We need to show
H ∈ H. Both S̃ and S0 are doubly stochastic and symmetric
thus we have

eTH = eTHT = 0T ,

H = HT .

Moreover, the definition of d asserts that the sum of the
diagonal of H is 0. These imply H ∈ H.

It remains to show the decomposition is orthogonal. The
inner product associated to the Frobenius norm is 〈A,B〉F =∑
i,j Āi,jBi,j . Clearly 〈S0, R〉F = 〈H,R〉F = 0 because of

the symmetry and skew-symmetry of the matrices. We also
have 〈S0, H〉F = (1 + 4d)

∑
i δi = 0.

III. REVERSIBLE HOMOGENEOUS MARKOV CHAINS

It is a simple exercise to compute the spectral gap for
the reversible homogeneous matrices in S0 and to find the
optimal one among them as shown below.

Proposition 1: The spectral gap of a matrix S0(d) ∈ S0
is

γ = min

(
2d

(
1− cos

2π

n

)
,

2− 2d

(
1− cos

2πdn+1
2 e

n

))
.

Among the matrices in S0 we get the largest spectral gap for
some d = 1

2 +O
(

1
n2

)
. This optimal spectral gap is

γ =
2π2

n2
+O

(
1

n4

)
.

Proof: Since all the matrices of S0 are circulant
matrices, the eigenvectors are the columns of

W :=


1 1 1 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2n−2

...
...

...
. . .

...
1 ωn−1 ω2n−2 . . . ω(n−1)2

 ,
ω := exp(2πi/n).

(7)



For general properties of circulant matrices, see [13]. Also,
the eigenvalues can be obtained by multiplying the first row
of our matrix S0(d) with W :

[λ1, λ2, . . . , λn] = [1− 2d, d, 0, . . . , 0, d]W.

In our case we get

λk = 1− 2d

(
1− cos

2π(k − 1)

n

)
.

All these eigenvalues are real, therefore the spectral gap γ
is determined by the eigenvalue λ2, . . . , λn which is closest
to 1 or −1. It is thus easy to check that

γ = min

(
2d

(
1− cos

2π

n

)
, 2− 2d

(
1− cos

2πdn+1
2 e

n

))
.

We get the maximal γ by the proper choice of d when the
two terms in the minimization become equal. This happens
when

d =
1

1− cos 2π
n + 1− cos

2πdn+1
2 e
n

=
1

2
+O

(
1

n2

)
.

Plugging this back to the expression of γ we arrive at

γ =

(
1 +O

(
1

n2

))(
1− cos

2π

n

)
=

2π2

n2
+O

(
1

n4

)
.

IV. LOCAL BEHAVIOR

In this section we investigate the effect of different types
of perturbations applied to reversible, homogeneous Markov
chains.

Proposition 2: For any S0 ∈ S0 homogeneous reversible
transition matrix and r ∈ R we have

γ(S0 + rR) ≤ γ(S0),

as long as S0 + rR ∈ S , in other words as long as it stays
in the domain of doubly stochastic matrices. The matrix R
is the one corresponding to non-reversible perturbations as
defined in (5).

Proof: Both S0 and rR are circulant matrices so they
share eigenvectors. Consequently, the eigenvalues of S0+rR
are the sums of the corresponding eigenvalues of S0 and
rR. Note that rR has only imaginary eigenvalues (and 0).
The modulus of the real eigenvalues of S0 can only increase
by adding imaginary numbers, so the spectral gap can only
decrease.

Proposition 3: For any S0 ∈ S0 and H ∈ H perturbation
matrix for inhomogeneity we have

γ(S0 +H) ≤ γ(S0),

as long as S0 +H ∈ S.
Proof: Notice that when performing unitary similarity

transformations on matrices, their orthogonality is preserved
(when using the inner product for complex matrices). In
particular, the Discrete Fourier Transform performed via W

(as defined in (7)) maps pairs of orthogonal matrices to other
pairs of orthogonal matrices. Let us use

1

n
W ∗(S0 +H)W =

1

n
W ∗S0W +

1

n
W ∗HW =: Ŝ0 + Ĥ.

We know that the set Ŝ0 = {Ŝ0 : S0 ∈ S0} is a subset
of diagonal matrices (since S0 is circulant). Observe that H
is orthogonal to not only S0, but to all circulant matrices,
as the sum of elements is 0 along the diagonal and all its
circularly shifted variants. Therefore Ĥ = {Ĥ} is orthogonal
to all diagonal matrices. This means that Ĥ is zero on the
diagonal. Moreover, it follows from (4) that the first column
and row of Ĥ is zero, and also that it is Hermitian since H
is symmetric. We thus have that

Ŝ0 =


1 0 0 . . . 0
0 λ2 0 . . . 0

0 0 λ3
. . .

...
...

...
. . . . . . 0

0 0 . . . 0 λn

 , (8)

Ĥ =


0 0 0 . . . 0
0 0 × . . . ×

0 × 0
. . .

...
...

...
. . . . . . ×

0 × . . . × 0

 . (9)

To bound the spectral gap we need to evaluate the spectral
radius of the (n−1)× (n−1) trailing submatrix of Ŝ0 + Ĥ ,
which we denote by

S̃0 :=


λ2 0 . . . 0

0 λ3
. . .

...
...

. . . . . . 0
0 . . . 0 λn

 , (10)

H̃ :=


0 × . . . ×

× 0
. . .

...
...

. . . . . . ×
× . . . × 0

 . (11)

We claim that the spectrum of S̃0 lies in the interior
of the spectral radius of S̃0 + H̃ . Indeed, for ei =
(0, 0, . . . , 1, . . . , 0)T ∈ Rn−1,

(S̃0 + H̃)ei = λi+1ei + vi.

Here we see 〈ei, vi〉 = 0 just by checking where the non-zero
entries are in both vectors. This implies

‖(S̃0 + H̃)ei‖2 = ‖λi+1ei + vi‖2 ≥ |λi+1|.

For Hermitian matrices the largest eigenvalue modulus and
the norm coincide, so we conclude that the largest eigenvalue
modulus of S̃0 + H̃ is at least maxni=2 |λi|. The claim of the
proposition follows.

Theorem 4: For any S0 ∈ S0 the spectral gap γ(.) has a
local optimum at S0 in the domain (S0 +H+ RR) ∩ S .



Moreover it is a strong local optimum with a minor excep-
tion: if n is even and tr(S0) = O

(
1
n

)
, γ(.) is locally constant

for rR perturbations.
Proof: The eigenvalues determining γ(S0) can be the

largest ones, λ2 = λn, remember the indexing used in
Proposition 1. It could also be the smallest one(s), λn

2 +1

or λn−1
2

and λn+1
2

(depending on the parity of n), but for
simplicity, we assume λ2 = λn are the ones determining
γ(S0), a similar argument works in the other cases. In the
end, we want to show that the moduli |λ2| = |λn| increase
for any small perturbation in H+ RR. Note that the matrix
S(t) remains a real matrix, so we still have λ2 = λ̄n through
any perturbation.

The function |λ2|2 = λ2λn is smooth at S0 as a function
of the perturbations, see [14] for an in-depth discussion on
perturbation theory. We show that it is first order constant
and that the Hessian is positive definite. We may write the
expression of interest as

|λ2|2 = λ̂2 + (Imλ2)2, (12)

where λ̂ is tracking the eigenvalue average λ̂ := (λ2+λn)/2.
At first let us restrict our attention to one-dimensional

perturbations in an arbitrary direction. Let us fix H ∈ H
and r ∈ R and define the matrix function

S(t) = S0 + t(H + rR) =: S0 + tT.

We apply the theory of perturbations of linear operators de-
scribed in Kato ([14] section II.2). We use Kato’s expansion
of the “λ̂ group” as a function of t:

λ̂(t) = λ̂+ tλ̂(1) + t2λ̂(2) + . . . ,

λ(1) =
1

2
trPTP,

λ(2) = −1

2
tr(PTPTQ+ PTQTP +QTPTP ),

(13)

where P is the (constant) orthogonal projection to the
eigenspace of the double eigenvalue λ̂ = λ2 = λn of S0,
T is the perturbation matrix H + rR and Q is the reduced
resolvent (I −P )(S0 − λ̂I)−1(I −P ). Before going further
we simplify the formulas by claiming

trPTPTQ = trTPTQP = tr 0 = 0.

The first equation follows from trAB = trBA, the second
one from QP = PQ = 0. This cancels the first term of λ̂(2),
and a similar argument works for the third term.

In order to evaluate λ̂(1), λ̂(2) we change bases using
the W defined before, similarly as we did in the proof of
Proposition 3. We get the matrices described as follows.
Recall the two we identified earlier:

Ŝ0 = diag(1, λ2, λ3, . . . , λn),

Ĥ =


0 0 0 . . . 0
0 0 × . . . ×

0 × 0
. . .

...
...

...
. . . . . . ×

0 × . . . × 0

 .

Notice that R is circulant, so R̂ is diagonal. Moreover,
it is a real skew-symmetric matrix, leading to imaginary
eigenvalues in pairs (or 0).

rR̂ := diag(0, ix1, ix2, . . . ,−ix2,−ix1),

x1, x2, . . . ∈ R,
T̂ := Ĥ + rR̂.

The matrix P is projecting to some eigenspace which means
some ones and some zeros on the diagonal once it is written
in the basis of eigenvectors.

P̂ := diag(0, 1, 0, 0, . . . , 0, 1).

Similarly, Q is basically the inverse of S0−λ̂I but disregard-
ing the eigenspace corresponding to λ̂. This is again simple
to describe in the eigenvector basis, in the following way:

Q̂ := diag((1− λ̂)−1, 0, (λ3 − λ̂)−1,

. . . , (λn−1 − λ̂)−1, 0).

With this notation, we get

λ(1) =
1

2
tr P̂ T̂ P̂ , λ(2) = −1

2
tr P̂ T̂ Q̂T̂ P̂ .

In P̂ T̂ P̂ only the terms ix1,−ix1 remain on the diagonal,
therefore λ̂(1) = 0. Simple expansion of the matrix product
P̂ T̂ Q̂T̂ P̂ shows that

tr P̂ T̂ Q̂T̂ P̂ =

n−1∑
k=3

Ĥ2,k(λk − λ̂)−1Ĥk,2 (14)

+

n−1∑
k=3

Ĥn,k(λk − λ̂)−1Ĥk,n. (15)

By the choice of λ̂ we have λk < λ̂ for k = 3, 4, . . . , n− 1.
Note that Ĥ is Hermitian, so Ĥl,kĤk,l ≥ 0, therefore all the
terms of (14) are non-positive. We need to check if it can
be zero. This can only happen if all Ĥ2,k, Ĥk,2, Ĥn,k, Ĥk,n

are 0 for k = 3, . . . , n− 1. In this case the second and last
row and column of Ĥ are zero, thus all the rows of H are
orthogonal to the second and last row of W . This means

ω−1δi − (δi − δi+1) + ωδi+1 = 0, i = 1, . . . , n.

Knowing all δi are real and they sum to 0 this can happen
only if they are all 0, consequently H = 0.

The above reasoning works for any perturbation, thus
together with (13) we get

λ̂(2) ≥ 0

in general and equality occurs only when the perturbation is
of the form rR. This shows that the Hessian of λ̂ is positive
semidefinite and is only singular along the axis of rR.

In our way to understand the local behaviour of |λ2|2,
we have so far investigated the first term of (12). Let us
turn our attention to the second term, (Imλ2)2. It is a non-
negative smooth function which is 0 at S0, so it must have
zero derivative and positive semidefinite Hessian. Moreover,
the Hessian is positive definite in the direction of rR as



Imλ2 changes linearly (with nonzero rate) in this direction
(see the proof of Proposition IV).

To put the pieces together, we check again the expression

|λ2|2 = λ̂2 + (Imλ2)2.

We have seen that the two functions on the right have zero
derivative and positive semidefinite Hessians. Furthermore,
the Hessian of the second term is strictly positive definite in
the only direction for which the Hessian of the first term is
singular. Consequently the sum is positive definite.

Let us comment on the other cases where we have to
consider other eigenvalues as the ones with the largest
moduli. Whenever these are λn−1

2
and λn+1

2
, the same

reasoning applies. When it happens to be λn
2 +1, we find that

Imλn
2 +1 is first order constant for rR perturbations. This is

the case described as an exception in the theorem statement.

V. NUMERICAL RESULTS

Simulation output is in line with our claims, and even
the global optimality of homogeneous reversible chains seem
justifiable. We start with S0(1/3) for 100 nodes. This exam-
ple has all positive entries at the allowed positions, thus it
allows for a wide range of perturbations. We take 2 000 000
random directions for perturbations and modify the matrix
in each of these directions until we exit the domain S.
In Figure 1 we plot the resulting spectral gaps against the
Frobenius norm of the perturbation. We see a clear decrease
in the spectral gap as me move away from S0.

Fig. 1: Spectral gap of the perturbed matrix for 2 000 000
random perturbation directions.

There is a noisy part of the graph that seems surprising
at first. In fact, as we generate random directions for the
perturbations, only a very few of these directions allow a
perturbation of large norm while staying in S. As a result,
when we move towards higher norms of perturbations, we
see the aggregated results of less and less instances.

VI. CONCLUSIONS

In this paper we investigated the fastest Markov chain
problem for the simplest non-trivial case, a cycle with n
nodes.

We showed that any transition matrix can be neatly decom-
posed into a reversible homogeneous part and two separate
perturbations, one responsible for breaking homogeneity, the
other causing non-reversibility.

We presented partial results for spectral gap comparison.
We have proven that reversible homogeneous Markov chains
are globally optimal if we restrict perturbations to only one
of the two types. Whenever both types of perturbations are
present, we can still show local optimality of the reversible
homogeneous Markov chains. Still, numerical simulations
suggest that global optimality also holds in this more general
setting.

The analytic confirmation of this general case remains
for future research. Also, it would be interesting to extend
the analysis for more complex connectivity graphs. There
are examples where non-reversible Markov chains appear
to be clearly faster than the best reversible ones [15], for
example, when

√
n random edges are added to the cycle.

Consequently, getting rid of the reversibility condition would
have a substantial impact on the performance we can achieve.
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