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Abstract— This work is a first step towards the study of
open multi-agent systems: systems that agents can join and
leave, and where arrivals and departures happen on a time-
scale comparable to that of the process running on the system.
We study the behavior of the average pairwise gossip algorithm
on such open systems, and provide an exact characterization of
its evolution in terms of three scale-independent quantities that
are shown to be solutions of a 3-dimensional linear dynamical
system. We then focus on two particular cases: one where each
departure is immediately followed by an arrival, and one where
agents keep arriving without ever leaving the system, so that
the number of agents grows unbounded.

I. INTRODUCTION

Among the most frequently cited properties of multi-agent
systems are their flexibility and scalability. In particular, they
are deemed robust to the disappearance of agents and able
to adapt to the arrival of new agents. Think for instance of
a flock of birds, to the internet, or to an ad hoc network
of mobile devices. Yet most results on multi-agent systems
characterize their (often asymptotic) properties under the
assumption that their composition remains unchanged. This
apparent contradiction can be interpreted as an implicit
assumption that the time-scale of the process considered
is very different from that of the agents arrivals and de-
partures But this assumption may not necessarily hold for
very large systems; convergence speed typically decreases
when the system size grows, while the frequency of arrivals
departures would be expected to increase. In living systems,
the birth frequency is indeed related to the population size.
Similarly, in computer networks, the frequency of failures
is proportional to the number of nodes in the network,
and in many cases the same is true for the frequency of
new connections. The assumption could also be questioned
in chaotic environments where communications would be
difficult and infrequent, resulting in a slow convergence rate,
while agent malfunction would be more likely.

Hence we consider here open multi-agent systems, where
agents keep arriving and/or leaving during the execution of
the process considered.

Repeated arrivals and departures result in important dif-
ferences in the analysis or the design of open multi-agent
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systems and cause several challenges:
State dimension: Every arrival results in an increase of the

system state dimension, and every departure in a decrease
of the system state dimension. Analyzing the evolution of
the system state is therefore much more challenging than in
“closed systems”.

Absence of usual “convergence:” Being continuously per-
turbed by departures and arrivals, open systems will never
asymptotically converge to a specific state. Rather, they may
approach some form of steady state behavior, which can be
characterized by some relevant descriptive quantities. As in
classical control in the presence of perturbations, the choice
of the measures is not neutral, and different descriptive
quantities may behave in very different way. Think for
example of H1 or H2 criteria in classical control.

Robustness and quality of the algorithms: The departure
of an agent will almost inevitably affect the execution of
any algorithm and may result in a loss of information,
especially if the agent does not send a last message warning
about its departure. Many algorithms designed to achieve a
specific purpose, e.g. computing the shortest path between
two nodes in a network, rely on the information held by all
agents. Hence, these algorithms must first of all be robust
to departures or arrivals. On the other hand, they do not
need to be exact: Obtaining an exact result while the system
composition keeps changing will indeed often be impossible.
So a good algorithm should constantly produce results suf-
ficiently close to the value to be computed. But obtaining
that exact value in case the system composition were to
stop changing may not be necessary, and this additional
requirement could result in a loss of efficiency. This aspect
is related to, but different from, the notion of self-stabilizing
decentralized algorithms in computer science [1], [4]. Self-
stabilizing algorithms must indeed produce an exact value
once agents stop arriving or leaving, but are not required
to achieve any specific performance while these arrivals and
departures take place.

A. Contribution

We report here preliminary results of a ongoing study on
open multi-agent systems. As a first step towards tackling
the complexity of their analysis, we study the behavior of the
discrete-time average pairwise gossip algorithm [2] with all-
to-all (possible) communications, focusing on systems where
departures and arrival take place at pre-determined times, see
Section II for a complete definition.

We analyze the system evolution in terms of three “scale-
independant” quantities, namely the expected mean Ex̄, the



expected square mean E(x̄2) and the expected variance
E(x2 − x̄2) of the system state x. We show in Section III
that these quantities can be characterized exactly, and that
they evolve according to an associated 3-dimensional linear
system.

In Section IV, we analyze in detail the case of systems
with periodic replacements: a departure immediately fol-
lowed by an arrival takes place every K time steps. We
then focus in Section V on growing systems that agent
keep joining without ever leaving. It will in particular be
shown that periodic arrivals or replacements can result in a
significant performance decrease in terms of variance.

B. Other works on open multi-agent systems

The possibility of agents joining or leaving the system has
been recognized in computer science, and specific architec-
tures have for example been proposed to deploy large-scale
open multi-agent systems, see e.g. THOMAS project [3].
There also exist mechanisms allowing distributed computa-
tion processes to cope with the shut down of certain nodes
or to take advantage of the arrival of new nodes.

Frameworks similar to open multi-agent arrivals have
also been considered in the context of trust and reputation
computation, motivated by the need to determine which
arriving agents may be considered reliable, see e.g. the model
FIRE [6]. However, the study of these algorithms behavior
is mostly empirical.

Varying compositions were also studied in the context of
self-stabilizing population protocols [1], [4], where inter-
acting agents (typically finite-state machines) can undergo
temporary or permanent failures, which can respectively
represent the replacement or the departure of an agent.
The objective in those works is to design algorithms that
eventually stabilize on the desired answer if the system
composition stops changing, i.e. once the system has become
“closed”.

Opinion dynamics models with arrivals and departures
have also been empirically studied in [7], [9].

II. SYSTEM DESCRIPTION

As explained in the introduction, we consider a multi-
agent system whose composition evolves with time. We use
integers to label the agents. We denote by N (t) ⊂ N the
set of agents present in the system at time t, and by n(t)
the number of agents present at time t, i.e. the cardinality of
N (t). Each agent i holds a value xi(t) ∈ <, and we make
no assumptions about the values held at t = 0 by the agents
initially present in the system.

We consider a discrete evolution of the time t ∈ N. It
is possible to interpret the discrete time t as a sampling
of a continuous time variable. Samples then correspond to
instants where an event occurred. We will comment later
on this interpretation and on its implication on the scaling
of different parameters. At each time t, one of three events
may occur:

(a) Gossip: Two agents i, j ∈ N (t) are uniformly ran-
domly and independently selected among the n(t) agents

present in the system (with in particular the possibility of
selecting twice the same agent), and they update their values
xi, xj by performing a pairwise average:

xi(t+ 1) = xj(t+ 1) =
xi(t) + xj(t)

2
. (1)

(b) Departure: One uniformly randomly selected agent i ∈
N (t) leaves the system, so that N (t+ 1) = N (t) \ {i} and
n(t+ 1) = n(t)− 1. This event may only occur if n(t) > 0.

(c) Arrival: One “new” agent i 6∈ N (s), ∀s ≤ t, joins the
system, so that N (t + 1) = N (t) ∪ i and n(t + 1) = n(t).
The initial value xi(t+1) ∈ < of the arriving agent is drawn
independently from a constant distribution D with mean 0
and variance σ2.

Note that all the random events above are assumed in-
dependent of each other. In addition, we will sometimes
consider for simplicity a “replacement” event, which consists
of the instantaneous combination of a departure and an
arrival: an agent leaves the system and is instantaneously
replaced.

Scale-independent quantities of interest

The aim of the study is to characterize the disagreement
among agents, i.e. the distance to consensus. We say that
consensus is reached asymptotically when

lim
t→∞

max
(i,j)∈N (t)2

|xi(t)− xj(t)| = 0. (2)

If the system dynamics does not include agent departures
or arrivals, it is known that the gossip process we consider
leads to consensus, see e.g. [2], [5]. The objective here
is to understand how agent arrivals and departures impact
the disagreement among agents. To do so, we study several
quantities of interest. Because the system size may change
significantly with time, we focus on scale-independent quan-
tities, i.e. quantities whose values is independent of the size
of the system. We consider in particular the empirical state
mean and variance defined as

x̄ = 1
n

∑
i∈N

xi,

Var(x) = 1
n

∑
i∈N

(xi − x̄)2,
(3)

respectively, where references to time were removed to
lighten the notation. Our study will focus on the evolution
of EVar(x), which will also require monitoring E(x̄)2.
When new agents keep arriving it is impossible to achieve
asymptotic consensus in the sense of (2), because the new
agent’s value will with high probability be different from
the value of the agents already present in the system.
The study of EVar(x) will allow us to see how “far” the
system will be from consensus. But we will see that in
certain systems whose sizes grow unbounded, we may have
limt→∞ EVar(x) = 0, corresponding to a form of “almost
consensus”.



III. CLOSED-FORM EVOLUTION OF THREE
SCALE-INDEPENDENT QUANTITIES

As explained in the previous section, we will analyze
the evolution of the expected variance, the expected square
mean, and to a lesser extend the expected mean. We show
in this section that for a given sequence of gossips, arrivals
and departures, these expected values evolve according to an
associated 3-dimensional linear system. We first successively
compute these variables after each type of event.

Stronger variations of the next lemma are available in
different earlier works, see e.g. [2], [5]. We provide its proof
in Appendix A for the sake of completeness.

Lemma 1 (Gossip): Suppose that a randomly selected pair
of agents engage in a gossip averaging according to equa-
tion (1). Let x be the state of the system before that
interaction, x′ its state after the interaction, and n the number
of agents. There holds

E(x̄′|x) = x̄,

E(x′
2|x) = x̄2,

E(Var(x′)|x) = (1− 1
n )Var(x).

(4)

Lemma 2 (Departure): Suppose that a randomly selected
agent departs from the system. Denote x the state before
departure, x′ the state after departure and n the number of
agents before departure. Then, there holds

E(x̄′|x) = x̄,

E(x′
2|x) = 1

(n−1)2 Var(x) + x̄2,

E(Var(x′)|x)) = (1− 1
(n−1)2 )Var(x).

(5)

Lemma 3 (Arrival): Suppose that an agent arrives into the
system. Denote x the state before arrival, x′ the state after
arrival and n the number of agents before arrival. Then, there
holds

E(x̄′|x) = n
n+1 x̄,

E(x′
2|x) = n2

(n+1)2 (x̄)2 + 1
(n+1)2σ

2

E(Var(x′)|x) = n
(n+1)2 (x̄)2 + n

n+1Var(x) + n
(n+1)2σ

2

(6)

Notice that if a system undergoes a departure followed
by an arrival, the number of agents n will not be the same
when applying Lemmas 2 and 3. The previous lemmas show
that the expected mean Ex̄ evolves independently of the two
other scale-independent quantities.

IV. FIXED SIZE SYSTEM WITH REPLACEMENTS

A. Description of the periodic evolution

As a first case study, we consider systems where the
number of agents is mostly constant: an agent leaving the
system is immediately replaced, and replacing a leaving
agents is the only circumstance under which an agent joins
the system. The number n of agents remains thus constant,
except during the instantaneous replacements of the leaving
agents. In addition, we suppose here that the timing of
these events is periodic: exactly K gossip events take place

between two replacements. Replacement occurs thus at all
times p(K + 1), p ∈ N and gossip events occur at times
p(K + 1) + g, p ∈ N, g ∈ {1, . . . ,K}. The evolution of the
agent values for a typical realization of this system with n =
5,K = 20 is represented in Figure 1(A), and the evolution
of the corresponding square mean value and variance is
shown in Figure 1(B). One can see that this particular system
periodically approaches a state of quasi-consensus before
being perturbed each time by the replacement of an agent.

B. Recurrence Relation

The next proposition shows that the evolution of the
expected mean, square mean and variance measured just after
the replacements can be described by a time-independent
stable linear iteration.

Proposition 1: Denote by x be the state of the system
at time p(K + 1) + 1 for some p ∈ N, a time just after
replacement (i.e. one departure immediately followed by an
arrival), and by x′ the state vector at time (p+1)(K+1)+1,
that is, K gossip iterations and one replacement later. There
holds

(
E(x̄′2|x)

E(Var(x′)|x)

)
=

1

n2

(
(n− 1)2 ρ
n− 1 (n2 − n− 1)ρ

)(
x̄2

Var(x)

)
+
σ2

n2

(
1

n− 1

)
(7)

and

E(x̄′|x) =

(
1− 1

n

)
x̄, (8)

where we remind that ρ = (1− 1
n )K is the contraction ratio

of K gossip iterations.
Moreover, the linear iterations (7) and (8) converge to a fixed
points.

Proof: The proof of iterations (7) and (8) immediately
follow from K applications of Lemma 1 followed by one ap-
plication of Lemma 2 and one of Lemma 3. The convergence
of (7) can be proved by observing that the matrix involved
is irreducible and row sub-stochastic [8, Section 8.2]. The
convergence of (8) is immediate.

The previous proposition can be read as a reccurence over
the expected quantities instead of the conditional expected
quantities by recalling that E(E(X|Y )) = E(X). We see
in (7) and (8) that the evolution of the expected mean is
decoupled from that of the expected square mean and that
of the variance. Moreover, the mean evolves exactly as if no
gossip was taking place. On the other hand, the evolution
of the variance and expected square mean are coupled, and
cannot be described independently of each other.

C. Steady state regime

The periodic departures and arrivals prevent the system
state x from converging. But we have seen in Proposition 1
that the expected mean, square mean and variance measured
after the replacements do converge, as can be seen on an
example in Figure 1(C). We provide in the next proposition



(A) A realization of trajectories
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Fig. 1. Illustration of an open system with periodic replacements as con-
sidered in Section IV: The system contains n = 5 agents and replacements
occur every K = 20 time-steps. Arriving agent values are drawn uniformly
in [− 1

2
, 1
2

] so that σ2 = 1
12

. (A) shows the evolution with time of the agents
values (in black) for a typical realization. Red circles highlight the departing
agents while the blue circles correspond to the newly arrived agents. (B)
shows the evolution of the variance (green) and square mean value (blue)
for the same realization. (C) shows the evolution of the expected variance
(green) and square mean value (blue) computed using Proposition 1 and
Lemma 1. The curves in (B) and (C) have been normalized by their maximal
values (max(x̄2) = 0.49, max(Var(x)) = 0.13, max(E(x̄2)) = 0.34,
max(E(Var(x))) = 0.11).

a closed-form expression of their asymptotic values, which
can be verified by direct computation.

Proposition 2: Iterations (7) and (8) asymptotically con-
verge to fixed points whose coordinates are

Ex̄|eq = 0,

EVar(x)|eq =
σ2

n

1− 1
n

(1− 1
2n )− ρ(1− 3

2n )
(9)

and

Ex̄2
∣∣
eq

=
σ2

2n

1− ρ(1 + 2
n )

1 + 1
2n − ρ(1 + 3

2n )
. (10)

We remind that the iterations in Proposition 1 concern the
quantities of interest immediately after the replacement, and
so are thus the steady state values given in (9) and (10) in
Proposition 2. Since the mean is not affected by the gossip
iterations, the expected mean square is constant between two
replacements and converges thus to the steady state value
(10). The expected variance, on the other hand, decreases
after each gossip iteration. It will thus not converge, but
asymptotically approach a periodic behavior, taking the
steady state value (11) immediately after the replacement,
and decaying then geometrically with a rate ρ until the next
replacement, as represented on an example in Figure 1(C).

1) Interpretation for extreme gossip/replacement ratios:
We first consider the case where no gossip iteration takes
place, which corresponds to taking ρ = 1 in iteration (7).
The steady state values given in Proposition 2 become

EVar(x)|eq = σ2

(
1− 1

n

)
, and Ex̄2

∣∣
eq

=
σ2

n
, (11)

which is indeed what one may expect, since ρ = 1 would
correspond to taking n i.i.d. random values with mean 0 and
variance σ2.

If on the other hand we were to let ρ→ 0, corresponding
to moving all agents values to their average before any
replacement, we would have

EVar(x)|eq =
σ2

n

n− 1

n− 1
2

, and Ex̄2
∣∣
eq

=
σ2

2n− 1
. (12)

The steady state value of Ex̄2 is lower than what we would
have obtained by taking n independent random values. To
shed some light on the specific value taken, we describe
an alternative direct way of re-obtaining it. Observe that the
average x̄(t) of the agents present in the system at time t can
also be expressed as a weighted average of the initial values
of all agents that are present at time t or have been present
at some time before t. Let us denote by x̃s the initial value
of the sth agent that joined the system, and ts the first time
at which it is present. The weight of the x̃s in the average
x̄(ts) at time ts is exactly 1

n , as the arriving agent has exactly
this value, and none of the other other n − 1 agent values
have been influenced by it. The weight of x̃s−1, however, is
smaller. That value was indeed distributed evenly between n



agents during the (perfectly averaging) gossip phase between
the arrivals of s− 1 and s, and one of these agents left the
system prior to the arrival of s. Hence the weight of x̃s−1 is
1
n (1− 1

n ). Similarly, one can verify that the weight of x̃s−2
is 1

n (1 − 1
n )2, the weight of x̃s−k is 1

n (1 − 1
n )k (assuming

there have been more than k arrivals since t = 0.) In steady
state, i.e., if the process has been running since −∞, the
average is thus

x̄(ts) =

s∑
k=−∞

1

n

(
1− 1

n

)s−k
x̃k =

∞∑
k=0

1

n

(
1− 1

n

)k
xs−k.

(13)
(During the transient situation, the infinite series is truncated

and the remaining weight is distributed evenly between the
values of the agents initially present in the system). One can
verify that the weights in (13) sum to 1. Using Ex̃k = 0 and
Ex2k = σ2 (there is indeed asymptotically no influence of
the agents initially present in the system and for which these
assumptions were not made), and using the independence
between the different x̃k, we obtain

E(x̄(ts))
2 =

∞∑
k=0

(
1

n

(
1− 1

n

)k)2

Ex2s−k

=
σ2

n2

∞∑
s=0

((
1− 1

n

)2
)k

=
σ2

n2
1

1−
(
1− 1

n

)2 =
σ2

2n− 1
,

which corresponds to the steady state obtained in (12). The
smaller expected square average in the presence of perfectly
averaging gossip (ρ = 0) is thus explained by the influence
of the initial values of all agents having been present in the
system at some point. By contrast, these had no influence
when no gossips are performed, i.e. when ρ = 1. A similar
phenomenon occurs if ρ ∈ (0, 1), also leading to an expected
square mean Ex̄2 ≤ σ2

n due to influence of agents no longer
present in the system, but its direct analysis is more complex.
We finally note that the steady state expected variance in (12)
is entirely explained by the arrival of the new agent, whose
value is different from the common value of the n−1 agents
already present.

2) Interpretation for large-scale systems: We now assume
the number of agents n to be very large, while keeping K
constant. To understand why K should be kept constant,
suppose that our discrete time-instants t correspond to the
sampling of a continuous time variable τ at the instants
at which some events occur. A natural assumption, though
clearly not the only possible one, is that the number of
replacements per unit of time τ scales linearly with n. We can
also expect the number of gossip iterations in which a given
agent is involved per unit of time τ to be independent of the
system size (at least for large n), so that the total number
of gossip iterations taking place per unit of time τ would
also scale linearly with n. As a result, the ratio between the
number gossip iterations per unit of time and the number of

replacements per unit of time, which is represented by K,
should be independent of n.

Remember now that ρ = (1− 1
n )K . Hence for large n and

fixed K, we have ρ = 1 − K
n + o( 1

n ), and the steady state
expected square mean (10) becomes

Ex̄2
∣∣
eq

=
σ2

2n

1−
(
1− K

n + o( 1
n )
)

(1 + 2
n )

1 + 1
2n −

(
1− K

n + o( 1
n )
)

(1 + 3
2n )

=
σ2

2n

− 2
n + K

n + o( 1
n )

1
2n −

3
2n + K

n + o( 1
n )

=
σ2

2n

K − 2 + o(1)

K − 1 + o(1)
.

As a consequence,

Ex̄2
∣∣
eq
∼n→+∞

σ2

2n

K − 2

K − 1
,

which again is smaller than what would have been obtained
by averaging n independent random variables with mean 0
and variance σ2. This is again due to the influence of agents
no longer present in the system, as in the case ρ = 0 in
Section IV-C.1.

Similarly, for large n, the expected variance (9) becomes

EVar(x)|eq =
σ2

n

1− 1
n

(1− 1
2n )− (1− K

n + o( 1
n ))(1− 3

2n )

=
σ2

n

1− 1
n

1− 1
2n − 1 + 3

2n + K
n (1− 3

2n ) + o( 1
n )

=
σ2

n

1− 1
n

1
n + K

n + o( 1
n )

= σ2 1− 1
n

1 +K + o(1)
.

As a consequence,

lim
n→+∞

EVar(x)|eq =
σ2

1 +K
.

For large n and constant K, the steady-state variance is
thus inversely proportional to the number of gossip iterations
taking place before an agent replacement. Moreover, suppose
agent i is randomly selected among those present in the
system at a given time. Then there holds at any time Ex2i =
Ex̄2 + EVar(x). For large n, the steady state value of Ex2i
is thus mostly driven by the variance:

lim
n→+∞

Ex2i
∣∣
eq

=
σ2

(1 +K)
. (14)

Note that xi could be considered as an estimate of the
mean value of the distribution according to which the initial
values of arriving agents are drawn, which in our case is
0. The limit (14) would then mean that for large n, a
random agent estimate would be as accurate as the average
of K+1 independent samples of that distribution, which can
be considered a poor performance since one can verify that
a randomly selected agent has (for large t) on average been
involved in 2K gossip iterations. We will see later that this
number of gossip iterations would indeed result in a much
lower variance in comparable “closed systems”.

Note finally that EVar(x)|eq above stands for the limit
of the expected variance just after a replacement. Instead,



the limit of the expected variance just before the next
replacement will be (1 − 1

n )K σ2

(1+K) which converges to
σ2

(1+K) when n is large for constant K
Since initial states have all been drawn independently from

the same initial distribution, at any time it holds Ex2i = Ex2,
so that the expected square value is Ex2i = Ex̄2 + EVar(x).
Observe that for large n, the steady state of this value is
mostly driven by the variance and

lim
n→+∞

Ex2i
∣∣
eq

=
σ2

(1 +K)
.

The random agent estimate of the external distribution mean
0 is thus comparable to an estimate obtained by averaging
K + 1 independent samples.

V. GROWING SYSTEM WITHOUT DEPARTURE

We focus now on systems whose sizes grow unbounded
because new agents keep joining while no agent ever leaves.
Formally, the system is initially empty, and a new agent (with
label n) joins the system at every time tn − 1, for some
sequence of times 1 = t1 < t2 < . . . . As a consequence, the
number of agents in the system is n(tn − 1) = n − 1 and
n(tn) = n. Gossip steps take place at all times other than
tn − 1, n ∈ N. As in the rest of this work, we assume that
the initial value xn(tn) of every agent is a random variable
with Exn(tn) = 0,Exn(tn)2 = σ2. We let in addition Kn =
tn+1 − tn − 1 be the number of gossip steps taking place
between the arrival of agent n and n + 1, and will discuss
later different possible dependence of Kn on n.

We focus on the values of the expected square mean and
variance just after the arrivals of the agents, i.e. at times tn.
As in Section IV, their evolution can be described by a two-
dimensional linear system. This system is here time-varying
because n is not constant, but the absence of departures
makes it triangular, and hence easier to analyze. It follows
indeed from Lemmas 1 and 3 (or from a direct computation)
that the expected square mean is Ex̄2(tn) = σ2

n , which
decays thus to 0 when n grows as could be expected. The
same lemmas imply that the expected variance satisfies

(n+ 1)EVar(x(tn+1)) = nEVar(x(tn))ρn +
n

(n+ 1)
(Ex̄2(tn) + σ2),

with ρn = (1 − 1
n )Kn . Reintroducing Ex̄2(tn) = σ2

n yields
then

(n+ 1)EVar(x(tn+1)) = nEVar(x(tn))ρn + σ2. (15)

This recursion allows obtaining the following theorem
characterizing the asymptotic variance, and proved in Ap-
pendix B.

Theorem 1: Consider the growing system without depar-
ture, and remember that Kn is the number of gossips between
the arrival of agents n and n+ 1. Let K ≥ 1.
(i) If Kn = K for all n ≥ n0 for some n0, then

lim
n→∞

EVar(x(tn)) =
σ2

K + 1
.

(ii) If limn→∞Kn =∞, then limn→∞ EVar(x(tn)) = 0.

Theorem 1(ii) shows that the system essentially converges
to a consensus as soon as Kn grows unbounded, even if this
growth is very slow, and even if the number Kn/n of gossips
per agent between two consecutive arrivals tends to 0. Note,
however, that each agent gets involved (with probability 1)
in infinitely many gossips when Kn → ∞. The expected
number of gossips in which an agent has been involved at
time tn is indeed 2 1

n

∑n
m=1Km, which grows unbounded.

By contrast, in the case of a fixed Kn = K agents have on
average been involved in 2 1

n

∑n
m=1Km = 2K gossips after

any given arrival, which intuitively explains why the variance
stays bounded away from 0. But the actual asymptotic value
σ2

K+1 obtained in Theorem 1(i) is remarkably high. As a
basis for comparison, suppose we had first waited until the
n agents were present in the system which would yield an
expected variance σ2 n−1

n , and then performed the same num-
ber nK of gossip averaging operations between randomly
selected pairs of nodes. It follows from nK application of
Lemma 1 that the expected variance would then have been

n− 1

n
σ2(1− 1

n
)nK →n→∞ σ2e−K ,

which is significantly lower than σ2/(K + 1) (for K = 5,
the ratio of variance would be e−5

1/6 ' 0.04). The dynamics
of the system composition deteriorates thus considerably the
performances in terms of variance reduction.

Possible evolutions of Kn

Suppose that we interpret our discrete t as the sampling of
a real continuous time variable τ at those times τt at which
an event occurs, as in Section IV-C.2. It is again reasonable
to assume the interaction rate of an agent to be independent
of the system size, so that the total number of gossips per unit
of time τ would grow linearly with n, as say λgn. Suppose
first that the agents arrive at a fixed rate λa. In that case, the
number of gossips between two arrivals would be linearly
growing with n and Kn = nλg/λa. Theorem 1(ii) shows
then that the variance would converge to 0.

But one could also imagine a linearly growing rate of ar-
rivals λrn. This would for example be the case if the system
attraction were growing with its size or if the arrivals resulted
from some form of reproduction process. The number of
gossip iterations between two arrivals would then be constant
Kn = K = (λgn)/(λrn), leading to a finite variance σ2

1+K .

VI. CONCLUSIONS

In this paper, we argued that the possibility for an agent
to leave or join the system is natural in many multi-agent
systems, and should therefore be taken into account in their
analysis or design. We have highlighted several challenges
coming with the study of these open multi-agent systems.
These include variations of the state dimension and the ab-
sence of the usual notion of state convergence. We focused on
a simple open multi-agent system involving pairwise gossip
averaging without communication restriction, and showed
how the evolution of such a system can be characterized by
studying relevant scale-independent quantities. We provided



closed-form solution for the evolution of these quantities
along with the expression of their steady state. The analysis
was carried out for under two distinct scenarios: fixed system
size with periodic agent replacements and systems whose
size grows unbounded due to repeated agent arrivals and an
absence of departure.

Interestingly, the steady state expected variance for large
number of agents n were the same in the case of peri-
odic replacements (see Section IV-C.2) and in the case of
growing systems with periodic arrivals without departures
(see Section V). Both tend indeed to σ2

1+K for large n,
where K is the number of gossip iterations between two
successive replacements or arrivals. K is moreover related
to the expected number of gossip iterations in which an
agent randomly selected in the system was involved, which
in both cases is 2K. The value of this variance is significantly
higher than what would have been obtained in a comparable
“closed system”. Performing the same number of random
gossip iterations per agent in a system without arrivals or
departures and in which n agents have i.i.d. initial values
would indeed lead to a variance close to σ2e−K for large
n.

The methodology developed in this work is applicable
to a much broader range of scenarios: A natural extension
would be to have agents arriving or leaving at random times
according to some prescribed distribution. One could also
imagine that their arrivals and departures could be related
to their age and/or to their position in some underlying
interaction network. More generally, we believe that our
approach could be adapted to other sorts of multi-agent
systems involving more complex interactions.
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APPENDIX

A. Proofs of Lemmas 1, 2 and 3

Lemma 1 Proof: Let us first fix the nodes i, j involved
in the gossip. Observe that x′i+x′j = 2

xi+xj

2 = xi+xj , and
that x′k = xk for all k 6= i, j. Hence x̄′ = x̄, which implies
Ex̄′ = x̄ and Ex̄2 = x̄2. We also have

Var(x′) =
1

n

n∑
k=1

(x′k − x̄)2

=
1

n

(
n∑
k=1

(xk − x̄)2

)
− 1

n
(xi − x̄)2 − 1

n
(xj − x̄)2

+
2

n

(
xi + xj

2
− x̄
)2

=Var(x)− 1

2n
(xi − x̄)2 − 1

2n
(xj − x̄)2

+
4

n
(xi − x̄)(xj − x̄). (16)

Observe now that 1
n

∑n
i=1(xi − x̄) = 0 and 1

n

∑n
i=1(xi −

x̄)2 = Var(x). Taking the expected value of (16) with respect
to i and j yields then

E(Var(x′)|x) =

(
1− 1

n

)
Var(x).

Lemma 2. Proof: We remind that n denotes the
number of agents before the departure. Suppose agent j
leaves, then the new average is

x̄′ =
1

n− 1

n∑
i=1,i6=j

xi =
1

n− 1

n∑
i=1

xi −
xj

n− 1

=
n

n− 1
x̄− 1

n− 1
xj . (17)

Taking the expected value of this expression with respect to
the randomly selected agent j yields

E(x̄′|x) =
n

n− 1
x̄− 1

n− 1
x̄ = x̄.

Exactly the same argument applied to x2 = 1
n

∑
i x

2
i shows

E(x′2|x) = x2, (18)

which will be helpful in the sequel. Turning to the square
mean, we obtain from (17)

E((x̄′)2|x) =
1

n

n∑
j=1

(
n

n− 1
x̄− 1

n− 1
xj

)2

=
1

n

n∑
j=1

((
xj

n− 1

)2

− 2nxj x̄

(n− 1)2
+

(
nx̄

n− 1

)2
)

=
xTx

n(n− 1)2
− 2nx̄2

(n− 1)2
+

n2x̄2

(n− 1)2

=
1

(n− 1)2
(
Var(x) + x̄2 − 2nx̄2 + n2x̄2

)
=

1

(n− 1)2
Var(x) + x̄2.



Concerning the variance, it follows from this last equality
and from (18) that

E(Var(x′)|x) = E(x′2|x)− E((x̄′)2|x)

= x2 − 1

(n− 1)2
Var(x)− x̄2

=

(
1− 1

(n− 1)2

)
Var(x).

Lemma 3. Proof: We remind that n is the number of
agents prior to the arrival, and we label n + 1 the arriving
agent for simplicity, so that x′i = xi for all i ≤ n. We begin
again by computing the new average:

x̄′ =
1

n+ 1

(
x′n+1 +

n∑
i=1

xi

)
=

n

n+ 1
x̄+

1

n+ 1
x′n+1. (19)

Since Ex′n+1 = 0, we have E(x̄′|x) = n
n+1 x̄. By exactly

the same reasoning but using Ex′n+1
2

= σ2 and x2 = x̄2 +
Var(x), we also obtain

E(x′2|x) =
n

n+ 1
x2 +

1

n+ 1
σ2. (20)

=
n

n+ 1
x̄2 +

n

n+ 1
Var(x) +

1

n+ 1
σ2. (21)

Turning to the square average, we obtain from (19)

E((x̄′)2|x) =
n2

(n+ 1)2
(x̄′)2 +

n

(n+ 1)2
x̄Ex′n+1

+
1

(n+ 1)2
E(x′n+1)2

=
n2

(n+ 1)2
(x̄′)2 + 0 +

1

(n+ 1)2
σ2.

The expression of the expected variance is again obtained by
combining this last equality with (20):

E(Var(x′)|x) =E(x′2|x)− E((x̄′)2|x)

=
n

n+ 1
x̄2 +

n

n+ 1
Var(x) +

1

n+ 1
σ2

+
n2

(n+ 1)2
(x̄′)2 +

1

(n+ 1)2
σ2

=
n

(n+ 1)2
x̄2 +

n

(n+ 1)
Var(x) +

n

(n+ 1)2
σ2.

B. Proof of Theorem 1

We prove the following proposition, which implies Theo-
rem 1 when applied to Wn = nEV ar(tn).

Proposition 3: Let n0 ≥ 2. Let ρn = (1 − 1
n )Kn , and

consider the sequence defined by W1 = 0 and

Wn+1 = Wnρn + σ2. (22)

a) If Kn ≥ K for all n ≥ n0, then lim supn→∞
Wn

n ≤
σ2

1+K

b) If Kn ≤ K for all n ≥ n0, then lim infn→∞
Wn

n ≥
σ2

1+K .

Proof: We prove the statement (a) of the proposition.
Statement (b) can be obtained in a similar way. It follows
from (22) that

Wn = Wn0Πn−1
m=n0

ρm + σ2
n∑

s=n0+1

Πn−1
m=sρm, (23)

with the convention Πn−1
m=nρm = 1. Using log(1−x)k ≤ −kx

(for x < 1), the assumption Kn ≥ K for all n ≥ n0, and
the definition ρn = (1− 1

n )Kn we obtain for s ≥ n0

log
(
Πn−1
m=sρm

)
≤

n−1∑
m=s

−K 1

m
(24)

Observe that
∑n−1
m=s

1
m is an upper approximation of the

integral
∫ n
x=s

1
xdx, and hence

1

s
+

1

s+ 1
+ · · ·+ 1

n− 1
≥ log(n)− log(s) ≥ log

n

s
.

Reintroducing this in (24) yields

Πn−1
m=sρm ≤

( s
n

)K
, ∀s ≥ n0,

and hence, noticing Wn ≥ 0, (23) implies

Wn ≤Wn0

(n0
n

)K
+
σ2

nK

∑ n∑
s=n0+1

sK . (25)

Observing now that
∑n
s=n0+1 s

K is a lower approximation
of
∫ n+1

n0+1
xKdx, we obtain

Wn ≤Wn0

(n0
n

)K
+
σ2

nK
(n+ 1)K+1 − (n0 + 1)K+1

K + 1
.

(26)

The first term in (26) decays to 0 when n grows, while
the second one is bounded by σ2

1+K
(n+1)K+1

nK . Hence
lim sup Wn

n ≤
σ2

1+K .
Part (b) follows a parallel reasoning using the upper bound

log(1− 1
n )K ≥ − K

n−1 .


