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Views in a graph:
to which depth must equality be checked?

Julien M. Hendrickx

Abstract—The view of depth k of a node is a tree containing
all the walks of length k leaving that node. Views contain all
the information that nodes could obtain by exchanging messages
with their neighbors. In particular, a value can be computed by
a node on a network using a distributed deterministic algorithm
if and only if that value only depends on the node’s view of the
network.

Norris has proved that if two nodes have the same view
of depth n − 1, they have the same views for all depths.
Taking the diameter d into account, we prove a new bound
in O(d + d log(n/d)) instead of n − 1 for bidirectional graphs
with port numbering, which are natural models in distributed
computation. This automatically improves various results relying
on Norris’s bound. We also provide a bound that is stronger
for certain colored graphs and extend our results to graphs
containing directed edges.

I. INTRODUCTION

A graph with port numbering is a graph where nodes
have locally unique numbers assigned to their incident edges,
allowing them to distinguish their neighbors, as in the example
shown in Figure 1(a). For such graphs, the view of a node is an
infinite rooted tree that represents all the infinite walks starting
at that node in the graph together with the port numbers
encountered on these paths (see Figure 1(b)), and that is locally
isomorphic to the initial graph. Views have been introduced
by Yamashita and Kameda [16], who proved that they contain
all the information about the graph that the node could obtain
by exchanging messages with its neighbors (see for example
Lemma 5 in [16] or Theorem 5 in [12]). In particular, if two
nodes have the same view, they are undistinguishable from the
point of view of distributed algorithms, and the execution of
any distributed deterministic algorithm will always leave them
in identical states. As a result, a value can be computed by a
node on a network using a distributed deterministic algorithm
if and only if that value only depends on the node’s view of
the network.

Views are infinite objects, but Yamashita and Kameda have
shown that if the truncation at depth n2 of the views of two
nodes on a network of n nodes are equal, then their whole
views are equal. This bound was later improved by Norris
[13], who showed that equality of the views truncated at depth
n− 1 (or “views of depth n− 1”) was sufficient to guarantee
equality of the views. Her result was actually proved for the
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Figure 1. Example of a bidirectional graph with port-numbering (a), and
the view of depth 2 of the node a in that graph (b). The view of depth 2
of a is obtained by connecting a root node to the root node of the view of
depth 1 of the neighbors of a by edges having the same port numbers (in
both directions) as in the initial graph. Nodes b and c have the same view
of depth 1 (T 1(b) = T 1(c)), but one can verify that their views of depth 2
are different. Note that the labels a, b, c, d are used to distinguish the nodes
when describing the graph, but are unknown to the nodes, and are not part
of their views.

more general context of universal cover of directed graphs
with arbitrary edge labels.

This bound plays a fundamental role in the development,
the validation, and the analysis of many distributed algorithms,
see e.g. [1], [3]–[11], [14]–[17]. In particular, it can be used to
prove that the view of depth 2n−1 of a node, actually contains
all the information that could be made available to that node.
(The same holds true for depth n+d, where d is the diameter of
the graph). This can be used to bound the number of messages
that need to be passed in certain distributed algorithms and the
communication and computation cost at each node, see Section
IV-A for more details.

Norris’s bound is tight, in the sense that there exist families
of graphs where some nodes have equal views for all depths
smaller than n−1, but different views of depth n−1 [2], [13].
Stronger bounds involving other quantities may however exist.
Fraignaud and Pelc [11] have for example proved the bound
n̂− 1 where n̂ is the number of different views present in the
network, with n̂ − 1 = n − 1 when all nodes have different
views.

In this work, we improve Norris’s bound for bidirectional
graphs with port numbering by taking the diameter into
account. We prove a family of bounds t−1+d+(d+1)blog2

n
t c

for every integer t ≤ n, and derive from this family the
slightly weaker bound (d+ 1)

(
1.914 + log2

(
n
d+1

))
−1 (for

d ≤ n ln 2 − 1 ' 0.69n − 1). We also prove a bound that is
stronger for certain colored graphs, and extend our results to
some classes of directed graphs. Our results do not contradict
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the tightness of Norris’s bound, as the graphs on which it is
tight have diameters d = n − 1. For graphs with diameters
smaller than n however, our result can lead to much smaller
bounds, which automatically improves various results that rely
on Norris’s bound.

II. PROBLEM DEFINITION

Similarly to [16], we consider a bidirectional graph
G(V,E) on n = |V | nodes, where nodes may be colored in
an arbitrary way. In addition, each edge (v, w) has a port
number: for each node v there is an injective function σv
defined on its set of incident edges, as in Figure 1(a). In
most works, σv is actually a bijection taking its values in
{1, . . . , degv}, but this is not relevant in our context. We call
σv(v, w) the port number of the edge (v, w). For the sake of
concision, we will not explicitly mention node coloring and
port numbering when referring to a graph G, but it should
be understood that every graph considered here comes with a
node-coloring and a port-numbering.

From a distributed computation point of view, assuming
the presence of a port numbering corresponds to assuming
that every node has a local way of identifying its neighbors,
and of knowing by which number each of its neighbors
identifies it thanks to the bidirectionality of the edges. The
node colors represent all the additional information available
to the nodes, including variables initially stored in memory,
partial identifiers and other intrinsic properties of the nodes.
A graph without colors represents thus a system where nodes
initially have no additional information. Node colors may
help distinguishing nodes, and are even sometimes essential
to break symmetries.

The notion of view is defined recursively. The view of depth
0 T 0(v) of a node v, consists of a node called the root,
having the same color as v in G. The view of depth k of
v, T k(v), is obtained by taking a root node with the same
color as v, and for every neighbor vi of v, (i) the view of
depth k − 1 of vi, and (ii) an edge connecting the root node
r to the root r(T k−1(vi)) of T k−1(vi) with the same port-
numbers as the edge (v, vi), i.e. σr(r, r(T k−1(v))) = σv(v, vi)
and σr(Tk−1(v))(r(T

k−1(v)), r) = σvi(vi, v), as represented in
Figure 1(b). (Port-numbers can be formally defined on views
as the combination for each node of (i) an injective function
defined on its set of edges going away from the root, and (ii)
one “incoming port number” for the edge connecting it to its
parent node, closer from the root, except if there is no such
edge because the node is the root of the view.)

One can easily see by recurrence that T k(v) is a subgraph
of T k+1(v) and that they share the same root. We can then
define the (infinite) view T (v) as the infinite rooted tree
with port numbering resulting from the countable union⋃
k≥0

T k(v).

We define Bn,d as the smallest m for which Tm(v) =
Tm(w)⇔ T (v) = T (w) holds for every two nodes v, w of ev-
ery graph G on n nodes with diameter d (where T (v) = T (w)

is equivalent to T k(v) = T k(w) for every k). Norris’s bound
implies that Bn,d is well defined and that Bn,d ≤ n− 1. We
will provide a new bound.

III. RESULTS

Our bound relies on two intermediate results. The first one
was established in [13] for a larger class of graphs. We present
a short proof here for the sake of completeness and because it
helps developing intuition about certain aspects of our result.
We define the equivalence relation ∼k between nodes by
saying that v ∼k w if their views of depth k are equal:
T k(v) = T k(w). We then define πk as the partition induced
by ∼k on the set of nodes, and call “blocks” the classes that
this partition defines, that is, the equivalence classes induced
by ∼k.

Lemma 1 (Norris [13]).
(a) πk+1 is a refinement of πk: if v and w are in distinct blocks
of πk then they are in distinct blocks of πk+1.
(b) If πk+1 = πk for some k ≥ 0 then πj = πk for all j > k.

Proof. Part (a) directly follows from the fact that two nodes
having different views of depth k obviously have different
views of depth k + 1 since the latter contain the former.
To prove part (b), we just need to prove that πk−1 = πk
implies πk = πk+1 for any k > 0 and the rest will follow
by recurrence. Let us thus suppose that πk−1 = πk, i.e.
T k−1(v′) = T k−1(v′′) ⇔ T k(v′) = T k(v′′), and consider
two arbitrary nodes v, w. By definition of the view, T k(v) =
T k(w) holds for k > 0 if and only if the three following
conditions are satisfied:

1) v and w have the same color (if any) and the same
degree.

2) There is a one-to-one correspondence between the
neighbors vi of v and wi of w such that if vi corresponds
to wi, then (v, vi) and (w,wi) have the same port
numbers: σv(v, vi) = σw(w,wi) and σvi(vi, v) =
σwi

(wi, w).
3) For every pair vi, wi defined above, there holds

T k−1(vi) = T k−1(wi).
The first two conditions are independent of k as long as k > 0,
and thus remain satisfied for depth k + 1 if they are satisfied
at depth k. The last condition does depend on k. But, under
the assumption that πk = πk−1, we know that T k−1(vi) =
T k−1(wi) if and only if T k(vi) = T k(wi), so that the third
condition is satisfied at depth k + 1 if and only if it was
satisfied at depth k. As a consequence T k+1(v) = T k+1(w)⇔
T k(v) = T k(w), and πk = πk+1.

We now turn to the second intermediate result, in which we
show that the size of any block of of the partition πk dominates
the size of every block of πk+d, where d is the diameter of
the graph. Unlike Lemma 1, this result does rely on the local
uniqueness of the port numbers.

Let p be a path from v to w, i.e. a sequence of |p|
edges ((v, u1), (u1, u2), . . . , (u|p|−1, w)). We define the port
sequence of p as the sequence

λp =
(
σv(v, u1), σu1

(u1, u2), . . . , σu|p|−1
(u|p|−1, w)

)
.
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Intuitively, λp contains the directions to be followed at each
node in order to follow the path p. For example, the port
sequence of the path ((d, a), (a, c), (c, b)) in Figure 1 is
(1, 2, 2). The following Lemma, stating that a port sequence
together with a starting node uniquely specifies (at most) one
path, follows immediately from the injectivity of the port
numbers.

Lemma 2. Two paths pa and pb starting at a same vertex
are identical if and only if they have the same port sequence
λ(pa) = λ(pb).

The notion of port sequence can easily be extended to paths
in the views. In Figure 1 for example, the path going from the
lower right-hand side node (corresponding to d) to the root
of T 2(a) has a port sequence (3, 1). The following Lemma
linking port sequences in graphs and in views follows directly
from this extension.

Lemma 3. Let T̃ q be a view of depth q, λ̃ a port sequence
of length

∣∣∣λ̃∣∣∣, and v a node in a graph G. The following two
conditions are equivalent.
a) In the graph G, there is a path with port sequence λ̃ starting
at some node w with T q(w) = T̃ q and arriving at v.
b) In the view T q+|λ̃|(v) there is a path with port sequence
λ̃ starting from the root of a copy of T̃ q and arriving at the
root of T q+|λ̃|(v).

As an illustration of this Lemma, consider the graph of
Figure 1. Take λ̃ = (2), and a view T̃ 1 where the root is
connected to two leaves by edges with port numbers 1 and 2,
and “arrival” port numbers 2 and 1 respectively. If a is taken
as node v, condition (a) corresponds to the existence of a path
with port sequence λ̃ = (2) from b to a, with T 1(b) = T̃ 1.
Condition (b) corresponds to the existence in T 2(a) of a path
with port sequence λ̃ = (2) from the root of a copy of T̃ to
the root of T 2(a). We can now state our second intermediate
result.

Lemma 4. Let G be a connected graph with diameter d. The
size of any block of πk is larger than or equal to the size of
all blocks of πk+d.

Proof. Let B be a block of πk+d and C be a block of πk.
We show that |B| ≤ |C| by associating to each node of B a
distinct node of C.

Let v and w be arbitrary nodes in B and C respectively, and
p a path of length |p| ≤ d starting at w and arriving at v, with
port sequence λ(p). It follows from Lemma 3 that the view
T k+d(v) contains a path with port sequence λ(p) arriving at
its root and starting from the root of a copy of T k+d−|p|(w).

Let now v′ be an arbitrary node of B. Its view of depth k+d
is by definition the same as that of v, T k+d(v) = T k+d(v′),
and contains thus also a path with port sequence λ(p) arriving
at its root and starting from the root of a copy of T k+d−|p|(w).
Lemma 3 implies then the existence of a path p′ with same
port sequence λ(p) arriving at v′ and starting from some node
w′ whose view of depth k + d − |p| is the same as that of
w, T k+d−|p|(w′) = T k+d−|p|(w). This implies that w and w′

also have the same view of depth k because d− |p| ≥ 0, and

thus that w′ belongs by definition to C.
We can thus associate a node w′ ∈ C to every node

v′ ∈ B. Consider now two nodes v′1, v
′
2 ∈ B, their associated

nodes w′1, w
′
2 ∈ C, and the corresponding paths p′1, p

′
2. Since

λ(p′1) = λ(p) = λ(p′2), it follows from Lemma 2 that if
w′1 = w′2, then p′1 and p′2 are identical and have the same
arrival node v′1 = v′2. Therefore, v′1 6= v′2 implies w′1 6= w′2.
We have thus shown that to each node v′ ∈ B is associated a
distinct node w′ ∈ C, which implies that |B| ≤ |C|.

Theorem 1. Let G be a connected bidirectional graph with
port numbering on n nodes with diameter d. For every t =
1, . . . , n, two nodes v, w have the same view if and only if
they have the same view of depth t− 1 + d+ (d+ 1)blog2

n
t c.

Therefore we have the bound

Bn,d ≤ t− 1 + d+ (d+ 1)blog2

n

t
c, (1)

where we recall that Bn,d is the minimal value m such that,
Tm(v) = Tm(w)⇒ T (v) = T (w) for any two nodes v, w of
a bidirectional graph with port numbering on n nodes with
diameter d.

Proof. Consider such a graph G. If πm+1 = πm for some
m > 0, then it follows from Lemma 1(b) that πk = πm for
every k ≥ m. In particular, two nodes have the same (infinite)
view if and only if they have the same view of depth m (or
the same view of depth k for any arbitrary k ≥ m), and there
holds Bn,d ≤ m.

We now fix now an integer t, and show that there always
exists such an m smaller than or equal to t − 1 + d + (d +
1)blog2

n
t c, which will prove the result of this theorem. For

this purpose, we show that in case πk+1 6= πk holds for every
k < t − 1 + d + (d + 1)blog2

n
t c (which we do not claim

is actually always possible ), then πm+1 = πm must hold for
m = t−1+d+(d+1)blog2

n
t c. The proof of that implication

is organized in three claims.

Claim 1: Every block of πt−1+d contains n/t nodes or less.
Lemma 1(a) states that πk+1 is a refinement of πk, i.e. nodes

in distinct blocks of πk are also in distinct blocks of πk+1.
The assumption that πk+1 6= πk implies then that πk contains
at least one more block than πk. As a result, πt−1 contains t
blocks or more since π0 contains 1 block (or more). At least
one of these blocks must thus contains n

t nodes or less, since
the total number of nodes is n. Claim 1 follows then directly
from Lemma 4.

Claim 2: Every block of πt−1+d+s(1+d) has a size 2−s nt or
less (for any integer s ≤ log2

n
t ).

Since we have assumed that πt+d 6= πt−1+d (because t −
1 + d is smaller than the expression in (1)), it follows again
from Lemma 1(a) that the blocks of πt+d can be obtained by
partitioning the blocks of πt+d−1, with at least one partition
being nontrivial, that is, at least one block of πt−1+d yielding
two or more blocks in πt+d. Consider one of the blocks being
the object of a nontrivial partition. Since it contains at most
n
t nodes, its partition yields at least one block of n

2t nodes
or less. Lemma 4 implies then that πt−1+d+1+d only contains
blocks of n

2t elements or less. Repeating this argument, we
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see that all blocks of πt−1+d+(1+d)s contain 2−s nt nodes or
less, for any s ≤ blog2

n
t c (for larger s, it is not assumed that

πk+1 6= πk).

Claim 3: πm+1 = πm for m = t− 1 + d+ (d+ 1)blog2
n
t c.

By taking s = blog2
n
t c in Claim 2, we see that the size of

every block of the partition πm is bounded by n
t 2−blog2

n
t c <

2 nodes, and is thus exactly 1 since it is an integer. These
blocks can thus not be separated into smaller blocks. Since
Lemma 1(a) implies that the blocks of πm+1 can be obtained
by partitioning those of πm, there must hold πm+1 = πm,
which concludes the proof.

The bound of Theorem 1 depends on a parameter t, un-
related to the initial problem, and whose value can be set
arbitrarily. Our strongest bound on on Bn,d is thus obtained
by minimizing the bound of Theorem 1 over t, for each couple
n, d. In the next corollary, we derive a closed form upper
approximation of the solution to that optimization problem.

Corollary 1. Let Bn,d be defined as in Theorem 1. If d ≤
n ln 2− 1, there holds

Bn,d ≤ (d+ 1) log2

(
(2e ln 2)

n

d+ 1

)
− 1 (2)

≤ (d+ 1)

(
1.914 + log2

n

d+ 1

)
− 1

Proof. It follows from Theorem 1 that

Bn,d ≤ t−1+d+(d+1)blog2

n

t
c ≤ t−1+d+(d+1) log2

n

t

holds for any integer t ≤ n. For a given t, consider a real
x ∈ [t− 1, t]. There holds

t−1+d+(d+1) log2

n

t
≤
(
x− 1 + d+ (d+ 1) log2

n

x

)
+1,

because the derivative with respect to x of the expression
between parentheses is bounded by 1 and x− t ≤ 1. Besides,
for every x ≤ n. one can find an integer t ≤ n such that
x ∈ [t− 1, t] by taking t = dxe. We have thus

Bn,d ≤ x+ d+ (d+ 1) log2

n

x
. (3)

The right-hand side expression reaches its minimum at x∗ =
d+1
ln 2 , which is smaller than n since d ≤ n ln 2 − 1. Reintro-
ducing this in (3) leads after a few manipulations to the bound
(2).

Colored graphs

Our model allows for colored nodes, and the bounds that we
have obtained are thus also valid for colored graphs. However,
they do not take advantage of the possible presence of colors.
The next corollary explicitly uses the colors of the nodes, and
establishes a bound that can be much stronger than those of
Theorem 1 and Corollary 1 when a color is shared by a small
number of nodes. It is particularly relevant when a small set
of particular nodes are “marked” or have a special property,
as in [8], where some agents exploring the graph each have a
homebase, and homebases are marked with special color.

Corollary 2 (Colored graphs). Let G be a connected colored
graph of diameter d, and C the set of nodes of G having a
certain color. Independently of n, two nodes have the same
view if and only if they have the same view of depth d+ (d+
1)blog2 |C|c, where |C| is the cardinality of C.

Proof. Remember that the view of depth 0 contains the color
of the node. The partition π0 contains thus one block for each
color, and in particular a block of size |C| corresponding to
the nodes of C. Lemma 4 implies then that all blocks of πd
have a size smaller than or equal to |C|. The result is then
obtained by combining Lemmas 1 and 3 exactly as in the
proof of Theorem 1, skipping Claim 1.

Directed graphs

Our results have so far been stated for bidirectionnal graphs.
They can be extended to some classes of graphs involving
directed edges1: Indeed, our approach only relies on Lemmas
1, 2 and 3, as subsequent results are solely built on these
lemmas and the (strong) connectivity of the graph. Lemma
1 is valid independently of the presence of directed edges,
and Lemma 2 remains valid in the presence of directed edges
provided that locally unique port numbers are also assigned to
outgoing edges as in Figure 2(a). More formally, the injection
σv defining the port numbers for every node should be defined
on the set containing all the outgoing edges leaving v and the
bidirectional edges incident to v.

The case of Lemma 2 is slightly more subtle, and depends
on the way directed edges are taken into account in the
view. To preserve its validity, there must be a correspondence
between a directed path from w to v in the graph and a path
in the view T (v) of v from a node representing w to the root
of the view (for any v, w). This is the case if the recursion
used to define the view T k(v) from the views T k−1(vi) of
its neighbors, one includes all bidirectional edges incident to
v and all directed edges arriving at v, as in the example in
Figure 2(b).

If views are defined in this way and locally unique port
numbers are assigned to every bidirectional edge and directed
edge leaving a node as in Figure 2(a), then one can verify that
all our proofs and results remain valid for strongly connected
graphs. By symmetry, they also remain valid if views are
defined using the outgoing directed edges as opposed the
incoming ones, provided that locally unique port numbers are
assigned to every every bidirectional edge and directed edge
arriving at a node.

They are however not valid if the views are defined using
the edges leaving the nodes but locally unique port numbers
are assigned to outgoing and bidirectional edges, as can be
seen in the example in Figure 2(c).

1In the context of views and computation on anonymous networks, a
bidirectional edge is not necessarily equivalent to a pair of opposite directed
edges. A node v connected to w by an incoming directed edge

−−−→
(v, w) and an

outgoing directed edge
−−−→
(w, v) may indeed not know that the source of

−−−→
(w, v)

is the same node as the target of
−−−→
(v, w).
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Figure 2. (a) Example of strongly connected graph with locally unique port
numbers on the outgoing edges. (b) Construction of a view taking into account
the directed edges arriving at the nodes. The view of depth 1 of node a is
unique because it is the only node with in-degree 2. The view of depth 3 of
node e is as a result unique because it is the only node reachable from a by a
path with port sequence (2, 1), consistently with Lemma 4. (c) Construction
of a view taking into account the directed edges leaving the nodes. Lemma 4
is not valid in that case: the view of depth 1 of node a is shared by no other
node since it is the only node with out-degree 2. However, one can verify
that node c and e share the same view for every depth, as shown in (c) for a
depth 2.

IV. DISCUSSION

A. Implications of the new bound

We have shown that Bn,d = O(d + d log(n/d)) while
the best previously available bound was Bn,d ≤ n − 1.
The magnitude of the improvement provided by our
bound depends on the relation between the diameter
and the number of nodes. It is linear (at best) when
d = Θ(n), but can be dramatic for networks with small
diameter. In particular, when d = O(log n), we have
Bn,d = O(log n+ log n log n

logn ) = O(log2 n).

This improvement automatically impacts several bounds in
the literature that rely on Norris’s result. It allows for example
constructing views of depth O(d+d log(n/d)) instead of n−1
in the algorithm proposed in [12] to compute boolean functions
on an anonymous network. More importantly, Norris’s bound
had been used to prove that the view of depth (n−1)+(d+1)
(or 2n − 1 when no other bound on the diameter than n − 1
is available) contains all the information that can possibly be
obtained by the nodes in the network by deterministic anony-
mous algorithms. In particular, it contains enough information
to build all further views, and to compute any function that
can be computed by a deterministic anonymous algorithm,
without requiring any further communication. As a result,
several algorithms in the literature involve building the views
of depth (n− 1) + (d+ 1) or 2n− 1.

Yamashita et al. apply for example this idea to the election

of a leader or an edge, the recovery of the network topology
and the determination of a spanning tree [16]. Das et al. use a
similar construction in an algorithm allowing mobile agents to
meet on one node [8], and the idea is also used bu Dereniowski
and Pelc for drawing maps of networks [9]. Besides, a variaton
of the idea involving the concept of “fibrations” of graphs
which is related to views has been used by Boldi et al. [3] to
build a universal self-stabilizing algorithm, i.e. an algorithm
that can self-stabilize on any behavior for which a self-
stabilizing algorithm exists.

When our result applies and information on the diameter is
available, our new bound on Bn,d can be directly substituted
for n − 1, so that it is sufficient to build the views of depth
Bn,d+(d+1) = O(d+d log(n/d)) instead of (n−1)+(d+1)
in all these works.

Moreover, the gain in computation time and communication
cost can even be stronger. Indeed, these costs grow both
quadratically with the depth h of the view that nodes
want to build if Tani’s algorithm is used [14], which
is the most efficient one of which we are aware in
the context of distributed computation by nodes. (More
specifically, they grow respectively as O(h2n log2(n)∆2) and
O(h2nm∆ log ∆) if h = O(n), where m is the number of
edges, and ∆ the maximal degree, see [14] and in particular
Theorem 7 for more detail).

Our bound also decreases the cost of other types of algo-
rithms. The algorithm of Andot et al. [1], designed to minimize
the space complexity of leader election in an anonymous
network, requires for example storing a constant number of
paths of length 2n−1, leading to a memory use of O(n log ∆)
(where ∆ is the largest degree). The value 2n−1 comes again
from the depth at which the view of a node contains all the
information avaible in the network, and can be substituted by
d+ 1 +Bn,d = O(d+d log(n/d)) as above, leading to a total
memory use of O((d+ d log(n/d)) log ∆).

Chalopin et al. [4] have also proposed a method for con-
structing a map of an initially unknown network explored by
an agent. Their agent follows a path defined by a special
sequence of ports that guarantees that the agents passes by
every edge in the network (assuming a bound on n and the
degree are known), and explores parts of the views of every
nodes that it encounters for different depths. This results in a
procedure taking O(k.n∆ |Un,d|) steps that must be iterated
for every k smaller than n − 1, where |Un,d| the length of
the sequence of ports defining the path The bound n − 1
on k comes from the use of Norris’s bound, and can be
substituted by Bn,d. Our results allow then having a total cost
of O(n(d+ d log(n/d))2∆ |Un,d|) instead of O(n3∆ |Un,d|).

B. Tightness

Unlike Norris’s bound which is tight when one only
considers n, our bound could at least be marginally improved.
Indeed, one could in principle obtain a stronger bound by
computing, for every couple (n, d), the length of longest
sequence of different partitions π0, π1, . . . consistent with
the constraints imposed by Lemmas 1 and 4. Our result in
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Theorem 1 only provides upper bounds on the solution to
this combinatorial optimization problem, and a full analysis
of some simple cases has shown that these family of bounds
are not always tight. For example, solving the combinatorial
optimization problem for n = 9 and d = 1 leads to the bound
Bn,d ≤ 4, while Theorem 1 only shows that Bn,d ≤ 5, using
t = 3.

Besides, as mentioned in the Introduction, Fraigniaud and
Pelc [11] have shown a bound n̂− 1, where n̂ is the number
of different views present in the network. This n̂ is also the
number of nodes in the “quotient graph” Ĝ of G, which is
the smallest (multi)-graph generating the same set of views as
G (It can be proved that the ratio n/n̂ is always an integer
[16]). An intuitive way of seeing this is that nodes or agents
cannot distinguish G from Ĝ, so that bounds that apply to Ĝ
also apply to G. A similar argument applies to our results: It
can be shown that they remain valid for the quotient graph,
even though some care is needed to treat possible multiple
edges and self-loops that were not present in our initial model.
Then, since agents or nodes cannot distinguish Ĝ from G,
the bounds that apply to the former also apply again to the
latter. As a result, n and d can be replaced by n̂ and d̂, the
number of nodes and diameter of the quotient graph, in all our
bounds. However, using these stronger bounds requires having
information about the quotient graph, which may not often be
available in a decentralized context.

C. Diameter and actual value of Bn,d.

The diameter d is obviously a lower bound on Bn,d. On the
other hand, we were so far not able to find graphs for which
one would need to go at a depth larger2 than d + 1 to find
the final partition, and the example for which Norris’s bound
n−1 is tight has actually a diameter d = n−1. Norris has also
shown an example of graph for which stopping at the depth
d was not sufficient [13], but this graph does not fit in our
framework, because several edges leaving the same node have
the same label, so that a sequence of labels and a starting node
do not necessarily define a unique path. (This is in particular
the case for many of the paths realizing the diameter in that
example).

In our framework, it is remarkable that views of depth
d + 1 contain all the nodes and edges of the graph, together
with paths to all these nodes and edges that can be uniquely
specified by sequences of port numbers. Similarly, any view
of length 2d + 1 contains all the shortest paths of the graph.
Maybe naively, we fail to see which additional information,
not contained in views of depth d + 1 or 2d + 1, would
be contained in views of higher depth. We therefore wonder
whether Bn,d = O(d).
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