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Abstract— This work focuses on the identifiability of dynam-

ical networks with partial excitation and measurement: a set

of nodes are interconnected by unknown transfer functions

according to a known topology, some nodes are subject to

external excitation, and some nodes are measured. The goal

is to determine which transfer functions in the network can be

recovered based on the input-output data collected from the

excited and measured nodes.

We propose a local version of network identifiability, rep-

resenting the ability to recover transfer functions which are

approximately known, or to recover them up to a discrete

ambiguity. We show that local identifiability is a generic

property, establish a necessary and sufficient condition in terms

of matrix generic ranks, and exploit this condition to develop

an algorithm determining, with probability 1, which transfer

functions are locally identifiable. Our implementation presents

the results graphically, and is publicly available.

I. INTRODUCTION

This paper addresses the identifiability of dynamical net-
works in which the node signals are connected by causal
linear time-invariant transfer functions, and can be excited
and/or measured. Such network can be modeled as a directed
graph where each edge carries a transfer function, and known
excitations and measurements are applied at certain nodes.

We consider the identifiability of a network matrix G(z),
where the network is made up of n nodes, with node signals
w(t), external excitation signals r(t), measured nodes y(t)
and noise v1(t), v2(t) related to each other by:

w(t) = G(z)w(t) +Br(t) + v1(t)

y(t) = Cw(t) + v2(t),
(1)

where matrices B and C are binary selections defining
respectively which nodes are excited and measured, forming
sets B and C respectively. Matrix B is full column rank and
each column contains one 1 and n � 1 zeros. Matrix C is
full row rank and each row contains one 1 and n� 1 zeros.
The nonzero entries of the network matrix G(z) define the
network topology, and are the transfer functions to identify,
forming the set of edges E.

We assume that the input-output relations between the

excitations r and measures y have been identified, and that
the network topology is known. From this knowledge, we
aim at recovering the nonzero entries of G(z).
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The model (1) has recently been the object of a significant
research effort. If the whole network is to be recovered,
the notion of network identifiability is used, as developed
in [1]. If one is interested in identifying a single module,
topological conditions are derived in [2], [3]. In this paper,
we do not consider the impact of noise signals v1, v2, but
studying the influence of rank-reduced or correlated noise
yields interesting results on identifiability [4], [5].

It turns out that the identifiability of the network, i.e. the
ability to recover a module or the whole network from the
input-output relation, is a generic notion: Either almost all

transfer matrices corresponding to a given network structure
are identifiable, in which case the structure is called generi-

cally identifiable, or none of them are. A number of works
study generic identifiability when all nodes are excited or
measured, i.e. when B or C = I [6], [7]. Considering the
graph of the network, path-based conditions on the allocation
of measurements in the case of full excitation are derived
in [8]. Reformulating these conditions by means of disjoint
trees in the graph, [9] develops a scalable algorithm to
allocate excitations/measurements in case of full measure-
ment/excitation. Rather than verifying the identifiability of
a given excitation allocation, [10] addresses the question of
where to allocate excitation signals under full measurement.

The conditions of [8] apply for generic identifiability, i.e.
identifiability of almost all transfer matrices corresponding to
a given network structure. [11] extends the path-based con-
ditions under full excitation to determine the identifiability
for all (nonzero) transfer matrices corresponding to a given
structure, and [12] provides conditions for the outgoing edges
of a node, and the whole network under the same conditions.

In all these works, the common assumption is that all
nodes are either excited, or measured. In [13], this as-
sumption is relaxed and generic identifiability with partial
excitation and measurement is addressed. The authors derive
necessary conditions and sufficient conditions for identifying
the outgoing and incoming edges of a node, and for particular
network topologies such as loops and trees.

The question of generic identifiability under partial excita-
tion and measurement for the general case remains unsolved:
We wish to find a combinatorial characterization for generic
identifiability of an edge or a network, that is expressed
purely in terms of graph theoretical properties, akin to what
was done in the full excitation case e.g. in [8]. Such char-
acterization would in particular pave the way for optimizing
the selection of nodes to be excited and measured, akin to
the work in [10] in the full measurement case.



In this paper, we introduce the notion of local identifia-
bility, i.e. we address the question of identifiability only on
a neighborhood of G(z). Local identifiability is a necessary
condition for identifiability, and we believe its understanding
will allow making progress towards understanding identi-
fiability. We show that it is generic, provide an algebraic
necessary and sufficient condition for local identifiability of
a network in terms of the rank of a matrix, and a necessary
and sufficient condition for local identifiability of an edge
depending on the orthogonality of a matrix kernel to a certain
vector (which is itself equivalent to some rank conditions).
These conditions generalize previous results obtained under
full excitation or measurement [8]. We then exploit these
conditions to develop an algorithm that determines which
transfer functions are locally identifiable, with probability
1. An implementation is available at [14], and includes a
graphical representation of the results.

Assumptions: We consider the problem modeled in (1).
Consistently with previous works, we assume the invertibility
of the matrix (I�G(z)), which is equivalent to the network
being well-posed, and that CT (z)B = C(I�G(z))�1B has
been identified exactly. We do not suppose having access
to any information related to the effect of the noise signals
v1, v2. The additional information that could be gathered
from this knowledge in our context is left for further works.

For the simplicity of exposition, we consider in this
paper a single frequency z, so that all transfer functions are
modeled simply by a complex value, and the matrices G and
T = (I�G)�1 are complex matrices rather than matrices of
transfer functions. Conceptually, our generic results directly
extend to the transfer function case: if one can recover a
Gij(z) at a given frequency z for almost all G consistent
with a network, then one can also recover it at all other
frequencies, and hence recover the transfer function. We
intend to remove this simplification or to formalize this
intuitive argument in a further version of this work. In the
remainder of this document, we omit (z) to lighten notations.

II. LOCAL IDENTIFIABILITY

We start by reminding the definition of identifiability, see
e.g. [8], [2]. A network matrix G defines a directed graph
where the edge j ! i is present if Gij 6= 0. We say that
a matrix G̃ is consistent with a graph defined by a network
matrix G if G̃ij(z) is zero when there is no edge j ! i in
the graph defined by G.

Definition 1: The transfer function Gij is identifiable at
G from excitations B and measurements C if, for all network
matrix G̃ consistent with the graph, there holds

C(I � G̃)�1B = C(I �G)�1B ) G̃ij = Gij . (2)

The network matrix is identifiable at G if each transfer
function Gij is identifiable at G, i.e. if the left-hand side
of (2) implies G̃ = G.

These definitions were made for matrices of transfer
functions G(z), but we remind that here we consider a single
frequency for simplicity, so G is just a matrix in Cn⇥n.

The combinatorial conditions for identifiability obtained
under full excitation or measurement (i.e. when B or C = I)
in [15], [6], [7], [8], [9] were made possible by a linear
algebraic reformulation of the identifiability questions. No
equivalent reformulation is available for settings with partial
measurements and excitation. Hence we will work on a
weaker notion amenable to linear analysis: local identifia-
bility, which corresponds to identifiability provided that G̃ is
sufficiently close to G.

Definition 2: The transfer function Gij is locally identi-

fiable at G from excitations B and measurements C if there
exists ✏ > 0 such that for any G̃ consistent with the graph
satisfying ||G̃�G|| < ✏, there holds

C(I � G̃)�1B = C(I �G)�1B ) G̃ij = Gij . (3)

The network matrix is locally identifiable at G if each
transfer function Gij is locally identifiable at G, i.e. if the
left-hand side of (3) implies G̃ = G.

Local identifiability is a necessary condition for iden-
tifiability, both for recovering the entire network or just
a particular edge. It is a priori a weaker notion, but we
have so far found no example of network that is locally
identifiable but not globally identifiable. Moreover, one can
show that if a network is locally identifiable, then it can be
recovered up to a discrete ambiguity, i.e. the set of unknown
G corresponding to a measured C(I � G)�1B would be
discrete. Finally, local identifiability is relevant in the many
practical situations where the transfer functions are already
approximately known.

Genericity: Given a graph and sets B, C of excited and
measured nodes, we say that an edge is generically (locally)
identifiable if it is (locally) identifiable at all G consistent
with the graph, except possibly those lying on a lower-
dimensional set (i.e. a set of dimension lower than n). In the
remainder of this paper, we will say that a property holds
generically, or for almost all (resp. no) variables if it holds
for all (resp. no) variables, except possibly those lying on a
lower-dimensional set. We will see that local identifiability
is indeed a generic notion: for given network topology and
sets of excited and measured nodes, the transfer function
corresponding to the edge (i, j) is either identifiable at almost
all G (generically identifiable) or identifiable at almost none
of them. More details about this will be given in future
versions of this work.

III. IDENTIFIABILITY AND INJECTIVITY

The identifiability questions we consider can be reformu-
lated in terms of (local) injectivity. Let x 2 C|E| be a vector
compiling the |E| (potentially) nonzero entries of G, and
G(x) the network matrix G corresponding to a vector x, so



that every matrix consistent with the graph can be written as
G(x) for some x. We define

h : C|E| \ D ! C|B|·|C| : x! vec
�
C(I �G(x))�1B

�
(4)

where the set D , {x| det(I � G(x)) = 0} collects the
vectors for which the inverse does not exist. The |B| ⇥ |C|
image is vectorized into a single |B| · |C| vector, which will
ease the differential analysis below.

Recovering a matrix G from C(I � G)�1B can then
be seen as recovering x from h(x), while recovering Gij

corresponds to recovering a specific entry xe of x from
h(x) (where e is the index of Gij in x). Local identifiability

becomes then local injectivity: determining if h(x̃) = h(x)
implies x̃ = x for every x̃ in a neighborhood of x. The
local identifiability of an edge e becomes a question of local
coordinate-injectivity: determining if h(x̃) = h(x) implies
x̃e = xe for every x̃ in a neighborhood of x. The notion
of local coordinate-injectivity is formally introduced in the
definition below.

Definition 3: The function f : M ! N is locally

coordinate-injective for the coordinate e at x if there exists
✏ > 0 such that for all x̃ 2 B(x, ✏), there holds

f(x̃) = f(x)) x̃e = xe. (5)

Intuitively, these local questions could be determined by
the gradient: h would be locally injective at x ifrh(x)·� 6= 0
for any nonzero � 2 C|E|, i.e. if rh(x) has a trivial kernel.
Observe this requires the number |B| · |C| of available input-
output relations to be at least as large as the number |E| of
unknowns. Similarly, h would be coordinate-injective at x
for edge e if rh(x) · � 6= 0 for any � 2 C|E| with �e 6= 0,
i.e. if the kernel of rh(x) is orthogonal to ee, the standard
basis vector filled with zeros except 1 at the e-th entry.

However, the issue is more complex than it first seems.
For example, the real function g(x) = x3 is injective, but
g0(0) = 0 admits a non-trivial kernel, in contradiction with
our previous statement. The problem is that the derivative of
g vanishes at 0, while being nonzero everywhere else. Adding
an assumption on the conservation of information contained
in the derivative (i.e. the rank of its gradient) resolves that
issue. The next lemma, proved in the Appendix, shows that
the intuitive idea behind the gradient is in fact valid whenrf
has constant rank. We will then see in Proposition 3.1 how
this rather constraining assumption can be removed provided
one is only interested in local injectivity at almost all x.

Lemma 3.1: Suppose f : M ! N is C1 where M and
N are smooth manifolds, M or N has finite dimension, and
rf(x) has the same rank for every x 2M . Then f is locally
coordinate-injective for e at all x 2M if and only if for all
x 2M ,

kerrf(x) ? ee, (6)

where ee denotes the standard basis vector filled with zeros
except 1 at the e-th entry.

The next proposition, proved in the Appendix, character-
izes local injectivity almost everywhere for analytic func-
tions. Analytic functions are functions which can be locally
approximated everywhere by their Taylor expansion, see e.g.
[16] for a precise definition. They include in particular all
compositions of products, sums, divisions, etc.

Proposition 3.1: Let f : M ! N be an analytic function
where M and N are smooth manifolds, M or N has finite
dimension, and M is open. Then exactly one of the two
following holds:

(i) kerrf(x) ? ee for almost all x and f is locally
coordinate-injective for e at almost all x;

(ii) kerrf(x) ? ee for almost no x and f is locally
coordinate-injective for e at almost no x.

IV. NECESSARY AND SUFFICIENT CONDITIONS
FOR LOCAL IDENTIFIABILITY

First we define the |B| |C|⇥ |E| matrix K which, as will
be proved in Lemma 4.1, is the gradient of h.

K(x) ,
�
BTTT (x)⌦ CT (x)

�
IG, (7)

where T (x) , (I � G(x))�1, ⌦ denotes the Kronecker
product and the matrix IG 2 {0, 1}n2⇥|E| selects only the
columns of the preceding |B| |C|⇥n2 matrix corresponding
to actual edges. It is defined by

IG ,
⇥
vec(G(e1)) vec(G(e2)) · · · vec(G(e|E|))

⇤
.

We are now ready to show that local identifiability is
generic, and derive our necessary and sufficient condition.

Theorem 4.1: Let K be as defined in (7) and e be the
index of Gij in x. Exactly one of the two following holds:

(i) kerK(x) ? ee for almost all x and Gij is generically
locally identifiable;

(ii) kerK(x) ? ee for almost no x and Gij is generi-
cally locally non-identifiable, hence generically non-
identifiable.

Moreover, kerK(x) ? ee is equivalent to the following
implication holding for all � consistent with the graph:

C(I �G)�1�(I �G)�1B = 0) �ij = 0. (8)

The proof of Theorem 4.1 relies on applying Proposition
3.1 on the gradient of h, characterized by Lemma 4.1.

Lemma 4.1: Let h be the function defined in (4). Its
gradient is given by

rh(x) =
�
BTTT (x)⌦ CT (x)

�
IG = K(x). (9)

Besides, for all � 2 C|E|, there holds

mat (rh(x) �) = CT (x)G(�)T (x)B, (10)

where mat reorganizes its |B||C| vector in a |B|⇥ |C| matrix.



Proof: First note that rh(x) � is the differential of h at
x evaluated on �, which we denote dxh(�). We start by
deriving the expression of the differential (10), from which
we compute the gradient (9). The differential of h follows
from the differential of T by linearity: mat(dh) = C dTB,
which relies on its partial derivatives, developed as [17]:

@T

@xe
(x) = � (I �G(x))�1 @(I �G)

@xe
(x) (I �G(x))�1

= �T (x)
✓
� @G

@xe
(x)

◆
T (x) = T (x)G(ee)T (x).

The partial derivatives then yield the differential:

dxT (�) =

|E|X

e=1

T (x)G(ee)T (x) �e = T (x)G(�)T (x).

For the differential of h, we obtain

mat(dxh(�)) = C dxT (�)B = CT (x)G(�)T (x)B. (11)

In order to derive the gradient of h, we vectorize (11):

rh(x) � = vec (CT (x)G(�)T (x)B)

=
�
BTTT (x)⌦ CT (x)

�
vec (G(�)) ,

where vec stacks the columns of its |B|⇥|C| matrix argument
into a |B|·|C| vector. Then, observing that vec (G(�)) = IG �
gives rh(x) � = K(x) � 8 � 2 C|E|, which yields (9).

Proof of Theorem 4.1: As explained in Section III, the
generic local identifiability of transfer function Gij is equiv-
alent to function h defined in (4) being locally coordinate-
injective for e at almost all x (e is the index of Gij in x).

Proposition 3.1 gives conditions on local coordinate-
injectivity, let us verify its assumptions for h. First h is
analytic, and its domain and image sets have finite dimen-
sion. The openness of the domain C|E| \D follows from the
continuity of det(I�G). Since the inverse image of a closed
set by a continuous function is a closed set [18], the zero
set of det(I �G) is closed, and its complement is open. Its
assumptions being fulfilled, Proposition 3.1 applies. The first
part of the theorem then follows directly from (9).

Besides, kerrh(x) ? ee can be rewritten equivalently as

rh(x) � = 0) �e = 0.

Reorganizing this |B| · |C| vector into a |B|⇥ |C| matrix gives

mat (rh(x) �) = 0) �e = 0,

and combining it with (10) then yields (8).

Theorem 4.1 provides a necessary and sufficient condition
for local identifiability of a transfer function. Therefore,
combining this condition for all edges immediately leads to a
characterization of local identifiability of the whole network.

Corollary 4.1: Exactly one of the two following holds:
(i) rank K(x) = |E| for almost all x and G is generically

locally identifiable;
(ii) rank K(x) = |E| for almost no x and G is generically

locally non-identifiable.
Moreover, rank K(x) = |E| is equivalent to the following
implication holding for all � consistent with the graph:

C(I �G)�1�(I �G)�1B = 0) � = 0. (12)

Proof: First, kerK(x) ? ee for each e is equivalent to
kerK(x) = {0}, and therefore rank K(x) = |E| by the
rank-nullity theorem. Then, (8) for each (i, j) yields (12).

We observe that condition (12) reduces to the necessary
and sufficient condition for (global) identifiability in the
full excitation (resp. measurement) case. Indeed, since T =
(I � G)�1 is by construction invertible, CT�TB = 0 is
equivalent to CT� = 0 when B is the identity matrix (resp.
to �TB when C is the identity matrix), as in [8].

V. ALGORITHM

The necessary and sufficient conditions of Theorem 4.1
can be tested exactly by symbolic computation, but it be-
comes rapidly computationally intractable. Hence, we have
designed a probability-1 algorithm that exploits the generic
character of local identifiability, as proved in Theorem 4.1.
Testing these conditions with a randomly selected x 2 C|E|

will therefore provide the correct result with a probability
1, and can be done very efficiently. This extends what E. J.
Davison does in the controllability context [19].

Although this idea allows to design an algorithm working
with probability 1, we cannot exclude the possibility that
an actual implementation could suffer from numerical issues
for large networks, with e.g. the numerically computed rank
being very close to zero if the randomly selected values are
close to the problematic lower-dimensional set. Hence we
repeat the procedure several times to increase the reliability
of our results, as described in Algorithm 1. However, we
did not observe any such numerical problem in any of our
tests. Our implementation is available at [14], and includes
a graphical representation of the results.

Figure 1 shows examples of outputs of Algorithm 1. Figure
1(a) is the network of Example 2 in [9], for which the authors
provide an optimal excitation set assuming all nodes are
measured. Our algorithm shows that all edges can still be
locally identified if some of the nodes (i.e. 4, 10, 11) are not
actually measured, and node 9 must not be excited. Note this
does not contradict the optimality of the excited set found
in [9], since this set was found under the assumption of full
measurement, and node 9 was affected by external noise.

Figure 1(b) shows a nontrivial example of network where
all edges but two are generically locally identifiable. Interest-
ingly, exciting 1 or 9 allows recovering both (1, 11) and (9,
6), even though these edges do not appear directly related.



Algorithm 1 Identifiability test
Require: Graph topology, matrices B and C, nsamples
Result: The identifiability of each transfer function

1: Initialize network to false and edges to a false
vector of length |E| (true means identifiable)

2: for i 1 to nsamples by 1 do

3: Randomly generate a complex network matrix G
4: Construct K =

�
BTTT ⌦ CT

�
IG

5: if rank K = |E| then

6: network  true
7: else Compute V , basis of kerK
8: Calculate v, the binary vector of length |E|, with

ve = true if the e-th entry of each vector of V is 0,
ve = false otherwise

9: edges  edges or v entry-wise

10: if network then return Network identifiable
11: else return edges

1 1.5 2 2.5 3 3.5 4 4.5

1
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New CSV19
 

- 10 samples

1 2 3 4

5 6 7 8

9 10 11
(a)

Test - 10 samples

1

23

4

5

6

7

8

9 10

11

12Excited
Measured
Exc. & meas.
Identifiable
Non-identifiable
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Fig. 1: Example of outputs from Algorithm 1: (a) is an
improvement on Example 2 of [9] showing not all nodes
need to be measured. In (b), two edges cannot be identified,
but exciting 1 or 9 restores full local identifiability.

VI. CONCLUSION
This work was motivated by one main open question:

determining graph-theoretical or combinatorial conditions
for generic network and edge identifiability in networked
systems.

The local notions we have introduced allowed making
progress in this direction. In particular, the necessary and
sufficient conditions for generic local identifiability in terms
of generic ranks allowed us to design an algorithm deter-
mining, with probability 1, the generic local identifiability
of each edge.

Providing a graph-theoretical characterization for local
identifiability remains an open question, but we believe that
our generic rank-based characterization could pave the way
to a solution. Moreover, our algorithm allows rapidly testing
ideas and conjectures, hence facilitates further research.

In principle, generic local identifiability is a weaker no-
tion than generic identifiability. However, we were so far
unable to find examples of networks that are locally, but not
globally, identifiable. The possible equivalence of the two
notions would greatly simplify the study of identifiability,
and remains an open question.
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APPENDIX

A. Proof of Lemma 3.1

We must prove that (5) for all x 2 M , (6) for all
x 2 M . The smoothness of f and constant rank of rf
allow the application of the subimmersion theorem [20]. In
short, this theorem states that the level set of an image n0

by such function is a submanifold of M , and its tangent
space coincides with the kernel of the gradient. Here, we
take n0 = f(x) to make the connection with injectivity, and
the theorem yields that for all x, f�1(f(x)) is a submanifold
of M with

Tx̃f
�1(f(x)) = kerrf(x̃) 8 x̃ 2 f�1(f(x)), (13)

where Tx̃A denotes the tangent space to manifold A at x̃.

We start with necessity: assume (5) for all x, and consider
a specific x. Each x̃ belonging to a neighborhood of x in
f�1(f(x)) has the same e-coordinate as x. Therefore, any
tangent vector to f�1(f(x)) at x has a zero e-component,
and the tangent space to this manifold at x is orthogonal to
direction e, i.e. Txf�1(f(x)) ? ee. Equation (13) evaluated
at x̃ = x then gives (6) and proves necessity.

We now prove sufficiency: assume (6) for all x, and
consider a specific x. Combining (6) with (13) yields
Tx̃f�1(f(x)) ? ee for all x̃ 2 f�1(f(x)). Take a specific
x̃ 2 f�1(f(x)), and assume that there is a path lying in
f�1(f(x)) between x and x̃. At every point of this path, the
tangent space is orthogonal to direction e, so the derivative
along the path is zero in the e-coordinate. Integrating along
the path gives a zero increase in e-coordinate, hence x̃e = xe.

To complete the proof, we need to show that there exists
✏ > 0 such that for all x̃ 2 B(x, ✏) \ f�1(f(x)), there is
a path lying in f�1(f(x)) between x and x̃. Such path can
be found with the rank theorem [20]. Roughly speaking, this
theorem states that if rf has constant rank k in a manifold
of dimension m, then m � k variables are redundant and
can be eliminated. More precisely, for all p in the manifold,

there exist local coordinates centered at p and f(p) in which
f(q) = (q1, . . . , qk, 0, . . . , 0) for any q in the manifold.

For the rest of this proof, we work in the local coordinates
provided by this theorem, centered at p = x. Since these
are centered at x and f(x), x1 = · · · = xk = 0. Let us
now take ✏ > 0, and x̃ 2 B(x, ✏) \ f�1(f(x)). The rank
theorem yields that the last entries of f(x̃) are zero in those
local coordinates, i.e. f(x̃) = (x̃1, . . . , x̃k, 0, . . . , 0). Since
x̃ lies in the manifold f�1(f(x)), it must have the same
image as x, hence f(x̃) = f(x) = 0, and x̃1 = · · · =
x̃k = 0. An example of path between x and x̃ is given by
(0, . . . , 0,�x̃k+1, . . . ,�x̃|E|), with � 2 [0, 1]. Applying the
function f on any point of this path gives 0 in the local
coordinates by the rank theorem, showing that the path is
indeed included in the manifold f�1(f(x)).

B. Proof of Proposition 3.1

The proof of Proposition 3.1 relies on Lemma B.1.
Lemma B.1: The gradient of an analytic function f

reaches its maximal rank everywhere except on a closed
lower-dimensional set. Moreover, the orthogonality relation

kerrf(x) ? ee (14)

either holds:
(i) for all x except those lying on a closed lower-d. set;

(ii) only for x lying on a closed lower-dimensional set.

Sketch of proof: First, the set on which the rank of a
matrix drops can be expressed as the intersection of zero
sets of determinants of submatrices [21]. The determinant
is analytic in its entries, which are analytic in x since f
is assumed analytic (hence so is rf ). Since nonconstant
analytic functions vanish only on a lower-dimensional set
[22], the set on which rf(x) does not reach its maximal
rank has lower dimension. Besides, this set is also closed:
the inverse image of a closed set by a continuous function is
a closed set [18], hence the zero sets of the determinants are
closed, and so is their intersection. This extends the notion
of generic rank introduced in [19].

Then, (14) can be equivalently rewritten as rf(x)� =
0 ) �e = 0 8 �, which is equivalent to the linear
independence of the e-th column of rf(x) with the other
columns. It can be formulated by means of ranks, and a
reasoning similar to above completes the proof.

Proof of Proposition 3.1: We denote M̃ the intersection
of the set on which rf reaches its maximal rank (hence
constant), and the set on which (14) holds (case (i)) or
does not hold (case (ii)). Lemma B.1 ensures that those
two sets cover the whole domain M except a closed lower-
dimensional set. Hence, so does M̃ , and it is open since M
is assumed open. Thus, there is an ✏ for every x 2 M̃ such
that the rank of rf is constant over B(x, ✏), and (14) holds
(case (i)) or does not hold (case (ii)) on the ball. Denote
fx,✏ the restriction of f on B(x, ✏). The result follows by
applying Lemma 3.1 on fx,✏ for all x 2 M̃ .

https://github.com/alegat/identifiable
https://github.com/alegat/identifiable
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