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Abstract— We derive fundamental limitations on the perfor-
mances of intrinsic averaging algorithms in open multi-agent
systems, which are systems subject to random arrivals and
departures of agents. Each agent holds a value, and their goal
is to estimate the average of the values of the agents presently
in the system. We provide a lower bound on the expected Mean
Square Error for any estimation algorithm, assuming that the
number of agents remains constant and that communications
are random and pairwise. Our derivation is based on the
expected error obtained with an optimal algorithm under
conditions more favorable than those the actual problem allows,
and relies on an analysis of the constraints on the information
spreading mechanisms in the system, and relaxations of these.

I. INTRODUCTION

Multi-agent systems show great benefits for modeling and
solving problems in various domains including sensor net-
works [1], [2], vehicle coordination [3], or social phenomena
[4], [5]. Among the most cited properties of multi-agent
systems are their flexibility, their scalability, or their robust-
ness. Yet, most results around multi-agent systems stand for
asymptotic properties under the convenient assumption that
their composition remains unchanged. The increasing size of
the systems challenges this assumption as it implies slower
processes and higher probabilities of arrivals and departures,
making those non-negligible. It is also challenged by the
chaotic nature of some systems, where communications can
be difficult, or happen at a time-scale highly comparable
to that of the arrivals and departures: vehicles can for
instance share a stretch of road before heading to different
destinations in collaborative multi-vehicles systems.

All those reasons bring up the emergence of the study
of Open Multi-Agent Systems. Results about closed systems
do not easily extend to open ones: repeated arrivals and
departures imply important differences in the design and
analysis of such systems, and result in several challenges, see
e.g. [6], [7]. First, with the frequent arrivals and departures of
agents, the size of an open system changes with time, making
the analysis of its state challenging. Moreover, incessant
perturbations impact the state, but also in some cases the
objective pursued by the agents of the system: algorithms
then have to adapt to that variable objective, making their
design challenging, and the usual convergence cannot be
achieved anymore.
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A. State of the art

There is little theoretical analysis of open multi-agent
systems, as most multi-agent results rely on the assumption
that systems are closed. However, some results considered
arrivals and departures, such as simulation-based analyses
of social phenomena performed in [8]. Also, it has been
shown in [6] that systems subject to gossip interactions
in open features can be analyzed through size-independent
descriptors, whose evolution described by a dynamical sys-
tem is shown to asymptotically converge to some steady
states. Moreover, algorithm design has been explored for
MAX-consensus problems with arrivals and departures in
[7] through additional variables, and where performance was
measured by the probability for the estimate to eventually
converge if the system closes. Similarly, THOMAS architec-
ture was designed to maintain connectivity into P2P networks
[9]. Openness was also considered in applications such as
VTL for autonomous cars to deal with cross-sections [10].

Nevertheless, up to now, efficiently studying performances
of algorithms and analyzing open systems remains a chal-
lenge in general. As agents cannot instantaneously react
to perturbations, obtaining an exact result is often out of
range. Hence, the goal should be to remain near a time-
varying objective, and usual convergence is no more relevant
to be studied as it cannot be achieved. A step towards
understanding open systems is the derivation of fundamental
performance limitations: lower bounds on the performances
that are possible to achieve. Through those limitations, one
can obtain some quality criterion for algorithm design in
open systems, but also get a better understanding of the
possible bottlenecks that could arise.

B. Contribution

We establish fundamental performance limitations in open
multi-agent systems for intrinsic averaging consensus prob-
lems (i.e. estimating the average of all intern values owned by
agents present in the system at that time), where information
is exchanged between agents through random pairwise com-
munications. In this analysis, we focus on systems of fixed
size: we assume that each departure of an agent is instanta-
neously followed by an arrival, so that only replacements
occur, and the system size remains constant, see Section
II for a formal definition. The approach used for deriving
the fundamental limitations is detailed in Section III, and
consists in evaluating the performances of an algorithm that
is provably optimal under favorable settings where agents
have access to more resources than decentralized problems



typically allow. These performances depend on some compli-
cated distribution related to information propagation. Bounds
on this distribution were obtained by considering relaxed
conditions for the information exchange, namely the Ping
model in Section IV and the Infection model in Section V,
to properly define the performance limitations.

Since consensus problems are commonly a building block
for various multi-agent complex applications (such as de-
centralized optimization [11] or several control applications
[3]), we expect the techniques we use for deriving those
limitations to be extendable to more advanced tasks on open
multi-agent systems.

II. PROBLEM STATEMENT

A. System description

We consider a set of N agents, labelled from 1 to N. Each
agent i∈ {1 . . .N} holds an i.i.d. intrinsic value xi(t)∈R ran-
domly selected from a distribution which we assume without
loss of generality to be zero mean and of variance Ex2

i = σ2.
This value remains constant except at a replacement, which
we model as the complete erasure of the agent’s memory
and the attribution of a new value xi(t) drawn from the
same distribution. Those replacements happen according to a
Poisson clock defined by an individual replacement rate λr,
so that on average Nλr replacements happen in the whole
system per unit of time.

Agents interact via pairwise communications: every two
agents interact with each other at random times determined
by a Poisson clock with rate λc. There are thus on average
N(N−1)

2 λc communications taking place in the system per
unit of time. Agents are deterministic and have unlimited
memory and computation power and there is no restriction
on the size or nature of the messages they can exchange.
They have a unique identifier that they can use and they
have access to a common universal time. The way we model
replacements as a memory erasure also means agents know
the correspondence between the agents having left and those
having replaced them since they share the same label. We
assume moreover that they know the number of agents
N, the parameters λr, λc, and the distribution of the xi
(although we will see that the results would be the same
if they knew only the expected value of xi, assumed here
to be 0). Agents have thus access to significantly more
information than in many works on multi-agent systems,
but our lower bounds on the algorithm performance will
of course also apply to these more usual situations, since
our setting allows implementing any algorithm that could be
implemented under more restrictive conditions.

B. Objective

In intrinsic averaging, agents try to estimate the average of
the intern values of the agents present in the system at that
time, denoted x̄(t). For that purpose, every agent i maintains
its own estimate yi(t) of that average based on its knowledge
about the system, and updates it in continuous time. Under
ideal conditions, one would expect that estimate to become
yi(t) = x̄(t) = 1

N ∑
N
j=1 x j(t).

This is not achievable in open systems because of the
variable objective and the delays to transmit information in
the system, leading to the absence of usual convergence. We
thus need a quantitative measure of the performance of an
algorithm solving this problem in open systems, and choose
the classical Mean Square Error (MSE) of the estimation of
all the agents at time t, presented in equation (1).

C(t) := 1
N ∑

N
j=1(x̄(t)− y j(t))2 (1)

In this analysis, we focus on the steady state-error: we
assume the system has been running since −∞, so that
the effect of initial conditions has disappeared, and E [C(t)]
can be considered independent of the time (one can verify
that our processes remain well defined). We thus derive
fundamental performance limitations for all algorithms that
can be implemented in our setting as a (time-invariant) lower
bound on (2).

E [C(t)] = E
[
(x̄(t)− yi(t))2] (2)

C. Preliminary notions

Before stating our first result, we need to introduce certain
notions related to the information available to an agent when
computing its estimate, and to the age of its information.

We first formalize in the next definition all the information
about events and values x j to which an agent i could possibly
access, and thus influence its estimate yi(t).

Definition 1: At its arrival at time t, an agent i whose
value is set to xi owns a knowledge set ωi(t) such that
ωi(t+) = {i,xi, t}. If agents i and j interact at time t̃, then
ωi(t̃+) = ω j(t̃+) = ωi(t̃−) ∪ ω j(t̃−) ∪ {i - j; t̃,xi(t̃),x j(t̃)}.

The last expression of the union defining an interaction
denotes that i, j have interacted at time t̃ and confirms their
values at that time.1 In other words, the knowledge sets after
interaction consist of the union of the knowledge sets, to
which is added the information about the interaction and
confirmation of the values. Standard results in distributed
computation show that any estimate yi(t) that an agent can
compute in our settings can actually be computed based only
on ωi(t) and the time t.

Observe that ωi(t) may contain various values x j(t ′) for
different t ′ < t. However, we will see later that only the most
recent known values about the other agents are needed to
build the estimate yi(t).

Definition 2: The most recent value known by the agent
i about j at time t is denoted x̃(i)j (t) = x j

(
t̃(i)j (t)

)
, where

t̃(i)j (t) :=max{s : x j(s)∈ωi(t)} is the time at which that most
recent value was first obtained. We denote the age of that
information by T (i)

j (t) := t− t̃(i)j (t).
By convention, if no value x j lies in ωi(t), we set x j to 0

and the corresponding age to +∞. Moreover, the estimate of
an agent about itself is always correct, and the corresponding
age of the information is 0.

In steady state, and due to the symmetry between the
agents, the distribution of T (i)

j (t) is independent of i, j

1This confirmation is included for simplicity, but is actually redundant,
as the values at that time could be obtained from ωi(t̃−) and ω j(t̃−).



and t. Hence, all agents share a common cdf and pdf for
that variable, respectively denoted F(s) and f (s). Moreover,
with a small abuse of language, we say that another pdf
f ∗(s) bounds f (s) when the corresponding cdf F∗(s) satisfies
F∗(s) ≥ F(s) ∀s, which is always satisfied for a random
variable T ∗ ≤st T , in the usual stochastic order [12].

III. BOUND IN TERMS OF THE INFORMATION SPREADING
MECHANISM

We present in Theorem 1 a general lower bound on (2)
depending on the way information spreads in the system. To
properly define a bound, we will thus need to find relaxations
of that information spreading to instantiate the expression.

Theorem 1: The performances of any algorithm in the
setting defined in Section II are bounded from below as

E [C(t)]≥ N−1
N2

∫
∞

0
f ∗(t)

(
1− e−2λrt

)
σ

2dt (3)

where f ∗(t) bounds f (t) as defined in Section II-C.
The bound derived in the above theorem is obtained by

studying an optimal algorithm in the setting of Section II
(Section III-A). It relies on the decomposition of the contri-
butions of all the agents for the estimation of the average to
obtain the MSE for some knowledge (Sections III-B to III-
D), and then on the derivation of a steady state through
the analysis of the way information spreads in the system
(Sections III-E and III-F).

A. Optimal algorithm definition
We first build an algorithm that is optimal for solving

intrinsic averaging based on a knowledge set.
Proposition 1: In the setting described in Section II, the

following estimate is optimal in the sense of criterion (2).

yi(t) = E [x̄(t)|ωi(t)] = 1
N ∑

N
j=1E [x j(t)|ωi(t)] (4)

Proof: Conditional to the knowledge set ωi(t), algo-
rithm (4) is optimal since it minimizes the MSE:

d
dyi(t)

E
[
(x̄(t)− yi(t))2|ωi(t)

]
= 2yi(t)−2E [x̄(t)|ωi(t)] = 0.

Hence, since any other algorithm only depends on ωi(t)
and t, the result of any of them y∗i (t) is such that

E
[
(x̄(t)− y∗i (t))

2|ωi(t)
]
≥ E

[
(x̄(t)− yi(t))2|ωi(t)

]
.

Considering the expected value on all ωi(t), it follows:
E
[
E
[
(x̄(t)− y∗i (t))

2|ωi(t)
]]
≥ E

[
E
[
(x̄(t)− yi(t))2|ωi(t)

]]
.

Since the algorithm (4) is optimal in the sense of criterion
(2), its performance

E [C(t)] = E
[
E
[
(x̄(t)−E [x̄(t)|ωi(t)])

2 |ωi(t)
]]

(5)

provides a lower bound on the performance of all algorithms
that can be deployed in our settings.

B. Individual contribution
We show in the following proposition that expression (5)

conveniently reduces to the analysis of a single agent.
Proposition 2: The criterion (2) for the algorithm (4)

conditional to the knowledge set ωi(t) reduces to

E
[
(x̄(t)− yi(t))

2 |ωi(t)
]
= 1

N2 ∑
N
j=1E

[
(x j(t)− x̂ j(t))2|ωi(t)

]
(6)

where x̂ j(t) := E [x j(t)|ωi(t)] (we lighten the notation by
dropping the dependence of x̂(i)j (t) on i).

Proof: With the optimal algorithm (4), one has

yi(t) = 1
N ∑

N
j=1E [x j(t)|ωi(t)]

It follows that the error given ωi(t) is written

E
[
(x̄(t)− yi(t))2|ωi(t)

]
=

1
N2 E

[(
∑

N
j=1

(
x j(t)− x̂ j(t)

))2
∣∣∣∣ωi(t)

]
.

The absence of correlation between the agents values xi(t)
finally allows to nullify the crossed-product terms of the
squared sum, to obtain the final expression.

C. Single agent estimate

We can then explicitly write an expression for the estimate
of a single agent x̂ j(t).

Proposition 3: There holds,

x̂ j(t) = E [x j(t)|ωi(t)] = e−λrT (i)
j x j(t−T (i)

j ). (7)
Hence, the estimate x̂ j(t) only depends on the most recent
information about the agent j (note that the time-dependence
of T (i)

j (t) is removed to lighten the notations).
Proof: The most recent information we know about j

is given by Definition 2, and we have no information about
whether it was replaced since then. Hence, denoting R the
event that j has been replaced, and R̄ that it has not,

x̂ j(t) = E [x j(t)|R̄] ·P(R̄)+E [x j(t)|R] · (1−P(R̄)) .

By definition, E [x j(t)|R] = 0. Then, from Poisson properties:

x̂ j(t) = 0+ x̃(i)j (t) e−λr

(
t−t̃(i)j (t)

)
and the conclusion follows from the definition of the age of
the most recent information.

The result above also stands when an agent estimates its
own value or that of an agent for which it has no information,
leading respectively to x̂(i)i (t) = xi(t) and x̂(i)j (t) = 0.

D. Individual error

For concision matters, we denote

C(i)
j (t) := (x j(t)− x̂ j(t))2 (8)

We can then write the MSE of the estimation of a single
agent by injecting (7) into (8).

Proposition 4: The MSE when estimating a single agent
for algorithm (4) conditional to the knowledge set ωi(t) is

E
[
(x j(t)− x̂ j(t))

2 |ωi(t)
]
=
(

1− e−2λrT (i)
j
)

σ
2 (9)

and is thus entirely characterized by the age of the most
recent information about it.

Proof: Denoting R the event of at least one replacement
of the agent j during T (i)

j and by R̄ the event of no replace-
ment, we can develop (8) with a case-by-case analysis:

E
[
C(i)

j (t)|ωi(t)
]
= E

[
C(i)

j (t)|R
]
·P(R)+E

[
C(i)

j (t)|R̄
]
·P(R̄).

We develop each term to obtain the final result:

P(R) = 1− e−λrT (i)
j E

[
C(i)

j (t)|R
]
=
(

1+ e−2λrT (i)
j
)

σ
2

P(R̄) = e−λrT (i)
j E

[
C(i)

j (t)|R̄
]
=
(

1− e−λrT (i)
j
)2

σ
2



This last result allows to write the following:

E [C(t)|ωi(t)] = 1
N2 ∑

N
j=1

(
1− e−2λrT (i)

j
)

σ
2. (10)

E. Global expected value

We have developed an expression for the error in terms of
the age of the most recent information about the other agents
in (10). We can now obtain an expression for criterion (2)
by computing the expected value of that result.

Proposition 5: The MSE defined in (2) is given by

E [x̄(t)− yi(t)]
2 =

N−1
N2

∫
∞

0
f (t)

(
1− e−2λrt

)
σ

2 dt, (11)

where we remind that Exi = 0 and Ex2
i = σ2. It is thus

entirely characterized by the distribution of the age of an
information, and knowing f (t) leads to a proper bound.

Proof: By definition, the global MSE is
E
[
(x̄(t)− yi(t))2]= E

[
E
[
(x̄(t)− yi(t))2|ωi(t)

]]
.

Using the result (10), it becomes

E
[
(x̄(t)− yi(t))2]= 1

N2 ∑
N
j=1E

[(
1− e−2λrT (i)

j

)]
σ

2.

Finally, since all T (i)
j follow f (t) from Section II-C,

E
[(

1− e−2λrT (i)
j

)]
=
∫

∞

0
f (t)

(
1− e−2λrt

)
dt,

and the conclusion is then direct, where we remind that
T (i)

i = 0 by definition (cfr Section II-C).

F. Relaxation of the communication process

The previous result is actually that of Theorem 1 where
the pdf is exactly f (s). Since this pdf reveals to be hard to
compute, we show in the next proposition that a pdf f ∗(s)
bounding f (s) as defined in Section II-C leads to a proper
lower bound on (11), which concludes the development
of Theorem 1. In the next two Sections, we will then
present two possible relaxations of the information spreading
mechanism that will both lead to an appropriate f ∗(s) to
instantiate the bound.

Proposition 6: Given some value E =
∫

∞

0 F ′(t) · err(t)dt
where F(t) is a cdf, and where err(t) is a positive non-
decreasing function, then for any other cdf F∗(t)≥ F(t) ∀t,

E∗ =
∫

∞

0
(F∗)′(t) · err(t)dt ≤ E (12)

Proof: By defining F∗ = F +∆ with ∆≥ 0, one has

E∗ = E−
∫

∞

0
∆ · err′(t)dt

thanks to cdf properties. Using then the positivity of ∆ and
err′(t), the conclusion is direct.

IV. STRONG ASSUMPTION: PING MODEL

A. Assumption description

The first relaxation we consider relies on a strong simpli-
fication of the communication mechanism. We assume that
each time it communicates, an agent acquires all the infor-
mation about all the agents presently in the system, and never
forgets it, even at replacements. We refer to this assumption
as the Ping model, in reference to the ping software used

to test the reachability of machines in a network. The most
recent value known by the agent i about j at time t is then
given by x̃(i)j (t) = x j

(
t̃(i)j (t)

)
where t̃(i)j (t) is the time of the

very last communication in which agent i was involved, and
the age of that information T (i)

j,Ping(t) = t − t̃(i)j (t) is the
time spent since then.

Proposition 7: In steady state, ∀i 6= j, the age of the most
recent information about j held by i, noted T (i)

j,Ping(t) follows

f Ping(s) = (N−1)λce−(N−1)λcs, (13)
which bounds f (s) as defined in Section II-C.

Proof: The random variable T (i)
j,Ping(t) defines the time

spent since the last communication involving the agent i, and
thus follows by definition of the communications a Poisson
process of rate (N−1)λc. Its cdf is then given by

FPing(s) = P
[
T (i)

j,Ping(t)≤ s
]
= 1− e−(N−1)λcs.

The pdf is then obtained with f Ping(s) = dFPing(s)
ds .

T (i)
j,Ping(t) is actually the minimal value that can take T (i)

j (t).

Hence T (i)
j,Ping(t)≤st T (i)

j (t), and f Ping(s) bounds f (s).

B. Results

Theorem 2: The performances of any algorithm in the
setting defined in Section II are bounded from below as

E [C(t)]≥ N−1
N2

(
1

1+ N−1
2

λc
λr

)
σ

2 (14)

Proof: Applying Theorem 1 with the pdf f Ping(t), the
bound is given by performing the integration

E [C(t)]≥ N−1
N2

∫
∞

0
(N−1)λce−(N−1)λcs

(
1− e−2λrs

)
σ

2ds.

A few algebraic operations lead to the conclusion.

Fig. 1: Bound derived with the Ping model (14) in terms of the rate ratio between
pairwise communications and replacements. Each curve stands for a different number
of agents N, with a unit variance σ 2 = 1.

Several observations on the evolution of the error in terms
of the ratio of the rates λc/λr and N arise from Fig. 1. When
communications are rather rare (λc/λr→ 0), the error tends
to N−1

N2 σ2, i.e. the error that an agent would obtain only
considering itself in the estimation. As the communications
become more frequent, the second factor of (14) makes the
bound decrease, to ultimately bring it to 0 as λc/λr→+∞,
which is the error to which we converge in a close system.

Observe that λ̄c = (N − 1)λc is the communication rate
for one agent. Hence, the bound is actually separated into



two factors: N−1
N2 σ2 and the second one that only depends

on λ̄c/λr which characterizes the expected number of inter-
actions involving one agent before it is replaced.

V. WEAKER ASSUMPTION: INFECTION MODEL

A. Assumption description

The random variable T (i)
j (t) denotes the age of the most

recent information about j available to i at time t, i.e. the
time since this information was emitted by j. Since the
distribution of T (i)

j (t) is independent of the time t, its cdf
F(s) corresponds to the probability that an information x j(τ)
(with 0≤ τ ≤ s) is available to i at time s. This probability
is lower than what it would be if the agents were never
replaced (as information is erased with replacements). Hence
we use this latter replacement-free situation as a relaxation to
obtain a bound on the cdf. One can verify that when agents
are never replaced, the information propagation follows a
simple infection process: j is infected at time 0, and agents
get infected as soon as they communicate with an infected
agent. The probability of i having that information about j
at time s is then equal to the probability of i being infected
at time s, denoted by P[T (i)

j,In f (t)≤ s] where T (i)
j,In f is the time

of its first infection. Based on this, one can prove that the
cdf of T (i)

j,In f bounds F(s) as defined in Section II-C.

Proposition 8: In steady state, the pdf of T (i)
j,In f (t), noted

f In f (s), bounds f (s) as defined in Section II-C.
Proof: Considering one realization of communications,

there exists a sequence of events where T (i)
j (t) is such that it

did not suffer replacements. Since that sequence always also
exists with the Infection model, T (i)

j,In f (t)≤st T (i)
j (t).

B. Result

Proposition 9: In steady state, ∀i 6= j, the age of the
most recent information agent i has about agent j with the
Infection model, denoted T (i)

j,In f (t), follows the cdf

F In f (s) = ∑
N
k=1

k−1
N−1 Pk(s) (15)

where Pk(s) is defined by an ODE system:
Ṗk(s) = (k−1)(N−k+1)λcPk−1(s)−k(N−k)λcPk(s) (16)

such that P1(0) = 1 and Pk 6=1(0) = 0.
Proof: Let I(s) be the set containing the labels of

the infected agents at time s, NI(s) its size, and denote
Pk(s) = P[NI(s) = k]. Then, one has

F In f (s) = P[i ∈ I(s)] = ∑
N
k=1 Pk(s) ·P[i ∈ I(s)|NI(s) = k].

From the symmetry between the agents, and since they
are all interchangeable, one has

P[i ∈ I(s)|NI(s) = k] = k−1
N−1 .

Finally, the ODE system defining Pk(s) is a standard result
from continuous time Markov chains theory.

Theorem 3: The performances of any algorithm in the
setting defined in Section II are bounded from below as

E [C(t)]≥ N−1
N2

(
1−wT A(2λrI−A)−1e1

)
σ

2 (17)
where A is the bidiagonal matrix defining the ODE system
(16) from Proposition 9 i.e., Aii = − i(N − i)λc and

Ai+1,i = i(N− i)λc, and wT =
[
0 1

N−1
2

N−1 . . . 1
]
,

with λr 6= 0.
Proof: Equation (16) defines a linear system

Ṗ(s) = AP(s) with P(s) =
[
P1(s) P2(s) . . . PN(s)

]T
,

whose solution is given by
P(s) = eAsP(0) with P(0) = e1.

It follows from (15) that the cdf and pdf are given by
F In f (s) = wT eAse1 and f In f (s) = wT AeAse1.

Injecting that result in the integral from Theorem 1, which
we will see is well defined, one has∫

∞

0
f In f (s)

(
1− e−2λrs

)
ds = 1−wT A

∫
∞

0

(
eAse−2λrs

)
dse1.

Since A and −2λrI commute, the integral reduces to∫
∞

0

(
eAse−2λrIs

)
ds =

∫
∞

0
e(A−2λrI)sds.

Since λr 6= 0, then (A−2λrI) is invertible and has strictly
negative eigenvalues, leading to∫

∞

0
e(A−2λrI)sds = (A−2λrI)−1

[
e(A−2λrI)s

]∞

0
= (2λrI−A)−1.

Hence, the integral from Theorem 1 is given by∫
∞

0
f In f (s)

(
1− e−2λrs

)
ds = 1−wT A(2λrI−A)−1e1,

and the conclusion is direct from Theorem 1.
Corollary 1: The expression below is equivalent to (17).

E [C(t)]≥ N−1
N2

(
1− 1

1+ N−1
2

λc
λr

h
(

N, λc
λr

))
σ

2 (18)

with

h(N,L) =
N

∑
k=2

(
k−1
N−1

k−1

∏
j=1

j(N− j)L
2+( j+1)(N− j−1)L

)
(19)

Corollary 1 presents an algebraic expression for the
bound (17) from Theorem 1, and is proven in Ap-
pendix A of [13]. Detailed empirical explorations suggest
that h(N,L) ≤ L

2 + L
2 ∑

N−2
k=1

2kL
2+2kL . Using results on

bounds in numerical integration, we can then find a compact
bound on that expression, and derive the following empirical
expression for bounding E [C(t)] from below.

N−1
N2

(
1

1+ N−1
2

λc
λr

)(
1+ 1

2 log

(
1+(N−2) λc

λr

1+ λc
λr

))
σ

2 (20)

C. Discussion
Fig. 2 compares the bounds derived with the Ping and

Infection models, and the expression (20) based on the
Infection bound, in logarithmic scale. The first observation is
the improvement of both bounds from the Infection model,
which relies on a weaker relaxation, in comparison with
the Ping model. That improvement is even more apparent
when the rate ratio λc/λr increases, since the impact of the
corresponding factor gets more important. In particular, the
expression (20) is actually exactly that of the bound from
the Ping model multiplied by a logarithmic factor that scales
to logN when λc/λr is large. This could relate to the fact
that information propagates in one hop in the Ping model,
whereas it needs time with the Infection model.

Observe also in Fig. 2 that the bound follows two distinct
regimes: when λc/λr is very small, it has a very low impact



Fig. 2: Bounds derived with the Ping model (dashed), the Infection model (plain), and
the expression (20) (dotted) in terms of the rate ratio λc/λr , for different numbers of
agents N, and with a unit variance σ 2 = 1.

Fig. 3: Performances comparison for solving an intrinsic consensus problem with 10
agents between the bound from the Infection model (plain) and a simulation using
a simple Gossip algorithm (dotted), both in logarithmic scale. The simulations are
performed with 10000 iterations of the simulation over 200 events, which is empirically
shown to be enough for the system to be considered in steady state in that setting.

on the bound, which stays around N−1
N2 σ2; whereas after

some threshold, the bound decays according to 1/(λc/λr).
Finally, we have compared our bound with the results

of the simplest version of average gossip [14]: agents take
their own value xi as initial estimate yi(t), and whenever two
agents i, j communicate, their estimates become

yi(t+) = y j(t+) =
yi(t−)+y j(t−)

2 . (21)
This algorithm computes the average in closed system.
Observe that it is consistent with our setting presented in
Section II, and that we did not make any adaptation to the
open character. Fig. 3 compares the performances of the
algorithm (21) with the bound from the Infection model (17).
It is interesting to notice that even though there is a gap
between the curves, the behavior of the error in terms of
λc/λr is well captured by the bound, especially when that
ratio gets large enough. Interestingly, the algorithm relies on
only one variable, and does not make use of identifiers nor of
any other information provided to the agents as described in
Section II, while our bound is valid for algorithms potentially
using this information. Hence one could wonder about the
precise impact of that information and the efficiency gains it
allows.

VI. CONCLUSIONS

We considered in this paper the possibility of arrivals and
departures of agents in the study of multi-agent systems,
and highlighted several challenges arising from this property.
In particular, it prevents algorithms to converge for many
problems, making their analysis challenging.

We focused on the analysis of the performances of intrinsic
averaging algorithms for open systems of constant size, for
which we derived fundamental performance limitations as
lower bounds on the Mean Square Error of estimation in
steady state. This was done by studying the performances
of an algorithm optimal in a context more favorable to the
agents than what is usually assumed in multi-agent systems,
and relied then on the relaxation of the information spreading
mechanism in the system. Two of such relaxations were
studied, leading to a conservative but readable bound, and
to a tighter but more complex bound.

Possible extensions include the study of more complicated
problems (e.g. decentralized optimization [11]), more struc-
tured constraints on the inter-agent communications, and the
consideration of variable-size systems. More fundamentally,
our bounds purely rely on limitations on the information
propagation, and are valid even if the agents have some
strong knowledge on the system and use identifiers or
heterogeneous algorithms. Stronger lower bounds can be ob-
tained under more restrictive assumptions, e.g. by improving
the Infection model from Section V with healing. Yet, it
would be interesting to investigate what factors significantly
impact the bound: in particular, an anonymous algorithm
was already shown in Section V-C to exhibit performances
not too different from our bound, questioning the impact of
anonymity of the agents.
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