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Abstract— The convergence to consensus of all products of a
given set of matrices is known to be algorithmically decidable
when all matrices in the set are stochastic. We formulate this
question as a stability problem for switched systems, and show
that the decidability result remains valid for more general
classes than stochastic matrices. Our results make use of a
general theorem of Lagarias and Wang on the convergence of
switched systems, and allow showing as a byproduct that the
bound provided by this theorem is tight.

INTRODUCTION

A consensus system represents a group of agents trying
to agree with each other on some common value. These
systems, and in particular linear ones, have attracted an
important research attention because they are commonly used
in a variety of distributed computation schemes. The possible
applications range from coordination of autonomous platoons
of vehicles (for example in [1]) to data fusion in systems with
distributed measurements [2], distributed optimization [3] or
coordination of multiagent systems (see [4] and references
therein). See also [5] for a survey.

In many consensus systems, the agents update their value
as linear combinations of the values of agents with which
they can communicate:

xi(t) =
∑
j

aij(t)xj(t− 1) (1)

where xi is the value of agent i and aij represents the
way agent j influences agent i. This interaction between
agents typically depends on their value at each particular
time, leading to non-linear dynamical systems [4, 6]. Agents
following these dynamics tend to be more and more in
agreement, in the sense that their values generally get closer
to each other. Deciding whether they will always converge
to a state of consensus (i.e. a state in which all agents have
the same value) is however a hard problem (see for instance
[7] for a quite simple model for which no conditions for
convergence to consensus are known).

In some situations, even if it is hard to explicit the
complete sequence of matrices A(t) corresponding to System
(1), it may be possible to guarantee that these matrices stay
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in some set S. One of the strongest convergence notions is
the convergence of System (1) for any sequence of transition
matrices in S. Blondel and Olshevsky have studied [8] the
complexity of deciding the convergence in that sense. They
showed that this is NP-hard but decidable. The decidability
proof, based on earlier work by Paz [9], shows with com-
binatorial arguments that if there is an initial condition and
a sequence of transition matrices in the set S such that the
system does not converge, then there is an initial condition
and a periodic sequence of transition matrices such that the
system does not converge. The period of this cyclic sequence
is bounded by a number that depends only on the number of
agents n.

These linear consensus systems are if fact linear switched
systems for which there is a rich literature (see for example
[10, 11, 12]). However, the results about consensus and those
about switched systems are quite different in nature. Results
on consensus are often based on topological conditions on the
communication graph between the agents (see for example
[4, 13, 14] and references therein) while in switched systems
theory, many stability conditions have been proposed in
terms of Lyapunov theorems, which translate into LMIs, or
convex optimization problems [10].

Lagarias and Wang proved a finiteness result for stability
analysis [15] that has some similarities to the one of Blondel
and Olshevsky for consensus. They showed that for some
matrix sets (sets such that there is a induced polytope norm
in which ∀A ∈ S, ‖A‖ ≤ 1, see Subsection II-B for a
precise statement), then either all infinite products converge
to zero or there is an infinite periodic product that does not
converge to zero.

In this article, we study the problem of convergence to
a common eigenvector of a set of matrices. We reformulate
the problem of convergence to a common eigenvector as a
stability problem (a similar idea has been used for consensus
by Jadbabaie et al. [4]), to which we can apply the result
of [15]. This allows obtaining a general decidability result
for the convergence to a common eigenvector which can be
particularized to recover the decidability result of [8, 9].

As we have said, we use a theorem of Lagarias and Wang
to prove our result. In the case of stochastic matrices, our
result provides a tight bound in that for all dimensions n
there exists a set of n × n matrices such that our bound is
attained. Using that fact, we can conclude that the bound in
the theorem of Lagarias and Wang is tight in the sense that
for each n there exists a norm and a matrix set such that the
matrix set attains the bound.
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Outline

In Section I, we introduce the problems that we will treat.
We prove our general result in Section II and show how it
applies to a simple example. In Section III, we show how
the decidability result of [8] is a particular case of our result.
We also show the tightness of the bound of the theorem of
[15].

I. PROBLEM SETTING

We study switched systems of the form

x(t) = Aσt
x(t− 1), Aσt

∈ S (2)

where S = {A1, . . . , Am} is a finite set of n × n matrices
that share a common eigenvector of eigenvalue 1: ∀Ai ∈
S, Aiv = v and σ : N → {1 . . .m} : t → σt is
an infinite sequence of indices. We don’t suppose that the
update matrices Aσt are known, they can have complicated
dynamics (possibly depending on x), but we suppose that
we can guarantee that the transition matrix is always in the
set S. We want to determine, by analyzing only the set S, if
every possible trajectory of the system converges to a vector
parallel to v, that is, if for any x(0) and any sequence σ,
the sequence (x(t))t generated by (2) converges to a vector
parallel to v.

Therefore we study the following problem.
Problem 1 (Convergence to a common eigenvector): For

a given set S of matrices that share a common eigenvalue-
eigenvector pair (1, v) does the sequence (x(t))t converge
to a vector parallel to v for any x(0) and any sequence σ?

Consensus systems are a particular case of System (2).
In consensus systems, xi(t) represents the value of agent
i. We suppose that each agent computes its new value
as a weighted average of other agents values. Therefore,
the transition matrices are row-stochastic matrices (matrices
with non-negative elements and satisfying A1 = 1 with
1 =

(
1 . . . 1

)T
).

We obtain the same equation as System (2) but now, the
set S is a set of stochastic transitions matrices. The problem
of deciding convergence to consensus is the following.

Problem 2 (Convergence of consensus systems): For a
given finite set S of stochastic matrices, does the sequence
(x(t))t converge to consensus (a vector parallel to 1) for
any x(0) and any sequence σ?

II. CONVERGENCE OF SWITCHED SYSTEMS TO A
COMMON EIGENVECTOR

In this section we study the convergence of System (2) to a
common eigenvector v of the matrices in S. More precisely,
we give in Corollary 1, Subsection II-D necessary conditions
for the decidability of Problem 1.

Our main theorem uses two main notions: polytope norms
and faces of a polytope.

Definition 1 (Polytope norms): A norm in Rn is a poly-
tope norm if its unit ball {x| ‖x‖ ≤ 1} can be characterized
by a finite set of linear inequalities. We also call a polytope

norm a matrix norm that is induced by a polytope vector
norm.

Definition 2: A subset F of a polytope P is called a face
if it can be represented as

F = P ∩ {x | Bx = c}

where B ∈ Rn−d×n and c ∈ Rn−d are such that

∀x ∈ P, Bx ≤ c.

We call d the dimension of the face.
We can now state our main theorem.
Theorem 1: Let S = {A1, . . . , Am} be a finite set of

matrices with a common eigenvector v of eigenvalue 1.
Suppose that there is a polytope norm ‖.‖ such that

∀Ai ∈ S, ∀x ∈ v⊥, ‖xTAi‖ ≤ ‖x‖

and define

L =
1

2

n−1∑
d=0

F (d,P)

where F (d,P) is the number of faces of dimension d of the
polytope P defined as the intersection of the unit ball of ‖.‖
and the space v⊥.

(i) Either for any sequence σ and any x(0), the sequence
(x(t))t generated by (2) converges to a vector of
span{v}

(ii) or there is a product Π = Aξ1 . . . Aξl of l ≤ L matrices
from S such that the system

x(s) = Πx(s− 1) (3)

does not converge to v for some initial condition.
We will prove Theorem 1 in Subsection II-C.

A. Reformulation as a stability problem

In this section, we perform an algebraic transformation
of System (2) that allows reformulating Problem 1 as one of
convergence to zero of all infinite products of an auxiliary set
of matrices. This transformation has already be suggested in
[4, 13]. We will see that the problem of convergence to zero
can be treated with classical tools from switched systems
theory.

Lemma 1: Let S = {A1, . . . , Am} be a finite matrix set
such that ∀Ai ∈ S, Aiv = v. For a given σ, System
(2) converges to the common eigenvector for all initial
conditions if and only if the left-infinite product . . . Aσ1

Aσ0

converges to a rank-one matrix of the form vyT :

∀x0,∃a ∈ R, lim
t→∞

x(t) = av

⇔∃w ∈ Rn, lim
t→∞

Aσt
Aσt−1

. . . Aσ0
= vwT .

Proof:
• ⇒ Suppose that for any initial condition, there is an a

such that x converges to av. We can define a function
x0 → limt→∞ x(t). This function is clearly linear.
It can therefore be represented by a matrix and this
matrix is the limit limt→∞Aσt

Aσt−1
. . . Aσ0

. Because
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the image of the application is always in span(v), the
matrix is necessarily equal to vwT for some w.

• ⇐ is immediate.

Let P be a given (n−1)×n full row rank matrix satisfying
Pv = 0 (any matrix whose rows are a basis of v⊥ satisfies
these conditions, thus such a matrix P exists).

Lemma 2: With P defined as above, for any matrix Ai
such that Aiv = v, there exists a unique (n − 1) × (n − 1)
matrix A′i that is solution of PAi = A′iP .

Proof: Because Pv = 0 and v is an eigenvector of Ai,
the rows of PAi are orthogonal to v. On the other hand, the
rows of P span the space orthogonal to v by definition. Each
row of PAi can thus be expressed by a unique combination
of the rows of P and therefore there exists a unique matrix
A′i such that PAi = A′iP .

Lemma 3: Let S = {A1, . . . , Am} be a set of matrices
with a common eigenvector v corresponding to an eigenvalue
1 and let S′ = {A′1, . . . , A′m} be as defined above. For any
sequence σ, the following assertions are equivalent.
• The left-infinite product converges to the space of the

matrices of the form vwT , which is equivalent to:

lim
t→∞

PAσt . . . Aσ0 = 0.

• The infinite product of matrices from S′ converges to
zero:

lim
t→∞

A′σt
. . . A′σ0

= 0.

Proof:
From the definition of the A′i’s, the second assertion is

equivalent to
lim
t→∞

A′σt
. . . A′σ0

P = 0

which, due to the rank of P , is equivalent to

lim
t→∞

A′σt
. . . A′σ0

= 0.

We now prove that if every infinite product of matrices
of S becomes arbitrarily close to the space of matrices of
the form vwT , then every infinite product converges to a
matrix in that space. This lemma is useful to avoid reaching
oscillating or infinite consensus states.

Lemma 4: Let S = {A1, . . . , Am} be a set of matrices
with a common eigenvector v corresponding to an eigenvalue
1 and let S′ = {A′1, . . . , A′m} be as defined above. The
following assertions are equivalent.

(i) For any sequence σ, the left-infinite product converges
to the space of the matrices of the form vwT , which
is equivalent to:

lim
t→∞

PAσt . . . Aσ0 = 0.

(ii) For any sequence σ, there exists w such that the left-
infinite product converges to the matrix vwT :

∃w ∈ Rn such that lim
t→∞

Aσt
. . . Aσ0

= vwT .

Proof:

The (i) ⇐ (ii) direction is evident, so we only prove the
(i) ⇒ (ii) direction.

The matrix Aσt . . . Aσ0 can be decomposed in vwT (t, σ)+
Z(t, σ) where vTZ = 0.

Since Aiv = v ∀Ai ∈ S, we have

Aσt+1
. . . Aσ0

= vwT (t, σ) +Aσt+1
Z(t, σ).

We can see that

Z(t, σ) =

(
I − vvT

vT v

)
Aσt . . . Aσ0 ,

and therefore, for s > t, we obtain

Z(s, σ) =

(
I − vvT

vT v

)
Aσs

. . . Aσt+1
Z(t, σ). (4)

We bound the difference between successive iterates:

‖Aσt+1
. . . Aσ0

−Aσt
. . . Aσ0

‖
= ‖vwT (t, σ) +Aσt+1

Z(t, σ)− vwT (t, σ)− Z(t, σ)‖
= ‖Aσt+1

Z(t, σ)− Z(t, σ)‖
≤ ‖Aσt+1

Z(t, σ)‖+ ‖Z(t, σ)‖
≤ (1 + max

A∈S
‖A‖)‖Z(t, σ)‖.

(5)

We now show that the sequence (Aσt . . . Aσ0)t is a
Cauchy sequence. By the triangular inequality and by (4)
and (5), we have for any s > r,

‖Aσs . . . Aσ0 −Aσr . . . Aσ0‖

≤
s−1∑
t=r

‖Aσt+1
. . . Aσ0

−Aσt
. . . Aσ0

‖

≤
s−1∑
t=r

(1 + max
A∈S
‖A‖)‖Z(t, σ)‖

≤
s−1∑
t=r

(1 + max
A∈S
‖A‖)

∥∥∥∥(I − vvT

vT v

)
Aσt

. . . Aσr+1

∥∥∥∥ ‖Z(r, σ)‖

≤ (1 + max
A∈S
‖A‖)‖Z(r, σ)‖

s−1∑
t=r

∥∥∥∥(I − vvT

vT v

)
Aσt

. . . Aσr+1

∥∥∥∥
≤ (1 + max

A∈S
‖A‖)‖Z(r, σ)‖

∞∑
t=r

∥∥∥∥(I − vvT

vT v

)
Aσt

. . . Aσr+1

∥∥∥∥
We now prove that the series converge. It is well known

(Theorem 1 in [10]) that

∀σ lim
t→∞

‖A′σt
. . . A′σ0

‖ = 0⇒ ∀σ‖A′σt
. . . A′σ0

‖ ≤ pqt+1

for some p, q ∈ R, q < 1. In turn, this implies that∥∥∥∥(I − vvT

vT v

)
Aσt

. . . Aσr+1

∥∥∥∥
≤ C

∥∥∥A′σt
. . . A′σr+1

∥∥∥
≤ Cpqt−r

in which the constants depend on S and P (which are fixed
in the lemma) and not on t. Because the sequence converges
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geometrically, the series converges to something bounded by
Cp 1

1−q .
In turn, for any ε, there exists r such that

‖Z(r, σ)‖ ≤ ε(1− q)
Cp(1 + maxA∈S ‖A‖)

,

and therefore, we obtain

‖Aσs
. . . Aσ0

−Aσr
. . . Aσ0

‖

≤ Cp 1

1− q
(1 + max

A∈S
‖A‖)‖Z(r, σ)‖ ≤ ε.

Using Lemma 3 and 4, we see that all trajectories of the
original system converge to a vector parallel to v if and
only if all products of matrices from a derived matrix set
S′ converge to zero:

∀σ, lim
t→∞

A′σt
. . . A′σ0

= 0.

B. Bound on the length of non-converging trajectories

The next theorem, due to Lagarias and Wang [15], pro-
vides an interesting finiteness result for the stability of matrix
sets.

Theorem 2 ([15]): Let us consider a finite set of matrices
S = {A1, . . . Am}. Suppose that there exists a polytope norm
such that ‖Ai‖ ≤ 1 and let Q = {x | ‖x‖ ≤ 1} and F (d,Q)
be the number of faces of dimension d of the polytope Q.

(i) Either all infinite products of matrices from S converge
to zero

(ii) or there exists a product Π of length l less than

M =
1

2

n−1∑
d=0

F (d,Q)

that has spectral radius1 equal to 1.
In Theorem 2, (ii) implies the the existence of an initial

condition x(0) such that the system

x(s) = Πx(s− 1)

does not converge (because Π has a spectral radius equal to
1). Therefore, Theorem 2 implies the equivalence between
• The existence of a non converging trajectory.
• The existence of a non converging trajectory that is

cyclic in the matrices.
We now show that if the set S and the norm ‖.‖ satisfy

conditions of Theorem 1, then there is a norm ‖.‖P such that
the set S′ (defined as in Subsection II-A) and ‖.‖P satisfy
the conditions of Theorem 2.

It is clear that if ‖.‖ is a (polytope) norm in Rn then the
application

‖x‖P : Rn → R : x→ ‖xTP‖

is a (polytope) norm in Rn−1. Also, if the norm ‖.‖ satisfies

∀Ai ∈ S, y ∈ v⊥, ‖yTAi‖ ≤ ‖y‖,

1The spectral radius being the maximum of the absolute values of the
eigenvalues.

then ‖.‖P satisfies

∀A′i ∈ S′, x ∈ Rn−1, ‖xTA′i‖P ≤ ‖xT ‖P .

Indeed,

‖xTA′i‖P = ‖xTA′iP‖ = ‖xTPAi‖ ≤ ‖xTP‖.

There exists a unique matrix Q satisfying

QP = I − vvT

vT v
.

Indeed the rows of P span v⊥, thus each row of I− vvT

vT v
can

be uniquely expressed as a linear combination of the rows
of P .

Lemma 5: The number of faces of the unit ball of ‖.‖P is
equal to the number of faces of the intersection of the unit
ball of ‖.‖ with the hyperplane vTx = 0.

Proof: For x ∈ v⊥, we have

‖x‖ =

∥∥∥∥xT (I − vvT

vT v

)∥∥∥∥ = ‖xTQP‖ = ‖xTQ‖P

which implies

‖x‖ = 1⇔ ‖xTQ‖P = 1.

Because Q is full (column) rank, this means that the unit
ball of ‖.‖P is the image by QT of the intersection of the
unit ball of ‖.‖ with the plane vTx = 0.

C. Proof of Theorem 1

We are now able to prove Theorem 1.
Proof: We prove that if (ii) is satisfied, then (i) is not.
Suppose that there is a product Π = Aξ1 . . . Aξl of matrices
from S such that there is an initial condition x0 for which the
system x(s) = Πx(s − 1) does not converge. Then System
(2) does not converge for initial condition x0 and sequence
of transition matrices σ = ξ1, . . . , ξl, ξ1, . . . , ξl . . . .

We prove that if (i) is not satisfied, then (ii) is true. Let us
suppose that there is a sequence σ and an initial condition x0
such that System (2) does not converge. Thus, by Lemmas
1 and 3,

lim
t→∞

A′σt
. . . A′σ0

6= 0

It is well known [3] that

∃σ such that lim
t→∞

A′σt
. . . A′σ0

6= 0

⇔∃σ such that lim
t→∞

A′Tσt
. . . A′Tσ0

6= 0.

By hypothesis of the theorem, there is a norm ‖.‖ satisfy-
ing

∀Ai ∈ S, ∀x ∈ v⊥, ‖xTAi‖ ≤ ‖x‖.

Therefore ‖.‖P defined as in Subsection II-A satisfies the
conditions of Theorem 2. We can therefore apply Theorem
2 on the set S′T = {A′T1 , . . . A′Tm } that provides the desired
Π′T = A′Tξ1 . . . A

′T
ξp

with spectral radius equal to 1. Its
transpose A′ξp . . . A

′
ξ1

has the same spectral radius 1. Because
it has a spectral radius equal to one, there is an initial
condition x0 such that

lim
t→∞

Π′tx0 6= 0
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does not converge to zero. Because P is full rank, there exists
y0 such that

x0 = Py0.

This yields
lim
t→∞

Π′tPy0 6= 0.

By definition of P and A′i, the product defined as Π =
Aξp . . . Aξ1 satisfies

PΠ = PAξp . . . Aξ1 = A′ξp . . . A
′
ξ1P = Π′P.

Therefore
lim
t→∞

PΠty0 6= 0.

By Lemma 5, the length of Π is smaller or equal to the
bound of Theorem 1.

Example 1: Let us take the set

S =

A1 =

 1.6 −0.3 0.7
1.7 0.15 0.15

−0.2333 . . . 0.11666 . . . 0.58333 . . .

 ,

A2 =

 1.7666 . . . −0.38333 . . . 0.0333 . . .
1.61666 . . . 0.191666 . . . 0.48333 . . .

0.45 −0.225 0.25

.
The two matrices in the set satisfy

Aiv = v for i ∈ {1, 2}

with v =
(
1 2 0

)T
. In the plane vTx = x1 + 2x2 = 0,

there is a polytope P (black of Figure 1) such that

{y | yT = xTA1, x ∈ P} ∈ P

(blue) and

{y | yT = xTA2, x ∈ P} ∈ P

(red). Because this polytope is symmetric around the origin,
there exists a norm such that P is the intersection of the
unit ball of the norm with the plane vTx = 0. Therefore,
Theorem 1 applies to this matrix set: either all trajectories
of System (2) converge to v or there is a products of matrices
A1 and A2 that as a second eigenvalue of modulus one.

Fig. 1. Polytope P and its image by AT
1 and AT

2 on the plane x1+2x2 = 0

D. Decidability of the convergence

The next corollary shows sufficient conditions for de-
cidability of Problem 1 by providing an algorithm. Since
this algorithm requires computing products of matrices and
eigenvalues, we must ensure that this can be done in finite
time. One way of guaranteeing this is to assume that the
entries are rational or algebraic.

Corollary 1 (Conditions for decidability of Problem 1):
For any polytope norm, there exists an algorithm that
decides the convergence of System (2) for any finite set S
of matrices with algebraic entries satisfying

∀Ai ∈ S, Aiv = v

and

∀Ai ∈ S, ∀x ∈ v⊥, ‖xTAi‖ ≤ ‖x‖.

Proof: By Theorem 1, deciding if all the trajectories
of System (2) converge can be achieved by checking that
the second largest eigenvalue of every product of length L
is smaller than one, which can be done in finite time.

III. CONSENSUS SYSTEMS

One of the strongest convergence notions that we can
consider for System (2) is the convergence for any sequence
of transition matrices. In the context of consensus it is often
hard to determine how the transition matrix will evolve in S
because the transition matrices can depend on the state x(t)
[4, 6]. For this reason, Blondel and Olshevsky have proved
the decidability of Problem 2. We show here that this result
is a corollary of our Theorem 1.

Theorem 3 (Decidability of consensus): Problem 2 is de-
cidable.

Proof: It suffices to prove that the hypotheses of
Corollary 1 are satisfied. Indeed stochastic matrices satisfy

∀Ai ∈ S, Ai1 = 1 (6)

and

∀A ∈ S, ∀x ∈ 1⊥, ‖xTA‖1 ≤ ‖x‖1. (7)

Remark 1: We can see that Conditions (7) and (6) guar-
antee decidability. There are matrices that are not stochastic
that satisfy Conditions (7) and (6), for example,

A =

2/3 1/2 −1/6
0 5/6 1/6

1/3 2/3 0

 .

It is immediate that A1 = 1 is satisfied. Moreover, for x ∈
1⊥,

xT = xT

(
I − 11T

n

)
,
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‖xTA‖1 =

∥∥∥∥∥xT
(
I − 11T

n

)
A

∥∥∥∥∥
1

=

∥∥∥∥∥∥xT
 1/3 −1/6 −1/6
−1/3 1/6 1/6

0 0 0

∥∥∥∥∥∥
1

≤ ‖x‖1.

We can therefore conclude that stochasticity is not needed for
decidability and that Theorem 1 and Corollary 1 are stronger
than previously known decidability Theorem 3, even for the
norm ‖.‖1.

We now derive the exact bound L on the length of the
shortest non converging product. For that, we need to count
the number of faces of all dimensions of the polytope defined
by the intersection of the unit ball of the 1-norm and the
space 1⊥.

A. Counting the number of faces

Lemma 6: The number of faces of all dimensions of the
1-norm is 3n − 1.

Proof: The vertices (faces of dimension 0) of the unit
ball of the 1-norm are the basis vectors and their opposite:
by choosing B = ei and c = 1 in Definition 2, we have

ei = P ∩ {x | eTi x = 1}

∀x ∈ P, eTi x ≤ 1

so that each ei is a face and similarly for −ei. On the other
hand, the convex hull of the set {e1, . . . , en,−e1, . . . ,−en}
is clearly P so that there are no other vertices. Thus, there
are 2n vertices.

We claim that the faces of dimension d−1 are the convex
hulls of any set of d vertices that do not contain opposite
pairs. Indeed, for any set of d pairwise different indices
{i1, . . . , id} and any set of signs {s1, . . . , sd} ∈ {−1, 1}d,

conv({s1ei1 , . . . , sdeid}) = P ∩ {x |
d∑
k=1

ske
T
ik
x = 1}

∀x ∈ P,
d∑
k=1

ske
T
ik
x ≤ 1.

There is no other face of dimension d− 1 because the faces
are convex hulls of the vertices and the inequality

∀x ∈ P,
d∑
k=1

ske
T
ik
x ≤ 1

does not hold if for k1 6= k2, ik1 = ik2 and sk1 = −sk2 .
Their number is the number of selections of d basis vectors
multiplied by 2d which is

(
n
d

)
2d. The total number of faces

is therefore
n∑
d=1

(
n

d

)
2d = 3n − 1.

Since we are interested only in the number of faces that
have an intersection with the hyperplane 1Tx = 0, we have

to subtract the number of faces that have no intersection with
that hyperplane.

Lemma 7: The number of faces of the intersection of the
unit ball of the one norm with the hyperplane 1Tx = 0 is
3n − 2n+1 + 1.

Proof: We claim that a face has no intersection with
1Tx = 0 if and only if it has all its vertices in the non-
negative orthant or all its vertices in the non-positive orthant.
As we have observed in the proof of the previous lemma,
the vertices are the basis vectors ei and their opposite −ei.
Clearly 1T ei = 1 > 0 and 1T (−ei) = −1 < 0. Therefore, if
a face F is defined as convex hull of only the basis vectors,
we have ∀x ∈ F, 1Tx = 1 > 0, and if it is defined as convex
hull of opposite of basis vectors, we have ∀x ∈ F, 1Tx =
−1 < 0, none of those have thus an intersection with the
hyperplane 1Tx = 0. On the other hand, a face F defined as
the convex hull of both basis vectors and opposite of basis
vectors clearly contain x such that 1Tx = 0, and intersect
thus with the hyperplane 1Tx = 0.

In the non-negative orthant, each convex hull of d + 1
vertices is a face of dimension d. Therefore, there are

(
n
d+1

)
faces of dimension d, so there are 2n − 1 faces in total in
that orthant. The number of faces in the non-positive orthant
is the same. The total number of faces of the unit ball of the
1-norm on the hyperplane 1Tx = 0 is therefore

3n − 1− 2(2n − 1) = 3n − 2n+1 + 1.

As a corollary of our main result, we recover the following
result from [8, 9].

Theorem 4: Let S be a set of matrices satisfying Condi-
tions (7) and (6). Then
• either for any initial condition x(0) and for any se-

quence σ the sequence generated by (2) converges to
consensus,

• or there is a product Π of length less or equal to 1
2 (3n−

2n+1 + 1) such that the system

x(s) = Πx(s− 1)

does not converge for some initial conditions.
Proof: This is the consequence of Theorem 1 and the

fact that the bound is 1
2 (3n − 2n+1 + 1) by Lemma 7.

B. Tightness of the bound of the theorem of Lagarias and
Wang

It is shown in [4] that for all n, there exists a set of
stochastic matrices S such that all infinite products converge
to consensus and that the shortest product that has a second
eigenvalue of modulus 1 has a length equal to 1

2 (3n−2n+1+
1), the bound of Theorem 4. From that set we can construct
the corresponding set S′.

We have thus the following theorem:
Theorem 5 (Tightness of the bound Theorem 2): For any

n ∈ N, there exists a set S of matrices in Rn×n and a
norm ‖.‖ such that there is an infinite product that does
not converge to zero, and the shortest product with spectral
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radius one has a length of exactly M(‖.‖), the bound defined
in Theorem 2.

This proves that for all n there exists a norm and a matrix
set such that the bound of Theorem 2 is attained (in the sense
that the shortest product Π with ρ(Π) = 1 has a length equal
to the bound).

IV. CONCLUDING REMARKS

In this paper we showed how a convergence result on
consensus systems is the consequence of a general theorem
in switched systems theory.

We believe that this approach is promising and could be
extended to a more quantitative analysis of consensus sys-
tems. Indeed, there are many quantitative tools in the theory
of switched systems, such as the joint spectral characteristics,
that allow a quantitative convergence analysis while analysis
of consensus systems is often qualitative (graph-theoretic
conditions for convergence, see for example [13, 4, 14] and
references therein).

Another interesting feature of our results is that they do
not use positivity of the matrices. Indeed, a few positive
results (decidability results, finiteness results) on switched
systems are available in the literature, but they often rely on
the nonnegativity of the matrices [17, 18, 19]. By contrast,
here the existence of a finite upper bound on the length of
a product which does not lead to consensus relies on an
algebraic property of the matrices, and allows taking into
account matrices with negative entries.
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[3] A. Nedić and A. Ozdaglar. Distributed subgradient methods for
multi-agent optimization. IEEE Transactions on Automatic Control,
54(1):48-61, 2009.

[4] A. Jadbabaie, J. Lin and A. S. Morse. Coordination of groups of
mobile agents using nearest neighbor rules. IEEE Transactions on
Automatic Control, 48 (2003), 988-1001.

[5] R. Olfati-Saber, J. A. Fax and R. M. Murray. Consensus and coop-
eration in networked multi-agent systems. Proceedings of the IEEE,
95(1):215-233, 2007.

[6] V. D. Blondel, J. M. Hendrickx and J. N. Tsitsiklis, On Krause’s
multi-agent consensus model with state-dependent connectivity, IEEE
Transactions on Automatic Control, 54(11), 2586-2597, 2009.

[7] V. D. Blondel, J. M. Hendrickx and John N. Tsitsiklis. On the
2R conjecture for multi-agent systems. Proceedings of the European
control conference, Kos (Greece), 874-881, 2007.

[8] V. D. Blondel and A. Olshevsky. How to decide consensus? A
combinatorial necessary and sufficient condition and a proof that
consensus is decidable but NP-hard. To appear in SIAM Journal on
Control and Optimization, 2013.

[9] A. Paz. Introduction to probabilistic automata. Academic press, Inc.
1971.

[10] R. M. Jungers. The Joint Spectral Radius: Theory and Applications.
Vol. 385 in Lecture Notes in Control and Information Sciences,
Springer. Berlin Heidelberg, 2009.

[11] D. Liberzon. Switching in systems and control. Birkhauser, Boston,
2003.

[12] R. Shorten, F. Wirth, O. Mason, K. Wulff and C. King. Stability criteria
for switched and hybrid systems. SIAM review 49 (4), 545-592, 2007.

[13] V. D. Blondel, J. M. Hendrickx, A. Olshevsky and J. N. Tsitsiklis,
Convergence in Multiagent Coordination, Consensus, and Flocking,
Proceedings of the 44th IEEE Conference on Decision and Control,
Sevilla, 2005.

[14] J. M. Hendrickx and J. Tsitsiklis. Convergence of type-symmetric
and cut-balanced consensus seeking systems. IEEE Transactions on
Automatic Control, 58(1), 214-218, 2013.

[15] J. C. Lagarias and Y. Wang. The Finiteness Conjecture for the
Generalized Spectral Radius of a Set of Matrices. in Linear Algebra
and its Applications, 214 (1995), 17-42.

[16] M. A. Berger and Y. Wang. Bounded semigroups of matrices. in Linear
Algebra and its Applications, 166 (1992), 21-27.

[17] R. M. Jungers, V. Protasov and V. Blondel. Efficient algorithms for
deciding the type of growth of products of integer matrices. Linear
Algebra and its Applications, 428(10):2296-2311, 2008.

[18] R. M. Jungers. On asymptotic properties of matrix semigroups with an
invariant cone. Linear Algebra and its Applications, 437:1205-1214,
2012.

[19] L. Gurvits, R. Shorten, O. Mason. On the stability of switched positive
linear systems. IEEE Transactions on Automatic Control, 52 (6), 1099-
1103. 2007.

MTNS 2014
Groningen, The Netherlands

109


