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Abstract— We approach the problem of persistent monitoring
of a finite set of fixed targets located in a one-dimensional envi-
ronment with internal, linear, stochastic dynamics. Monitoring
is performed by a set of agents with limited sensing range
and range-dependent sensing quality. The optimal estimator
of the target dynamics from the agent measurements is the
Kalman-Bucy Filter. We formulate an optimal control problem
to minimize the estimation error across all the targets as a
function of the trajectories of the agents. Using Hamiltonian
analysis, the structure of the optimal controller is defined and,
given this structure, we reformulate the problem as a hybrid
systems optimization problem. Using Infinitesimal Perturbation
Analysis (IPA), stochastic gradient estimates of the hybrid
system are computed and gradient descent is used in order
to achieve a locally optimal solution.

I. INTRODUCTION

The general problem of multi-agent persistent monitoring
involves a collection of mobile agents moving through a
spatial domain to interact with targets at specific locations
to, in some sense, control or monitor some state of those
targets. This paradigm finds applications across a wide range
of domains, ranging from smart cities, where one example
goal may be to measure the evolving length of a traffic
jam at specific intersections, to optical microscopy, where
one may wish to track the location of individual biological
macromolecules in a sample [1]–[4]. The dynamic and
stochastic nature of these variables implies that they cannot
be measured just once but rather must be monitored over
time. We focus on situations where the number of available
agents to do this monitoring is lower than the number
of targets to be monitored, aiming to design an optimal
motion policy for the agents that minimizes a measure of
the uncertainty in the estimates of the states of the targets.

This cooperative persistent monitoring objective may be
accomplished by assigning the agents to targets dynamically
or by a periodic scheduling approach in which agent sched-
ules define the sequence of targets to be visited and how
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long to spend at their current assignment [5]–[7]. So long as
the number of targets and agents remains low, the scheduling
approach can yield a globally optimal solution. However, off-
the-shelf schemes for the periodic schedule approach, such
as those developed for traveling salesman or vehicle routing
problems, do not scale well as those numbers increase.

In this paper, motivated by the approach developed in our
earlier works [8], [9], we use an optimal control framework
whose objective is to control the motion of the agents so
as to minimize a measure of the overall uncertainty. We
no longer assume that the internal dynamics are represented
by simple linear growth and decay and consider instead the
more general and practically relevant situation where those
dynamics are represented by a linear system driven by a
Gaussian white noise process, as well as a sensing model
which involves linear measurements corrupted by Gaussian
noise whose signal to noise ratio depends on the range to the
target being measured. This makes the model more reflective
of real-world concerns, and is a step towards persistent
monitoring of moving, dynamic targets.

Modeling the target state dynamics as linear, stochastic
systems naturally leads to the cost function involving the
uncertainty in the state estimates and places the problem
in the realm of distributed filtering. A similar problem was
explored in [10], [11] where a single agent with a position-
dependent measurement model was used to minimize the
estimation error of a spatiotemporal scalar field represented
using a finite number of basis functions defined at specific
locations in the environment, analogous to the targets con-
sidered in our work. In [10], the trajetory was planned with a
cyclic version of rapidly exploring random trees while [11]
used an optimal control approach, leading to a two-point
boundary value problem. However, solving such boundary
value problems is computationally expensive and does not
scale well.

While we also consider an optimal control framework,
rather than solving the corresponding boundary value prob-
lem, we restrain ourselves to targets distributed in a 1-D
environment where the agent can see at most one target
at a time in order to identify the structure of the optimal
control and to reduce it to a parametric optimization problem.



We then apply Infinitesimal Perturbation Analysis (IPA) [12]
to determine the gradient of the cost function with respect
to the parameters defining the optimal control and to then
obtain a (possibly local) optimal solution through a gradient
descent scheme. Note that in many real world applications
the agent’s mobility is restricted to (possible multiple) single
dimension spaces, such as cars on roads, underwater vehicles
in rivers/waterways and powerline inspection agents.

A. Notation and Mathematical Preliminaries

To avoid confusion between scalar variables and vector
variables, vectors are marked with an underscore and matri-
ces are denoted in capital letters. X(i,j) denotes the (i, j)th

entry of a matrix, the trace of a matrix X is denoted by
tr(X) and sgn(x) is the signum function that returns the
sign of its argument (or zero when the argument is zero).
Since matrix derivatives will be used throughout the paper,
we briefly recall their properties. The derivative ∂tr(G)

∂X is
a square matrix whose (i, j)th element is ∂tr(G)

∂X(i,j) . Given a
constant, square matrix A and a time-varying square matrix
X , then we have [13]:

∂tr(AX)

∂X
= AT ,

∂tr(XTAX)

∂X
= AX +XTAT ,

II. PROBLEM FORMULATION

Consider a collection of M fixed targets located at po-
sitions x1, ..., xM ∈ R. Each target has an internal state
φ ∈ RLi that evolves in time according to

φ̇
i
(t) = Aiφi(t) + wi(t), (1)

where the wi, i = 1, . . . ,M, are mutually indepen-
dent, zero mean Gaussian white noise processes with
E[wi(t)wi(t)

T ] = Qi with Qi a positive definite matrix.
In addition to the targets, we have N mobile agents whose

positions at time t are denoted by s1(t), ..., sN (t) ∈ R. These
agents can move in the mission space following the dynamics

ṡj(t) = uj(t), j = 1, ..., N, (2)

with their speeds, after proper scaling, constrained by
|uj(t)| ≤ 1. Agent j can observe the internal states of target
i according to the model

zi,j(t) = γj (sj(t)− xi)Hiφi(t) + vi,j(t), (3)

where the vi,j , i = 1, . . . ,M , j = 1, . . . , N are mutually
independent zero mean Gaussian white noise processes,
independent of wi, with E[vi,j(t)v

T
i,j(t)] = Ri, Ri positive

definite, and γj(·) a scalar function. The intuition behind
the model described is that the noise power is constant but
that the signal level varies as a function of the distance to
the target. Although the analysis conducted is not heavily
dependent on the specific form of γj(·), as long as it is
unimodal (i.e. has only one peak) and has a finite support,
we use the following definition for concreteness:

γj(α) =

{
0, |α| > rj ,√

1− |α|rj , |α| ≤ rj ,
(4)

where rj is the sensing radius of agent j. Then, the instan-
taneous signal to noise ratio (SNR) of a single measurement
made by agent j is given by

E
[
(zi,j(t)− vi,j(t))T (zi,j(t)− vi,j(t))

]
E[vTi,j(t)vi,j(t)]

= max

(
0, 1− |sj − xi|

rj

)
φT
i

(t)HT
i Hiφi(t)

tr(Ri)
(5)

Notice that the term φT
i

(t)HT
i Hiφi(t)(tr(Ri))−1 is a

deterministic scalar that depends on the current state of target
i. The dependence on the position of the agent is completely
captured by the max function and as a result the SNR is
maximum when the agent is on top of the target and linearly
decreases as it moves away, reaching zero when the distance
is greater than rj . Thus each agent has a finite range beyond
which no useful information about a target can be acquired
and a measurement quality that improves the closer the agent
gets to the target. At a given instant, the observations of the
same target performed by different agents can be written as
a vector of observations as:

zi(t) = [zTi,1, ..., z
T
i,N ]T = H̃i(s1, ..., sn)φ

i
(t) + ṽi(t), (6)

where the following variables are defined as

H̃i = [γ1(s1 − xi)HT
i , · · · , γN (sN − xi)HT

i ]T , (7)

ṽi(t) = [vTi,1(t), ..., vTi,N (t)]T , (8)

R̃i = E[ṽTi (t)ṽi(t)]. (9)

Given pre-defined trajectories for the agents, the combi-
nation of (1) and (6) define a linear, time-varying, stochastic
system. It can easily be shown that the optimal (minimum
mean square error) estimator for φ

i
(t) is the Kalman-Bucy

Filter [14]. The proof of this is omitted for space reasons but
the derivation is analogous to Theorem 2 in [11].

Let φ̂
i
(t) denote the estimate of the current state of φ

i
(t),

ei(t) = φ̂
i
(t) − E[φ̂

i
(t)] as the estimation error and Ωi =

E[ei(t)e
T
i (t)] is the estimate covariance matrix. Then the

Kalman-Bucy filter is given by

˙̂
φ
i
(t) = Aiφ̂i(t) + Ω(t)iH̃

T
i (t)R̃−1

i

(
z̃i(t)− H̃i(t)φ̂i(t)

)
,

(10a)

Ω̇i(t) = AiΩi(t) + Ωi(t)A
T
i +Qi − Ωi(t)H̃

T
i R̃
−1
i H̃iΩi(t).

(10b)

Substituting (4), (7), and (9) into (10b) yields

Ω̇i(t) = AiΩi(t) + Ωi(t)A
T
i +Qi−

− Ωi(t)GiΩi(t)
∑

j∈Ci(t)

(
1− |sj − xi|

rj

)
, (11)

where Gi = HT
i R
−1
i Hi and Ci(t) is the agent neighborhood

of target i, defined to be the indices of all agents within their
sensing range to target i at time t.

The overall goal is to minimize the mean estimation error
over a given time horizon T . Formally,



min
u1,...,uN

J =
1

T

∫ T

0

(
M∑
i=1

E
[
eTi (t)ei(t)

])
dt. (12)

Using the fact that E
[
eTi (t)ei(t)

]
= tr(E

[
ei(t)e

T
i (t)

]
) =

tr(Ωi), the optimization in (12) can be rewritten as

min
u1,...,uN

J =
1

T

∫ T

0

(
M∑
i=1

tr (Ωi(t))

)
dt, (13)

subject to the dynamics in (2) and (11).

III. OPTIMAL CONTROL SOLUTION
In this section we use a Hamiltonian approach and lever-

age the Pontryagin Minimum Principle (PMP) [15] to derive
properties of the optimal control of the agents to minimize
(13). The state χ and control variables u can be defined as

χ(t) = [s1, ..., sN , vecT (Ω1), ..., vecT (ΩM )]T , (14)

u(t) = [u1(t), ..., uN (t)]T . (15)

where vec(·) is the (columnwise) vectorization of a matrix
into a column vector. The corresponding costate is given by

λ(t) = [α1, ..., αN , vecT (Γ1), ..., vecT (ΓM )]T , (16)

where Γi has the same dimensions of Ωi. Given the cost
function in (13) and state dynamics in (2) and (11), the
Hamiltonian is

H(χ, λ, u, t) =
1

T

M∑
i=1

tr(Ωi(t)) +

N∑
j=1

αj(t)uj(t)

+

M∑
i=1

Li∑
m=1

Li∑
n=1

Γ
(m,n)
i (t)Ω̇

(m,n)
i (t)︸ ︷︷ ︸

tr(ΓiΩ̇i)

. (17)

Applying the PMP, we have the following necessary
conditions for the optimal control.

u?(t) = arg min
u
H(χ?, λ?, u, t), ∀ t (18)

together with the costate dynamics

Γ̇?i (t) = − ∂H
∂Ωi

(χ?, λ?, u∗, t) = − 1

T
I− (Γ?i )

T
(A+AT )

+ (Γ?i )
T

(GiΩ
?
i + Ω?iGi)

∑
j∈Ci(t)

(
1−
|s?j − xi|

rj

)
, (19)

α̇?j (t) = −∂H
∂sj

(χ?, λ?, u∗, t)

= − 1

rj

∑
i∈Dj(t)

tr (Γ?iΩ
?
iGiΩ

?
i ) sgn(s?j − xi), (20)

with boundary conditions

Γ?i (T ) = 0Li×Li , α
?
j (T ) = 0. (21)

Here I is the identity matrix, Ci(t) is the agent neighborhood
of target i defined earlier and Dj(t) is the target neighbor-
hood of agent j, that is the collection of all targets within
the sensing range of the agent at time t.

From (17) and (18), we can conclude that the optimal
control policy for agent j when α?j 6= 0 is

u?j (t) =

{
−1, α?j (t) > 0,

1, α?j (t) < 0.
(22)

In order to fully characterize the structure of the optimal
solution, it is necessary to know the optimal policy of agent
j along a singular arc, that is when α?j = 0 over a finite
interval. To do so, we first establish the positive definiteness
of the matrix Γ?i along optimal trajectories.

Proposition 1: Γ?i (t) is positive definite for t ∈ [0, T ).
Proof: First, notice that Γ?i is a symmetric matrix,

since it has a symmetric terminal condition and symmetric
dynamics. Therefore, it has real eigenvalues. From Thm. 1.e
in [16], since Γ?i (t) is a C1 matrix, its eigenvalues can be
C1 time parameterized. Let µn denote the nth eigenvalue
of Γ?i (t) and xn(t) the corresponding unit norm eigenvector.
Then, from Thm. 5 in [17] we have

µ̇n = xTn Γ̇?i xn.

Substituting the costate dynamics of Γ?i yields

µ̇n = xTn

(
− I
T

+ Γ?i (A+AT )

+Γ?i (GiΩ
?
i + Ω?iGi)

∑
j∈Ci(t)

(
1−
|s?j − xi|

rj

)xn.

From the terminal condition on the costate equation, we have
that at time T , Γ?i = 0Li×Li . Therefore, µn(T ) = 0 and

µ̇n(T ) = − 1

T
< 0.

This implies that ∃ δ > 0 such that ∀ t ∈ (T−δ, T ), µn > 0,
and, hence, all the eigenvalues of Γ?i (t) have to be positive
in this interval preceding the terminal time T . Now suppose
that µn(t′) = 0 for some time t′ ∈ (0, T ). Then, since xn
is the corresponding eigenvector, Γ?i (t

′)xn(t′) = 0 and, by
symmetry of Γ?i , xTn (t′)Γ?i (t

′) = 0. Thus µ̇n(t′) = − 1
T <

0. Since the derivative of the eigenvalue is negative when
its value reaches zero, it must stay negative until time T .
However, we have already established that the eigenvalue
must be positive in an interval ending at the terminal time.
Thus, µn > 0 ∀ t ∈ [0, T ), which proves the proposition.

Define an isolated target i as one for which

min
k 6=i
|xi − xk| > rmax, rmax = max{r1, ..., rN}.

Then, we show that a singular arcs with isolated targets can
only occur if the agent’s position coincides with the position
of the target.

Proposition 2: Consider an isolated target xi and an agent
j at position sj such that 0 < |sj(t′)−xi| < rj , t′ ∈ (0, T ).
Suppose further that Gi = HTRiH 6= 0 and that Ωi is
positive definite in (0, T ). Then α̇?j (t

′) 6= 0.
Proof: Since 0 < |sj−xi| < rj , i.e., the agent is within

sensing range of the isolated target i but not on top of it, and



recalling (20), then

α̇?j = −
sgn(s?j − xi)

rj
tr (Γ?iΩ

?
iGiΩ

?
i ) . (23)

Using the inequality tr(BC) ≥ µmin(B)tr(C) with B and
C positive semi-definite matrices and µmin(·) denoting the
smallest eigenvalue of its argument [18] we have that

tr (Γ?iΩ
?
iGiΩ

?
i ) ≥ µmin(Γ∗i )tr(Ω?iGiΩ

?
i ). (24)

Since Gi 6= 0, Ω?iGiΩ
?
i is positive semidefinite with at least

one positive eigenvalue. Finally, from Prop. 1 we have that
all the eigenvalues of Γ?i are positive. Therefore,

tr (Γ?iΩ
?
iGiΩ

?
i ) > 0. (25)

By hypothesis, s?k 6= xi, then, using (20), we get that α̇?j 6= 0
and the proposition is established.

Proposition 2 immediately implies that agent j cannot
experience a singular arc when visiting an isolated target
unless directly on top of a target. When on top of a target,
the only way to stay there for a finite interval of time (and
thus have a singular arc) is for u?j = 0. Also, suppose that
for some optimal policy u?j (t) /∈ {−1, 0, 1} when the agent
is not visiting any target in a finite interval t ∈ (a, b), then
the alternative policy ũj(t)

ũ?j (t) =


sgn(sj(b)− sj(a)) t ∈ (a, a+ |s(b)− s(a)|)
0 t ∈ (a+ |s(b)− s(a)|, b)
u?j (t) otherwise

is feasible and also optimal, since in both policies the agent
does not have any effect on any targets’ covariance for
t ∈ (a, b). Hence, in an environment where all targets are iso-
lated, there is an optimal control where u∗j (t) ∈ {−1, 0, 1}.
This control structure is the same as in [8], even though the
performance metric and underlying dynamics are different.
We note that establishing a similar result for the case of
non-isolated targets remains a topic of ongoing research.

IV. INFINITESIMAL PERTURBATION ANALYSIS

The results of Sec. III showed that there is an optimal
control policy (at least in the case of isolated targets) whose
control only takes values in {−1, 0, 1}. Any trajectory of
agent j under such a control law can be fully described by
the initial position sj(0) and the parameters

θj = [θj,1, ..., θj,Kj ], ωj = [ωj,1, ..., ωj,Kj ], (26)

where θj are the switching points, that is θj,m is the position
where agent j had its m-th direction change, and ωj are
the dwell times, that is ωj,m is the time agent j spent
stopped at position θj,m before changing direction. Kj is
the total number of events for agent j. While the number
of events is not typically known a priori, it is often possible
to determine an upper bound based on the system dynamics
and constraints; see [8] for details.

This parameterization defines a hybrid system in which
the dynamics of the agents only change when an event
occurs. Events are given by a change in control value at

a switching point and then the completion of a dwell time.
These may occur simultaneously if the dwell time is zero
(representing a switch of control from ±1 to ∓1). Given this
parameterization, we use an approach analogous to [8] where
IPA is used to calculate the gradient of the cost function
with respect to the parameters defining the trajectories and
a gradient descent scheme to optimize the cost function.

A. IPA Review

IPA is a tool for computing stochastic gradient estimates
that are unbiased and distribution invariant when there is
uncertainty on the model parameters under mild stochastic
assumptions on the distribution. Also, IPA is naturally event-
driven, i.e. it specifies how the occurrence of an event
influences the state and the event times and, consequently, the
cost function. This subsection provides a very brief review
of IPA; more details can be found in [12].

Let ψ ∈ Ψ denote a parameter vector in a compact, convex
set Ψ. Define {τk(θ)}, k = 1, . . . ,K to be the times of all
event occurrences of a hybrid system with dynamics ξ̇(t) =
fk(ξ, t, ψ) over the time interval [τk(ψ), τk+1(ψ)). It can be
shown that in the interval [τk(ψ), τk+1(ψ)),

d

dt

(
∂ξ(t)

∂ψ

)
=
∂fk(t)

∂ξ

∂ξ(t)

∂ψ
+
∂fk(t)

∂ψ
(27)

with the boundary condition

∂ξ

∂ψ
(τ+
k ) =

∂ξ

∂ψ
(τ−k ) + [(fk−1(τ−k ))− fk(τ+

k )]
∂τk
∂ψ

. (28)

To evaluate the boundary condition (28), it is necessary to
give a procedure to compute ∂τk

∂ψ . If the event transition at
time τk does not depend on the parameter ψ, then ∂τk

∂ψ = 0.
Otherwise, if there exists a function gk(ξ(ψ, t), t) such that
τk = inf{t > τk−1, gk(ξ(ψ, t), t) ≤ 0}, then

∂τk
∂ψ

= −
[
∂gk
∂ψ

fk(τ−k )

]−1(
∂gk
∂ψ

+
∂gk
∂ξ

∂ξ

∂ψ
(τ−k )

)
. (29)

B. IPA formulation for finding an optimal trajectory

Recall that the underlying idea for online optimization of
the agent trajectories is to use gradient descent on the cost
function. We therefore need the gradient of that cost with
respect to the parameters. From (13) we have

∂J

∂θ
=

1

T

M∑
i=1

∫ T

0

∂tr(Ωi(t))
∂θ

dt. (30)

To compute ∂tr(Ωi(t))
∂θ we use IPA to derive the ordinary

differential equations whose solution will yield the desired
gradient. Applying (27), first with respect to the switching
points parameter yields

d

dt

(
∂Ωi(t)

∂θj,m

)
= A

∂Ωi(t)

∂θj,m
+
∂Ωi(t)

∂θj,m
AT−

(
Ωi(t)Gi

∂Ωi(t)

∂θj,m

+
∂Ωi(t)

∂θj,m
GiΩi(t)

) ∑
j∈Ci(t)

(
1− |sj − xi|

rj

)
+ Ωi(t)GiΩi(t)

Ij(sj − xi)
rj

∂sj(t)

∂θj,m
, (31)



Ij(α) =


+1, 0 < α < rj ,

−1, −rj < α < 0,

0, otherwise.
(32)

The ODE for the dwelling time can be obtained by
replacing θj,m by ωj,m. The initial conditions for (31) and
its analogous ωj,m version are

∂Ωi(0)

∂θj,m
=
∂Ωi(0)

∂wj,m
= 0Li×Li

. (33)

Notice that the differential equations (31) and its analo-
gous ωj,m version depend on the gradients ∂s(t)

∂θj,m
and ∂s(t)

∂ωj,m
.

Details of this calculation can be found in [8]; here we
present only the resulting forms. Note that m indexes a
change in control value while n indexes the total number
of events (changes in control and completion of a (possibly
zero) dwell period).

Case 1: uj(τ−j,n) = ±1, uj(τ
+
j,n) = 0.

∂sj
∂θj,m

(τ+
j,n) =

{
1, if n = 2m− 1,

0, otherwise.
(34)

∂sj
∂wj,m

(τ+
j,n) = 0,∀n. (35)

Case 2: uj(τ−j,n) = 0, uj(τ
+
j,n) = ±1.

∂sj
∂θj,m

(τ+
j,n) =


sj

∂θj,m
(τ−j,n) + 1, if n = 2m,

sj
∂θj,m

(τ−j,n) + 2(−1)m, if n > 2m,

0, otherwise.
(36)

∂sj
∂wj,m

(τ+
j,n) =

{
−uj(τ+

k,n), if n ≥ 2m

0, otherwise.
(37)

Case 3: uj(τ−j,n−2) = ±1, uj(τ
+
j,n) = ∓1 and τj,n−1 =

τj,n.

∂sj
∂θj,m

(τ+
j,n) =

{
2, if n = 2m,

− ∂sj
∂θj,m

(τ−j,n), otherwise.
(38)

∂sj
∂wj,m

(τ+
j,n) = 0,∀ n (39)

Notice that (31) is a first order linear ODE in which Ωi(t),
sj(t), ∂sj(t)/∂θj,m should be interpreted as an inputs. One
interesting feature of these partial derivatives is that they are
constant between events and they are zero at t = 0. We thus
need only evaluate the gradients at the event times t = τj,m.

The complete optimization is summarized in Algorithm
1, where proj is the projection onto the (convex) feasible
set, ηk is the gradient descent step size, s0 = [s0,1, ..., s0,N ]
is the set of initial positions of the agents, Ω(0) =
[Ω1(0), ...ΩM (0)] is the set of initial covariance matrices
of the estimators, θ = [θT1 , ..., θ

T
N ]T is the complete vector

of switching points and ω = [ωT1 , ..., ω
T
N ]T is the complete

vector of dwell times.

Algorithm 1 Agents’ Trajectory Optimization

1: procedure GRADIENT DESCENT
2: Input: s0,Ω(0), θ0

1, ..., θ
0
N , ω

0
1, ..., ω

0
N ,

3: ||∇J || ← ∞
4: k ← 0
5: while ||∇J || > ε do
6: k ← k + 1
7: for j ranging from 1 to N do
8: for m ranging from 1 to Kj do
9:

[
∂J
∂θj,m

, ∂J
∂ωj,m

]
=IPA(j,m, s0,Ω(0), θ, ω)

10: θkj ← proj(θk−1
j − ηk ∂J∂θj )

11: ωkj ← proj(ωk−1
j − ηk ∂J

∂ωj
)

12: ||∇J || = 1
ηk

∣∣∣∣∣∣∣∣(θTk − θTk−1, ω
T
k − ωTk−1

)T ∣∣∣∣∣∣∣∣
13: Output: θ0

1, ..., θ
0
N , ω

0
1, ..., ω

0
N

14: procedure IPA
15: Input: j,m, s0,Ω(0), θ1, ..., θN , ω1, ..., ωN
16: Compute s1(t), ..., sN (t) from the parameterization
17: Compute Ωi(t) according to Eqs. (11) initial condi-

tion Ωi(0) for every i = 1, ...,M
18: Compute ∂sj

∂θj,m
(τ+
n ) and ∂sj

∂θj,m
(ω+
n ) for n = 1, ..,K

19: Solve Diff. Eqs. (31) with initial conditions in
Eq (33) and using sj(t), Ωi(t) and ∂s

∂θj,m
(τ+
n ) and

∂s
∂ωj,m

(τ+
n ) as inputs for every target i = 1, ...,M

20: ∂J
∂θj,m

=
∫ T

0

∑M
i=1 tr

(
∂Ωi

∂θj,m

)
dt

21: ∂J
∂ωj,m

=
∫ T

0

∑M
i=1 tr

(
∂Ωi

∂ωj,m

)
dt

22: Output: ∂J
∂θj,m

, ∂J
∂ωj,m

V. SIMULATION AND RESULTS

To demonstrate this scheme, we simulated a scenario with
two agents and four targets over a time horizon of T = 25
units. The initial positions of the agents were set to s1(0) =
s2(0) = 0 and each had a sensing radius r1 = 1. The targets
were located at (x1, x2, x3, x4) = (1, 3, 5, 7). For each target,
the dynamics of the state Φi(t) ∈ R2 evolved according to
(1) with

Ai = 10−3

[
1 0.1
0 1

]
, Qi = diag(5, 5).

The observations from each agent were given by (3) with

Hi =
1√
2

[
1 −1
−1 1

]
, Ri = diag(10, 10).

A constant gradient descent step size ηk = 2× 10−4 was
used and the parameters of the trajectory at the initial step
of the optimization were

θ0
1 =

[
4, 0.5, 4, 0.5, 4, 0.5, 4

]
,

θ0
2 =

[
4, 7, 4, 7, 4, 7 4

]
,

ω0
1 = 0.5

[
1, 1, 1, 1, 1, 1 1

]
,

ω0
2 = 0.5

[
1, 1, 1, 1, 1, 1

]
.
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Fig. 1: Results of a simulation with two agents and four targets. (a) Evolution of the overall cost as a function of iteration
number on the gradient descent. (b) Trajectories of the two agents at the final iteration. The dashed lines indicate the
positions of the targets and the grey shaded area the visibility region of each agent. (c) Evolution of the trace of the
estimation covariance matrices of the four targets.

The results of the simulation are shown in Fig. 1. The
cost in (13), shown in Fig. 1a, improved rapidly in the first
few iterations. The optimal trajectories for the agents found
after the algorithm converged are shown in Fig. 1b. After
10 units of time, the mission space is divided into two with
each agent cycling between two adjacent targets, dwelling at
each one before moving to the other. The traces of the target
covariances along these trajectories are shown in Fig. 1c. In
the first cycle, the two agents go over the first three targets,
and after that the first agent stays cycling between the first
two targets and the second agent between the last two. The
covariances of all the targets rapidly decrease and are then
held below a value of 80. While the agents converge to a
repeating sequence that splits the space, the dwell times over
this time horizon vary from visit to visit.

VI. CONCLUSION AND FUTURE WORK

In this work, we modeled the problem of monitoring a
finite set of targets, each one of them with internal states
that evolve according to a linear, stochastic system, using
a set of mobile agents equipped with noisy sensors with
range-dependent performance. We established that for the
case of isolated targets, the optimal control can be written
in a parametric form. Using IPA, this cost function can be
optimized online to determine optimal trajectories for the
agents. Finally, this result was demonstrated through a simple
simulation scenario.

In future work, we plan to investigate the case where
the targets are not isolated where the primary challenge is
understanding the singular arcs in the optimal trajectories as
well as conditions for stability of the estimation error. Also,
we are going to investigate the extension of this technique to
situations where the agent and the targets are not constrained
to be in a 1D environment.
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