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Abstract— We investigate the problem of persistently mon-
itoring a finite set of targets with internal states that evolve
with linear stochastic dynamics using a finite set of mobile
agents. We approach the problem from the infinite-horizon
perspective, looking for periodic movement schedules for the
agents. Under linear dynamics and some standard assumptions
on the noise distribution, the optimal estimator is a Kalman-
Bucy filter. It is shown that when the agents are constrained
to move only over a line and that they can see at most one
target at a time, the optimal movement policy is such that
the agent is always either moving with maximum speed or
dwelling at a fixed position. Periodic trajectories of this form
admit finite parameterization, and we show how to compute
a stochastic gradient estimate of the performance with respect
to the parameters that define the trajectory using Infinitesimal
Perturbation Analysis. A gradient-descent scheme is used to
compute locally optimal parameters. This approach allows us
to deal with a very long persistent monitoring horizon using a
small number of parameters.

I. INTRODUCTION

As autonomous cyber-physical systems are continuously
increasing their importance in our society, the topic of long
term autonomy is gaining more interest. In this context,
short term goals are not as important as planning behaviors
that will be efficient over large horizons. One class of
problems of interest in the context of long term autonomy is
where one has a collection of points of interest (denoted as
“targets”) and a set of moving agents that can visit these
targets and perform some form of estimation or control
to their internal state. This paradigm finds applications in
very diverse contexts, such as traffic surveillance in critical
points of a city, sea temperature estimation, and tracking
of nanometer-scale particles in optical microscopy. While
for static systems the estimation or control error does not
grow over time, in dynamic and stochastic systems this error
may grow very fast as time increases. Therefore, if there
are not enough agents to continuously estimate or control
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these targets, then the mobile agents must travel over the
environment with trajectories which can visit the targets
infinitely often in order to avoid unbounded errors as time
goes to infinity. Persistent monitoring is the term used to
refer to this class of problems.

While the persistent monitoring problem has already been
studied in the literature [1]–[6], these works focused on
analyzing the transient behavior of the system. Motivated by
the prospects of long term autonomy, we tackle the problem
from the infinite horizon point of view, where continuous
estimation of internal states of the targets is performed.
While the idea of periodicity of the solution of the persistent
monitoring problem has already been explored in [5], [6],
these works did not provide tools for analyzing the behavior
of the solution in steady state. Therefore, in order to apply
these techniques over the long term one would either need
to optimize over a very long period or always recompute the
solution for the next cycle. Both approaches have excessive
computational overhead. Periodicity naturally fits into the
persistent monitoring paradigm since targets need to be
visited infinitely often and, although a periodic structure of
the solution is not necessarily optimal, results in the transient
case show that the trajectories tend to converge to oscillatory
behavior [7]. On top of that, previous results show that in
the discrete time case, periodic schedules can approximate
arbitrarily well the cost of an optimal schedule [8].

In this work, we provide tools for analyzing and opti-
mizing a periodic trajectory in order to minimize the steady
state estimation error. We assume that agents can observe the
targets’ internal states with a linear observation model with
Gaussian additive noise, and hence, the optimal estimator
is a Kalman-Bucy filter. The differential Riccati equation
then expresses the dynamics of the covariance matrix and,
naturally, the mean quadratic estimation error. We extend the
work in [7] in which we considered targets distributed in a
1-D environment and where the agent could see at most one
target at a time. In that scenario we are able to show that there
is a parameterization of the optimal solution of the finite-time
version of the problem considered here. In this paper, we still
assume the environment to be 1-D, however we consider the
infinite horizon version of the problem and restrict ourselves
to periodic trajectories for which we show that, under some
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assumptions, the covariance matrix converges to a limit
cycle. We then use Infinitesimal Perturbation Analysis (IPA)
in a centralized gradient descent scheme to obtain locally
optimal trajectories. This approach not only allows the shape
of the trajectory to be optimized, but also its period. It is
worth noticing that in many interesting applications that can
be modeled as a persistent monitoring problem, agents are
constrained to (possibly multiple) uni-dimensional mobility,
such as powerline inspection agents, cars on streets, and
autonomous vehicles in rivers.

II. PROBLEM FORMULATION

We consider an environment with M fixed targets located
at positions x1, ..., xM ∈ R. Each target has an internal state
φi ∈ RLi with dynamics

φ̇i(t) = Aiφi(t) + wi(t), (1)

where wi, i = 1, . . . ,M, are mutually independent,
zero mean, white, Gaussian distributed processes with
E[wi(t)wi(t)

′] = Qi with Qi a positive definite matrix for
every i.

We have N mobile agents, whose positions at time t
are denoted by s1(t), ..., sN (t) ∈ R, equipped with sensing
capabilities. These agents move with the kinematic model

ṡj(t) = uj(t), j = 1, ..., N, (2)

where their speed is constrained by |uj(t)| ≤ 1, after proper
scaling. Note that even though we only consider first order
dynamics in this paper, extensions to second order dynamics
would likely follow similar results, as discussed in [9]. The
internal state of target i can be observed by agent j according
to the following linear model

zi,j(t) = γj (sj(t)− xi)Hiφi(t) + vi,j(t), (3)

where vi,j , i = 1, . . . ,M , j = 1, . . . , N are mutually
independent zero mean, white, Gaussian distributed noise
processes, independent of the wi, with E[vi,j(t)v

′
i,j(t)] =

Ri, Ri positive definite, and γj(·) is a scalar function. In
this model, the noise power is constant but the sensed signal
level varies as a function of the distance to the target. Even
though the analysis conducted in this paper is valid for any
unimodal γj(·) that has finite support, we use the following
definition for concreteness:

γj(α) =

{
0, |α| > rj ,√

1− |α|rj , |α| ≤ rj .
(4)

Under this model, the instantaneous signal to noise ratio
(SNR) of a single measurement made by agent j is given by

E [(zi,j(t)− vi,j(t))′(zi,j(t)− vi,j(t))]
E[v′i,j(t)vi,j(t)]

= max

(
0, 1− |sj − xi|

rj

)
φ′i(t)H

′
iHiφi(t)

tr(Ri)
, (5)

where tr(·) is the trace of a matrix. The term
φ′i(t)H

′
iHiφi(t)(tr(Ri))−1 is deterministic and scalar and

cannot be influenced by the relative position between the

agent and the target. On the other hand, the max function
(along with the SNR) is maximum when the agent’s position
coincides with that of the target, linearly decreases as it
moves farther, and is zero if the distance is greater than rj .
The motivation behind this definition is to model sensors
which have a finite sensing range and within that range,
the sensing quality is higher the closer the agent is to the
measurement target.

The instantaneous joint observations performed by all the
agents of the same target can be written as a vector of
observations,

zi(t) = [z′i,1, ..., z
′
i,N ]′ = H̃i(s1, ..., sn)φi(t) + ṽi(t) (6)

where

H̃i = [γ1(s1 − xi)H ′i, · · · , γN (sN − xi)H ′i]′, (7)
ṽi(t) = [v′i,1(t), ..., v′i,N (t)]′, (8)

E[ṽ′i(t)ṽi(t)] = R̃i = diag(Ri, ..., Ri). (9)

Note that (1) and (6) define a linear, time-varying, stochas-
tic system if the trajectories are already pre-defined. The
optimal estimator for the states φi(t) is then a Kalman-Bucy
Filter [10]. A proof of this result is omitted here for space
reasons, but the derivation is analogous to a similar result
in [6], where it is shown that the Kalman-Bucy filter is
indeed optimal, considering targets with internal states with
the same dynamics as in (1) and a general agent dependent
time-varying observation model, similar to (3).

Let φ̂i(t) denote the estimate of the current state of φi(t),
and let ei(t) = φ̂i(t) − φi(t) be the estimation error and
Ωi = E[ei(t)e

′
i(t)] the error covariance matrix. Then, the

Kalman-Bucy filter equations are

˙̂
φi(t) = Aiφ̂i(t) + Ω(t)iH̃

′
i(t)R̃

−1
i

(
z̃i(t)− H̃i(t)φ̂i(t)

)
,

(10a)

Ω̇i(t) = AiΩi(t) + Ωi(t)A
′
i +Qi − Ωi(t)H̃

′
iR̃
−1
i H̃iΩi(t).

(10b)

Substituting (4), (7), and (8) into (10b) yields

Ω̇i(t) = AiΩi(t) + Ωi(t)A
′
i +Qi

− Ωi(t)GiΩi(t)ηi(t), (11)

where Gi = H ′iR
−1
i Hi and

ηi(t) =
∑

j∈Ci(t)

γj(sj(t)− xi). (12)

The overall goal is to minimize the mean squared estima-
tion error over an infinite time horizon. Formally, for the set
of inputs u(t) where the following limit exists, the objective
is to find the optimal cost J? (where the input dependence
on the time is ommited for the sake of notation conciseness):

J? = min
u1,...,uN

lim
t→∞

1

t

∫ t

0

(
M∑
i=1

E [e′i(ξ)ei(ξ)]

)
dξ. (13)

Using the fact that

E [e′i(t)ei(t)] = tr(E [ei(t)e
′
i(t)]) = tr(Ωi)
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the optimization in (13) can be rewritten as

min
u1,...,uN

J = lim
t→∞

1

t

∫ t

0

(
M∑
i=1

tr (Ωi(ξ))

)
dξ, (14)

subject to the dynamics in (2) and (11).
In the context of minimizing the mean squared estimation

error over an infinite horizon, we focus on periodic move-
ment schedules for the agents. We can show that the optimal
policy over a period has the property that uj(t) ∈ {−1, 0, 1}.
To present this result, we first define a target i as isolated if
the following holds:

min
k 6=i
|xi − xk| > 2rmax, rmax = max{r1, ..., rN}.

We also define the minimum distance between regions for
where targets can be visited, (dmin), as

dmin = min
i,k
|xi − xk| − 2rmax > 0.

Proposition 1: In an environment where all the targets are
isolated, given any policy uj(ξ), j = 1, ..., N , ξ ∈ [0, 1],
then there is a policy ũj(ξ) where ũj(ξ) ∈ {−1, 0, 1} ∀ξ ∈
[0, 1], where J(u1, ..., uN ) ≥ J(ũ1, ..., ũN ) and the number
of control switches is upper bounded by 2 t

dmin
+ 4.

Due to space limitations, the proof to Proposition 1 is
omitted. It can be found in [11].

III. STEADY STATE PERIODIC SCHEDULES

As stated in Sec. I, in the present work we analyze
the behavior of the steady state covariance matrices, Ω̄i.
This approach contrasts with [4], [6], [7], where only the
transient behavior was studied and, therefore, the number
of parameters necessary to represent the trajectory grew as
the time-horizon grew. The approach here presented is par-
ticularly interesting because it captures the long-term mean
squared estimation error while only needing to optimize the
parameters that describe a single period of the trajectory.

If the agents’ trajectories are constrained to be periodic, we
know that ηi(t), as defined in (12), will also be periodic and,
therefore, the Ricatti equation for this model, as presented in
(11), is periodic. Before proceeding to the computation of the
steady state covariance, we give a few natural assumptions
on the system.

Assumption 1: The pair (Ai, Hi) is detectable, for every
i ∈ {1, ...,M}.

Assumption 2: Qi and the initial covariance matrix Σi(0)
are positive definite, for every i ∈ {1, ...,M}.

The first assumption is needed in order to ensure that
observations are able to maintain a bounded estimation error
as time goes to infinity and the second one ensures that the
covariance matrix is always positive definite, a property that
will be used on the proof of Prop. 3.

Following a procedure similar to the one used in the
proof of Lemma 9 in [12], we show that, when target i
is visited for at least a finite amount of time, the Riccati
equation for that target (11) converges to a unique periodic
solution. A solution Ω̄i to (11) is said to be stabilizing if, for
any solution Ωi of (11) with symmetric non-negative initial

conditions, limt→∞ λmax

(
Ω̄i − Ωi

)
= 0, where λmax(.) is

the eigenvalue of maximum absolute value of a matrix.
Proposition 2: If ηi(t) > 0 for some interval [a, b] ∈

[0, T ] with b > a, then, under Assumption 1, there exists
a non-negative stabilizing T -periodic solution to (11).

The proof is omitted here and is available in [11].
Notice that we can always design a periodic trajectory such

that every target is visited for at least a finite time interval
and therefore, ηi(t) > 0 for some interval. Defining Ω̄i(t) as
the unique periodic solution to (11) and Ωi(t) as the solution
for some non negative initial conditions Ωi(0) we know that,
since Ω̄i(t) is the unique stabilizing solution of (11),

∀δ > 0, ∃ t0 s.t.
∥∥Ω̄i(t)− Ωi(t)

∥∥ ≤ δ, ∀t ≥ t0,
and then we have that

lim
t→∞

1

t

∫ t

0

|tr(Ω̄i(ξ)− Ωi(ξ))| dξ ≤ δ. (15)

Equation (15) implies that, for any initial condition on
the covariance matrix, if we apply a periodic schedule for
the agents such that every target is visited at least once,
after sufficient time, the cost given by (14) will become
arbitrarily close to the mean cost over time of the steady state
periodic solution associated to that same periodic trajectory.
Therefore, if we optimize the steady state solution Ω̄i, the
cost of the solution starting at any arbitrary initial condition
will asymptotically approach that of the steady state one as
time evolves.

Consider now the motion of the agents. The result in
Proposition 1 implies that when the targets are isolated there
is always a control policy such that uj(t) ∈ {−1, 0, 1}
that leads to lower or equal cost compared to one where
uj(t) 6= {−1, 0, 1} for some time interval. This property
leads us to restrict ourselves to periodic trajectories where the
movement of each agent j consists of a sequence of dwelling
at the same position for some duration of time followed by
moving at maximum speed to another location. Then, one
period of the trajectory of an agent j can be described by
the following parameters: T , the period of the trajectory;
sj(0), the initial position; ωj,p, p = 1, ..., Pj , the normalized
dwelling times for agent j, i.e., the agent dwells for ωj,pT
units of time before it moves with maximum speed for the
p-th time in the cycle; τj,p, p = 1, ..., Pj , the normalized
movement times for agent j, i.e., the agent j moves for τj,pT
units of time to the right (if p is odd) or to the left (if p is
even) after dwelling for ωj,pT units of time in the same
position.

The constraints in (16) below ensure periodicity and con-
sistency of the trajectory. Note that the last two constraints
ensure that the total time that the agents spend moving will
be less than or equal to a period and that over the course of
a period agents will return to their initial position.

τj,m ≥ 0, ωj,m ≥ 0, T ≥ 0,

Pj∑
m=1

(τj,m + ωj,m) ≤ 1

Pj∑
m=1

(−1)mτj,m = 0.

(16)
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Notice that this description does not exclude transitions
of uj of the kind ±1 → ∓1 and ±1 → 0 → ±1, since
it allows ωj,m = 0 and τj,m = 0. This parameterization
defines a hybrid system in which the dynamics of the agents
remain unchanged between events and abruptly switch when
an event occurs. Events are given by a change in control
value at the completion of movement and dwell times. Note
that these may occur simultaneously, for instance, if the dwell
time is zero (representing a switch of control from±1 to∓1).
Given this parameterization, we use an approach analogous
to [4], [7] where IPA is used to calculate the stochastic
gradient estimate of the cost function with respect to the
parameters defining the trajectories and then the gradient
is used in a gradient descent scheme to optimize the cost
function.

IV. OPTIMIZATION OF THE PERIODIC
TRAJECTORY

In this section we take advantage of the convergence of the
Ricatti equation to a steady state solution in order to compute
the derivative of this limit cycle solution with respect to all
the parameters that define the trajectory. These can be used in
a gradient descent scheme to obtain a locally optimal steady
state solution. In this work, we use Infinitesimal Perturbation
Analysis (IPA) to compute these gradients. IPA is a tool for
estimating stochastic gradients of hybrid system states and
event times with respect to given system parameters. These
estimates, under mild assumptions on the distribution of the
random processes involved, have the interesting property
of being unbiased and distribution invariant [13]. IPA is
particularly attractive due to its event driven nature, i.e., the
equations used in the computation of the parameters only
need to be updated when some event (e.g. a transition of
the discrete mode of the system) happens, which means that
effort for updating the equations scales linearly with the
number of events (rather than exponentially with the number
of targets and agents).

A. IPA Formulation

By defining q = t/T , (11) can be rescaled as

Ω̇i(q) =
dΩi(q)

dq
= T (AΩi(q) + Ωi(q)A

′

+Q− ηi(q)Ωi(q)GΩi(q)). (17)

In order to optimize the parameters of the agent trajectories
using gradient descent, we need the gradient of the cost with
respect to these parameters. Taking the partial derivative of
(14), we have that for any parameter θ

∂J

∂θ
=

M∑
i=1

∫ 1

0

∂tr(Ωi(q))
∂θ

dq. (18)

Using IPA, we derive the ordinary differential equations
for which the desired gradient ∂Ωi(t)

∂θ is a solution. Note
that in this paper we sidestep the issue of whether or
not these gradients exist. We know that there are sets of
parameters for which the gradient does not exist (imagine,

for instance, a set of parameters for which one of the targets
is never visited and the dynamics of this target are unstable,
therefore, its covariance diverges as time goes to infinity).
However, experience and simulations support the assumption
that these gradients do indeed exist in the interior of the set
of parameters for which each target is visited at least once.

Computing the derivative of Ωi with respect to any pa-
rameter θ yields

∂ ˙̄Ωi(q)

∂θ
− T

(
A
∂Ω̄i(q)

∂θ
+
∂Ω̄i(q)

∂θ
A′

− ηi(q)Ω̄i(q)G
∂Ω̄i(q)

∂θ
− ηi(q)

∂Ω̄i(q)

∂θ
GΩ̄i(q)

)
=

T
∂ηi(q)

∂θ
Ω̄i(q)GΩ̄i(q) +

∂T

∂θ

˙̄Ωi(q)

T
, (19)

where one should look at ∂Ω̄i

∂θ as the unknown function which
we are trying to solve for. In this expression, the term ηi(q)
is fully determined by the agent’s trajectory parameters. The
computation of the steady state covariance matrix Ω̄i(q) is
described in the previous section and explicit expressions for
∂Ω̄i

∂θ will be given in the next subsection.
Since (19) does not fully determine a unique solution (dif-

ferent initial conditions ∂Ω̄i

∂θ (0) will yield different solutions),
we need extra conditions to determine the partial derivatives
of the covariance matrix. Because Ω̄i(q) is periodic, ∂Ω̄i

∂θ
must also be periodic. This property will allow us to uniquely
determine the initial conditions for computing the derivative
∂Ω̄i

∂θ , as discussed in the following.
Define the problem:

Σ̇H(q)− T
(
A− ηi(q)Ω̄i(q)G

)
ΣH(q) = 0, ΣH(0) = I

(20)
and let ΣZI be the solution of (19) with the zero matrix as
the initial conditions. Also, let ΣH denote the solution of the
homogeneous version of (19) with the identity matrix as the
initial condition. Then, the initial conditions matrix Λ that
yields a periodic solution of (19) is such that [14]:

Λ = ΣH(1)ΛΣ′H(1) + ΣZI(1), (21)

which has at least one solution Λ if ∂Ω̄i

∂θ exists. The following
proposition states sufficient conditions for uniqueness.

Proposition 3: Assume that ΣH is a solution of (20),
Assumptions 1 and 2 hold, target i is observed at least once
in the period T , and there exists a solution to (21). Then,
the solution to (21) is unique.

The proof of Prop. 3 is omitted here for the sake of space
and is available at [11]. The Lyapunov equation in (21) can
be efficiently solved for low-dimensional systems using the
algorithm in [15] and implemented in MATLAB function
dlyap. The partial derivatives can then be computed as:

∂Ω̄i(q)

∂θ
= Σ′H(q)ΛΣH(q) + ΣZI(q). (22)

For computing the entire gradient, (22) should be used to
compute the partial with respect to the parameters that define
the trajectory of each agent.
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B. Computation of ∂ηi(q)
∂θ

Looking back to (19), in order to give a complete proce-
dure for computing the derivative ∂J

∂θ when it exists, the only
component left is to compute the derivative ∂ηi(q)

∂θ . Using
(12), we know that

∂ηi(q)

∂τj,m
= −Ij(sj − xi)

rj

∂sj(q)

∂τj,m
, (23)

Ij(α) =


+1, 0 < α < rj ,

−1, −rj < α < 0,

0, |α| > rj .

(24)

As a side note, since γi,j is not differentiable at α = 0,
we can use the concept of subgradient and use any value
between −1 and 1 for Ij(0). Similarly,

∂ηi(q)

∂ωj,m
= −Ij(sj − xi)

rj

∂sj(q)

∂ωj,m
, (25)

∂ηi(q)

∂sj(0)
= −Ij(sj − xi)

rj

∂sj(q)

∂sj(0)
, (26)

∂ηi(q)

∂T
= −

N∑
j=1

Ij(sj − xi)
rj

∂sj(q)

∂T
. (27)

In order to compute ∂sj(q)
∂θ for some parameter θ we

will explicitly write the position sj(q) as a function of
this parameter. As already discussed, IPA is event-driven in
nature. For our parameterization, these events are the instants
when the trajectory presents a change in the velocity, at the
end of dwell times or movement times. The dynamics of the
derivatives may experience discontinuities at these specific
event times. The order of the events is defined in such a way
that initially the agent dwells, then it moves right, then dwells
again, followed by moving left and repeat this sequence until
the number of events reaches 2Pj , where Pj is a designer-
defined parameter that indicates the maximum number of
direction switches the agent j can experience in its trajectory.
Note that the value of Pj is upper bounded when the targets
are isolated and Proposition 1 gives an upper bound for
Pj as a function of the period T . Also, notice that under
this definition events are agent-specific and can happen at
different times for different agents.

The position of agent j at normalized time q, after the
k-th event and before the k + 1-th is

sj(q)−sj(0) =


T

(
(−1)k/2+1

(
q −

∑k/2−1
p=1 (τj,p + ωj,p)

+ ωj, k2

)
+
∑k/2
p=1(−1)p+1τp

)
, k even,

T
∑ k−1

2
p=1 (−1)p+1τj,p, k odd.

(28)
Therefore,

∂sj
∂τj,m

=

{(
(−1)

k
2 +1 + (−1)p

)
T, m < k

2 , k even,

(−1)m+1T, m ≤ k−1
2 , k odd,

(29)

∂sj
∂ωj,m

=

{
1, m < k

2 , k even,
0 , otherwise,

(30)

∂sj(q)

∂T
=
sj(q)− sj(0)

T
, (31)

∂sj
∂sj(0)

= 1. (32)

Finally, we note that when optimizing the agent trajecto-
ries, we use the procedure to compute the gradient described
in this section in conjunction with a projected gradient
approach, i.e.,

θl+1
j = proj

(
θlj − κl

∂J

∂θj

)
, (33)

where proj represents the projection of the parameters into
the convex set defined by the constraints in (16), the upper
index l refers to the step number and κl is the gradient
descent step size. An algorithm that summarizes the entire
optimization procedure is available on the extended version
of this manuscript [11].

In this paper, a procedure for obtaining θ0
j is not discussed.

One essential condition for this initial configuration is that
every target is visited at least once for a finite amount of
time, as discussed in Sec. III, otherwise the covariance ma-
trices will not converge to a steady-state solution. Although
providing efficient initial parameters for the optimization is
a topic that we are still investigating, one possible way to
address it would be to use the transient analysis given in [7].

V. SIMULATION RESULTS

In this section, we demonstrate the results of our approach
in a scenario with five targets and two agents. All targets i
have the same state dynamics evolving according to (1) with
parameters

Ai =

[
−1 −0.1
−0.1 0.01

]
, Qi = diag(1, 1),

and observation model as in (3) with parameters

Hi = diag(1, 1), Ri = diag(1, 1), rj = 0.9.

A constant descent stepsize was used (κl = κ0 = 0.02)
and the targets were placed in positions xi = 1 + 2i, i =
1, .., 5. The initial parameters were the following: s0

1(0) =
2.7, s2(0) = 6.8, T 0 = 6, P1 = P2 = 11, τ0

1 =
τ0
2 = 0.1[1, 0.1, 1, 1, 0.1, 1, 0.1, 1, 1, 0.1, 1], ω0

1 = ω0
2 =

0.0125[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
Figure 1 shows the results of the optimization in this

scenario. Notice that even though both agents and all the
targets have the same dynamic models, the solution at the
last iteration of the optimization was such that one of the
agents visits three of the targets and the other two of them.
One interesting aspect of the trajectories of the targets in
Fig. 1b is that, while in the period between times 6 and
8 agent 1 makes a movement with small amplitude around
target 1, the effects of this oscillatory movement are hard
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Fig. 1: Results of a simulation with two agents and five targets. (a) Evolution of the overall cost as a function of iteration
number on the gradient descent. (b) Trajectories of the agents at the final iteration. The dashed lines indicate the positions
of the targets and the grey shaded area the visibility region of the agent. (c) Evolution of the trace of the estimation error
covariance matrices of the five targets.

to notice in the trace of the covariance of target 1 in Fig.
1c. Therefore, even though it is intuitively clear that staying
still rather than moving with this oscillatory behavior will
lead to a lower cost solution, the difference in terms of
cost is minor. Also, notice that the solution has not yet
fully converged, as can be seen in Fig. 1a. The number of
iterations was selected to highlight interesting aspects of the
process and thus not run to convergence. The effect of the
gradient descent step size (or, more generally, the descent
algorithm applied) and its effect on the convergence rate,
are topics of future research. Finally, note that while the
maximum number of switches in a direction allowed to each
agent was set to 11, the final solution appears to have fewer
because some of the movement and dwelling times in the
final solution are essentially zero.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we developed a technique both to analyze
and to optimize the steady state mean squared estimation
error of a finite set of targets being monitored by a finite set
of moving agents. The structure of the optimal solution al-
lowed us to represent it in a parametric way and we provided
numerical tools to optimize it in a scalable manner. Some
simulation examples were provided in order to demonstrate
the proposed technique.

In future work, we plan to approach the question of
whether gradients of Ω̄i with respect to the parameters that
define the trajectory always exist in the interior of the set
where they lead to a convergent Ω̄i. Moreover, we intend to
study how to efficiently generate initial trajectories in order
to converge to global optimal points or, at least, good local
optima. We also plan to extend the results presented here to
scenarios where the agents are not constrained to a single
dimension, possibly using suboptimal parameterizations for
the trajectory, as in [16].
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