
A Semidefinite Programming Approach to Discrete-time
Infinite Horizon Persistent Monitoring

Samuel C. Pinto1, Sean B. Andersson1,2, Julien M. Hendrickx3, and Christos G. Cassandras2,4
1Dept. of Mechanical Engineering, 2Division of Systems Engineering,

4Dept. of Electrical and Computer Engineering
Boston University, Boston, MA 02215, USA

3ICTEAM Institute, UCLouvain, Louvain-la-Neuve 1348, Belgium
{samcerq,sanderss,cgc}@bu.edu, julien.hendrickx@uclouvain.be

Abstract— We investigate the problem of persistent moni-
toring, where a mobile agent has to survey multiple targets
in an environment in order to estimate their internal states.
These internal states evolve with linear stochastic dynamics and
the agent can observe them with a linear observation model.
However, the signal to noise ratio is a monotonically decreasing
function of the distance between the agent and the target. The
goal is to minimize the uncertainty in the state estimates over
the infinite horizon. We show that, for a periodic trajectory
with fixed cycle length, the problem can be formulated as a set
of semidefinite programs. We design a scheme that leverages
the spatial configuration of the targets to guide the search over
this set of optimization problems in order to provide efficient
trajectories. Results are compared to a state of the art approach
and we obtain improvements of up to 91% in terms of cost in
a simple scenario, with much lower computational time.

I. INTRODUCTION
We study the problem of persistent monitoring of a finite

set of targets by a mobile agent, where each target has an
internal state that evolves over time with some degree of
uncertainty in its dynamics. The agent can observe these
internal states when it is close to a given target, however, in
order to monitor all the targets, it needs to move around the
environment and visit them infinitely often. This paradigm
finds applications in many domains, such as ocean tempera-
ture monitoring [1] and pipeline inspection [2]. This problem
is closely related to the Traveling Salesman Problem (TSP),
where, given a set of targets, the goal is to find a cycle
in which the agents efficiently visit all the targets in order
to minimize the traveled distance or total travel time. The
major difference between the TSP and the problem we are
dealing with in this paper is that the optimization goal we
consider is to minimize the uncertainty rather than distance.
We emphasize that due to the dynamic nature of uncertainty,
we cannot model the agent as being embedded in a graph
with fixed cost on the edges, as assumed in TSP.

In the realm of persistent monitoring, significant previ-
ous work has been done. In [1], a variant of the Rapidly

This work was supported in part by NSF under grants ECCS-1931600,
DMS-1664644, CNS-1645681, and CMMI-1562031, by ARPA-E under
grant DE-AR0001282, by AFOSR under grant FA9550-19-1-0158, and by
the MathWorks. The work of J. Hendrickx was supported by the “Re-
vealFlight” Concerted Research Action (ARC) of the Federation Wallonie-
Bruxelles, by the Incentive Grant for Scientific Research (MIS) “Learning
from Pairwise Comparisons” of the F.R.S.-FNRS.

Exploring Random Trees (RRT) algorithm denoted Rapid
Random Cycles (RRC) was designed for cyclic discrete time
persistent monitoring while [3] proposed an optimal control
approach for the continuous time version of the persistent
monitoring problem that relied on a solution of the two-
point boundary value problem resulting from a Hamiltonian
analysis. However, the solution of the two-point boundary
value problem is computationally expensive.

We have previously studied this problem using the as-
sumption that the internal state of the target evolves ac-
cording to linear, stochastic dynamics with linear observa-
tions, but corrupted with noise [4]. However, these works
approached the problem from a continuous-time perspective.
The trajectory of the agents was parameterized using a finite
number of parameters, and then gradient descent was used to
optimize over these parameters, leading to scalable solutions.
The trajectories often converged to local optima and provided
no insight on how far from global optimality the solutions
were. To the best of the authors’ knowledge, the only work
that includes a notion of global (asymptotic probabilistic)
optimality in persistent monitoring of uncertain states is [1]
and traditional tools with global guarantees, such as dynamic
programming, are computationally prohibitive even for a
small number of targets. In this work, we intend to have
more than a local notion of optimality while retaining the
ability to generate efficient trajectories for problems with
a small to moderate number of targets within a reasonable
computational time.

In this paper, however, we limit ourselves to a single
agent and a discrete time model and formulate the problem
in a way that both the computation of the steady state
uncertainty and the local optimization of the trajectory can
be framed as a single optimization problem, a semidefinite
program (SDP). The formulation and solution of this joint
optimization problem is the main contribution of this paper.
This contrasts with our previous approach [4] where, in a
gradient descent scheme, the steady state uncertainty had
to be computed through a computationally costly algorithm.
In the present work we benefit from efficient and reliable
SDP solvers and are able to quickly solve a local version
of the persistent monitoring problem. Moreover, we are not
limited to local optimality, as we have also embedded this

local SDP-based optimizer into a higher level algorithm
that searches globally for different periodic trajectories. This
higher level scheme leverages the spatial distribution of the
targets and then feeds the lower level optimization with
configurations that will lead to feasible schedules. Due to
the infinite number of candidate trajectories, we still are
not able to guarantee global optimality. However, simulation
results show that the approach proposed in this paper is
able to efficiently handle problems with a small number of
targets, providing trajectories with good performance even in
the initial iterations of the higher level algorithm. Moreover,
trajectories generated with the approach here proposed give
a significant reduction (91%) in terms of estimation error
when compared to RRC [1], while also showing significant
computational time reduction.

II. PROBLEM FORMULATION

Consider an environment with N target locations that
should be monitored. Each target i has an internal state
φi ∈ RLi that continuously evolves over time. An agent can
move and sense these targets. We assume that the dynamics
of the targets and observations of its internal state by the
agent are given according to the following discrete-time
model:

φi(k + 1) = Aiφi(k) + wi(k), (1a)

zi(k) = Hi(k)φi(k) + vi(k), (1b)

where wi(k) and vi(k) are zero mean, mutually independent
white Gaussian processes with constant covariance matrices
Qi and Ri, respectively.

Assume that at a given time step k, the agent has a
position s(k) and that the agent can deterministically control
its position according to the following model

s(k + 1) = s(k) + uk, ‖uk‖ ≤ umax. (2)

We note that the choice of these simple dynamics is made
for ease of presentation. Extending to more complicated
agent dynamics is straightforward. Motivated by the fact that
real sensors (such as sonar, cameras and lidars) normally
have a finite range and that their observation quality usually
decays as the agent moves farther from the sensing target,
we assume the following model for Hi(k):

Hi(k) =
√
γi(k)Hi,max,

γi(k) =

{(
1− (s(k)−xi)

2

r2i

)
, ‖s(k)− xi‖ ≤ ri,

0, otherwise,

(3)

where xi is the position of target i and Hi,max is a matrix.
This particular structure of Hi(k) captures the fact that

the power of the signal decays as the agent moves farther
from the target, while the noise power stays constant. If
the distance between agent and target is larger than ri, the
intensity of the signal is zero, which is equivalent to not
sensing at all. The particular quadratic decay was chosen due
to the fact that it can be easily incorporated into an SDP. We
plan to study extensions to other shapes in future work.

When estimating the states, the goal is to find an unbiased
estimator φ̂i(k) that minimizes the mean squared estimation
error over an infinite time horizon. Letting Σi(k) denote
the covariance matrix of the estimator φ̂i(k) and noting that
E[(φ̂i − φi)T (φ̂i − φi)] = tr(Σi), we define the cost C of a
particular infinite horizon trajectory of the agent as:

C = lim
M→∞

1

M

M∑
j=1

N∑
i=1

tr(Σi(j)) (4)

when the above limit exists. When it does not exist, the cost
is defined as infinity.

Since both the dynamics and the observations are linear
and the process and observation noises are Gaussian and
uncorrelated, with the additional assumption that the distri-
bution of φi(0) is Gaussian and uncorrelated with wi(k) and
vi(k), we know that the optimal estimator is a Kalman Filter
[5]. Therefore, in order to efficiently approach the persistent
monitoring problem, we only need to design a trajectory that
will influence the sensing matrices Hi(k) in order to reduce
the overall uncertainty. Note that Hi(k) itself is directly
related to the covariance matrix through the Kalman filter
propagation equations.

In the framework of persistent monitoring where targets
have to be visited infinitely often, a very natural assumption
is that targets will follow a periodic schedule, as already
exploited in some of our previous work on the continuous
time version of the problem [4], [6]. Periodic schedules can
approximate arbitrarily well the cost of an optimal schedule
[7] and they naturally provide an upper bound to the inter-
visit time of targets. One particularly interesting property of
periodic schedules is that, under some very natural assump-
tions, the covariance matrix of each of the targets converges
to a steady state periodic solution. Therefore, we only need
to design one period of the agent trajectory in order optimize
the performance of the system over long horizons.

We make the following assumption that ensures that
the entire internal state can indeed be estimated from the
observations:

Assumption 1: The pair (Ai, Hi,max) is observable, for
every i ∈ {1, ...,M}.

Under this assumption, it can be shown that, if every target
is visited at least once in a period, the covariance matrix will
converge to a unique globally attractive steady state solution
for any initial conditions Σi(0), even if the internal state
dynamics, captured by the matrix Ai, are unstable (the proof
is a discrete time version of Prop. 2 in [6], and is omitted
here due to space limitations). Therefore, assuming a cyclic
trajectory of period τ where all the targets are visited,

C = lim
M→∞

1

M

M∑
m=1

N∑
i=1

tr(Σi(m)) =
1

τ

τ∑
k=1

N∑
i=1

tr(Σ̄i(k))

(5)
where Σ̄i(k) is the steady state covariance matrix and the
indexes i and k refer respectively to the index of the target
and index of the time step within the cycle.

III. COMPUTATION OF THE INFINITE HORIZON COST

In order to jointly optimize the trajectory and compute the
infinite horizon cost using SDPs, we write the Kalman filter
in a different format, known as the information filter. We
first briefly recall the well known relationship between the
Kalman filter and the information filter. Then we develop a
scheme to compute the infinite horizon cost of a periodic
trajectory using an SDP whose optimal solution satisfies the
information filter equations.

A. Information Filter

Recall that the Kalman filter equations can be written in
two steps (prediction and update) [5]. The covariance update
in the prediction is given by

Σi(k|k − 1) = AiΣi(k − 1|k − 1)Ai
T +Qi (6)

and in the update step by

Σi(k|k) = Σi(k|k − 1)− Σi(k|k − 1)HT
i (k)

× (Hi(k)Σi(k|k − 1)HT
i (k) +Ri)

−1Hi(k)Σi(k|k − 1)
(7)

where Σi(k|k) = Σi(k) and Σi(k|k−1) are the covariances
at time k using information up to time k and k − 1
respectively. For details, see, e.g., [5], [8]. Before moving
to the information filter, we state the following assumption:

Assumption 2: Qi, Ri and the initial covariance matrix
Σi(0) are positive definite for every i ∈ {1, ..., N}.

Under this assumption, we know that the covariance
matrices Σi(k|k−1) and Σi(k|k) are positive definite. Let us
define Pi(k|k−1) = Σ−1

i (k|k−1) and Pi(k|k) = Σ−1
i (k|k).

Using the matrix inversion lemma in the prediction step [5]
yields

Pi(k|k − 1) = Q−1
i

−Q−1
i Ai(Q

−1
i +ATi Pi(k − 1|k − 1)Ai)

−1ATi Q
−1
i . (8)

Analogously, using the matrix inversion lemma on the update
step leads to

Pi(k|k) = Pi(k|k − 1) +HT
i (k)RiHi(k). (9)

Merging both steps, we get the following recursion:

Pi(k|k) = Q−1
i +HT

i (k)RiHi(k)

−Q−1
i Ai(Q

−1
i +ATi Pi(k − 1|k − 1)Ai)

−1ATi Q
−1
i , (10)

which is the well known information filter recursion [8]
that we will use from this point forward in the paper. The
information filter is optimal, since it consists simply of a
rearrangement of the Kalman filter equations, where instead
of propagating directly the covariance, the inverse of the
covariance is propagated.

B. Cyclic Schedules and the algebraic Ricatti equation
Equation (5) shows that the average steady state uncer-

tainty over a single cycle is equal (in the limit) to the
mean squared estimation error over a very long time horizon.
Therefore, computing these steady state covariance matrices
is an essential part of solving the persistent monitoring
problem. In this subsection, we discuss one method for
computing Σ̄i(k). We pick this specific method due to the
fact that it can be easily integrated in the SDP framework that
we will explore in the next subsection. We take an approach
similar to [9], where the steady state covariance is computed
using a single augmented algebraic Ricatti equation (ARE).
We point out that we cannot directly use the results in [9]
because they use the Kalman filter in its standard form and
not the information version. Therefore, in order to use an
ARE to compute the steady state behavior of the system, we
define the following augmented inverse covariance

P̃i,k =

P̄i(k) · · · 0
...

. . .
...

0 · · · P̄i(k + τ − 1)

 , (11)

with P̄i(k) = Σ̄−1
i (k), and augmented parameters

Λ̃i = diag(Ai, ..., Ai), Ψ̃i = diag(Qi, ..., Qi), H̃i,k =
diag(Hi(k), ...,Hi(k + τ − 1)), R̃i = diag(Ri, ..., Ri). The
recursion in (10) can be rewritten as:

P̃i,k = Ψ̃−1
i + H̃T

i,kR̃iH̃i,k

− Ψ̃−1
i Λ̃i(Ψ̃

−1
i + Λ̃Ti P̃i,k−1Λ̃i)

−1Λ̃Ti Ψ̃−1
i . (12)

For ensuring periodicity, we require that Pi(k+ τ) = Pi(k),
therefore,

P̃i,k+1 = JP̃i,kJ
T , (13)

J =

[
0Li×(N−1)Li

ILi×Li

I(N−1)Li×(N−1)Li
0(N−1)Li×Li

]
. (14)

Defining Q̃−1
i = (JT Ψ̃iJ)−1 and Ãi = J−T Λ̃i and

substituting into (12) we get the following algebraic Riccati
equation for computing P̃i,k for each of the targets i:

Q̃−1
i − P̃i,k + H̃T

i,kR̃iH̃i,k

− Q̃−1
i Ãi(P̃i,k + ÃTi Q̃

−1
i Ãi)

−1ÃTi Q̃
−1
i = 0. (15)

C. Solving the ARE as an SDP
Even though the most efficient methods for solving AREs

do not rely on SDPs, in the path for jointly solving the ARE
and optimizing the trajectory, we first describe how to cast
the solution of the ARE as an SDP. This will allow us to
benefit from the efficient solvers available for SDPs and from
their convexity properties in order to efficiently approach the
persistent monitoring problem. Moving in this direction, we
first introduce a relaxed version of (15), where equality is
replaced by inequality, with the goal that, in the optimal
solution of the optimization, the constraint will be tight and
equality will hold:

Q̃−1
i −Πi + H̃T

i,kR̃iH̃i,k

− Q̃−1
i Ãi(Πi + ÃTi Q̃

−1
i Ãi)

−1ÃTi Q̃
−1
i < 0, (16)

where < 0 denotes that the matrix is positive semi-definite
and Πi is a variable for which we want Πi = P̃i,k as in
(15) in the optimal solution of the optimization. We recall
that whenever every target is visited, (15) will have a solution
and hence the constraint 16 will be feasible. Using the Schur
complement [10], this inequality can be written as:[

Q̃−1
i −Πi + H̃T

i,kR̃iH̃i,k Q̃−1
i Ãi

ÃTi Q̃
−1
i Πi + ÃTi Q̃

−1
i Ãi

]
< 0. (17)

We also define an upper bound Γi on the covariance matrix
Γi < Πi, which in the optimal solution will coincide with
the covariance matrix. Using Schur’s complement, this upper
bound can be expressed as:[

Γi I
I Πi

]
< 0. (18)

Now, we show that using an SDP, we can compute the exact
solution of the information filter and that the relaxations
we proposed will indeed be tight in an optimal solution.
Moreover, we show that the cost function of the optimization
is equal to the trace of the augmented steady state covariance
matrix. Inspired by [10], where it is shown that the LQR
Ricatti equation can be solved as an SDP, we give the
following proposition:

Proposition 1: If the pair (Ãi, H̃i,k) is observable and Qi
and Ri are positive definite, then the optimal solution of the
following SDP is such that Π∗i = P̃i,k is a solution of the
ARE (15) and Γ∗i = (Π∗i)

−1.

min
Γi,Πi

tr(Γi)

s.t. (17), (18), Γi, Πi < 0.
(19)

The proof of Prop. 1 is given in Appendix 1 of [11] and
omitted here due to space reasons. In the optimal solution
of the SDP, Γ∗i is the augmented covariance matrix, i.e.
Γ∗i = P̃−1

i,k . Therefore, minimizing tr(Γi) for all the targets is
equivalent to minimizing τ−1

∑τ
i=1 tr(Σ̄i(k)), which is the

optimization objective in the persistent monitoring problem,
as expressed in (5). Thus, solving (19) gives us the squared
estimation error of a single target, given an agent trajectory.
Although Prop. 1 is not directly used to solve the Persistent
Monitoring problem, it gives important insight into Prop. 2.

IV. OPTIMIZATION OF PERSISTENT MONITORING
SCHEDULES

In this section, we give a procedure to jointly optimize
the steady state uncertainty (5) and the trajectory of the
agent. If we knew in advance when ‖s(k)− xi‖ was larger
than ri, then (3) would be linear with the squared distance
between the agent and target i (d2

i (k)) at every time for
every i, and the problem would be an SDP. However, since
we do not know whether or not ‖s(k)− xi‖ is larger than
ri, a set of SDPs needs to be solved in order to obtain the
optimal trajectory with that period. Therefore, we propose
in this section a two-step procedure. In the higher level, an
algorithm produces sequences of targets to be visited by the
agent and determines which of the modes of (3) is active in
each time step. The lower level, on the other hand, assumes

a fixed mode in (3) given by the higher level algorithm and
through the solution of an SDP produces a trajectory that
minimizes the steady state uncertainty.

A. Lower Level Problem

Recalling (3), in order to simplify notation for the rest
of this subsection, we define Gi = HT

i,maxRiHi,max and
its augmented version G̃i = diag(Gi, ..., Gi). Note that
HT
i,kRiHi,k = γi(k)Gi and in the optimization γi(k) will be

treated as a decision variable and Gi as a constant. Therefore,

H̃T
i,kR̃iH̃i,k =

γi(k)ILi×Li
· · · 0

...
. . .

...
0 · · · γi(k + τ)ILi×Li

︸ ︷︷ ︸

γ̃i,k

G̃.

(20)
Moreover, we create optimization variables d2

i such that
d2
i (k) ≥ ‖s(k)− xi‖2. The underlying goal of creating

this variable is that the constraint will be binding in an
optimal solution, i.e., d2

i (k) = ‖s(k)− xi‖2, therefore we
can compute γi(k) using (3) once d2

i (k) is fixed.
Finally, we define logical variables bi,k ∈ {0, 1} (that will

be fixed pre-defined variables in the optimization) as

bi,k =

{
0, ‖s(k)− xi‖ > ri,

1, ‖s(k)− xi‖ ≤ ri.
(21)

These logical variables represent whether or not the agent
visits a given target i (i.e., the target within the agent’s
sensing range) at time step k of the cycle and thus define
the mode in (3). With that in mind, we state Prop. 2.

Proposition 2: For fixed values of cycle length τ and
logical variables bi,k, the solution of the optimization (22),
when it exists, minimizes the cost in (5), and the optimal
trajectory s∗(·) satisfies dynamic constraints (2).

min
Γi,Πi, s(·)

1

τ

N∑
i=1

tr(Γi)

s.t.

[
Q̃−1
i −Πi + γ̃i,kG̃i Q̃−1

i Ãi
ÃTi Q̃

−1
i Πi + ÃTi Q̃

−1
i Ãi

]
< 0,[

Γi I
I Πi

]
< 0,

‖s(k + 1)− s(k)‖2 ≤ u2
max,

‖s(τ)− s(1)‖2 ≤ u2
max,

‖s(k + 1)− xi‖2 ≤ d2
i (k),

d2
i (k) ≥ r2

i , if bi,k = 0,

γi(k) = 0, if bi,k = 0,

d2
i (k) ≤ r2

i , if bi,k = 1,

γi(k) = 1− d2
i (k)

r2
i

, if bi,k = 1,

∀i ∈ {1, ..., N}, ∀k ∈ {1, ..., τ}.
(22)

A sketch of the proof of this proposition is given in [11].
Some brief insights on (22) are that the first three constraints

are used in the solution of the ARE, similar to Prop. 1. The
following two constraints ensure that the agent movement is
feasible according to (2) and that it is periodic. The next one
is used to compute the distance between the agent and the
target and the last four constraints compute γi based on the
relative position of the agent and the target. We also note that
constraints that involve the squared norm can be transformed
into linear matrix inequalities using the Schur complement,
therefore the optimization (22) can be cast as an SDP.

B. Higher Level Problem

Using the optimization problem (22), we have a proce-
dure such that, for each cycle period τ , we can solve an
exponentially growing (2N×τ) number of SDPs, representing
different variations of bi,k, and obtain the optimal solution
for that cycle period. This approach is very inefficient due to
the exponential scalability. We thus propose a graph-based
scheme that explores different combinations of τ and bi,k by
exploring how targets are spatially distributed and evaluates
each combination using the low level optimization (22).

As a motivation for the higher level algorithm we propose,
consider the case where two targets are far enough apart that
the agent seeing one target at a time instant cannot see the
other one in the following time step due to the constraints in
the dynamics. In a “blind” exploration of variables bi,k, one
could encode the possibility of the agent visiting these targets
at consecutive time steps and such choice of bi,k renders an
infeasible solution of (22). Moreover, trajectories that are
dynamically feasible but have one target that is not visited
may lead to unbounded cost and therefore we also do not
want to explore them. The goal of the algorithm we introduce
in this section is to evaluate only sets of τ and bi,k that can
produce feasible trajectories according to the dynamics and
the constraints as in (2) and also lead to bounded steady state
uncertainty. The algorithm we present in this subsection is a
“brute force” approach and we plan to explore more efficient
exploration schemes in future work.

We abstract the targets as nodes in a graph G. The goal
is to find a sequence of nodes to be visited. The cost ξ(i, h)
of each edge (i, h) in the graph G is the minimum number
of time steps necessary for the agent to transition between
visiting these two targets, i. e.,

ξ(i, h) = max

(
1,

⌈
‖xi − xh‖ − ri − rh

umax

⌉)
. (23)

We point out that visiting a target means being located within
its sensing range and not necessarily being exactly at its
center. This is the reason why we subtract the radius in the
numerator in (23). Also, note that if an agent is visiting a
given target, it can visit the same target in the following
time step. Therefore, the self-transition cost is such that
ξi,i = 1, for any target. Given this structure, we can directly
translate any sequence of visited nodes S = {n1, ..., nF } to
the number of time steps in a cycle, τ , and to bi,j , where

τ(S) = ξ(nF , n1) +
F−1∑
j=1

ξ(nj , nj+1). (24)

We then propose Algorithm 1, which combines both low
and high level stages and we name this SDP-PM. The
intuition behind this algorithm is that, initially, all the cycles
in which each target is visited for exactly one time step are
added to a list and ordered according to the number of time
steps in that particular cycle. Then, these cycles are explored
in order. In the exploration, the cost of that particular cycle is
evaluated and all the possibilities of visiting one new (or the
same) targets in that cycle are added to the list L. One thing
to note is that the first cycle to be explored will always be
the traveling salesman optimal solution and “simpler” cycles
will always be explored first. A more detailed explanation of
Alg. 1 that includes an example is given in [11].

Algorithm 1 SDP-PM

1: OptCost←∞
2: OptCycle← ∅
3: L ← ∅
4: for S ∈ permutation(1, ...N) do
5: Add (S, τ(S)) to L.
6: for i ∈ (1, ..., Niter) do
7: S ← removeF irst(L)
8: cost = lowerLevelOptimization(S)
9: if cost < OptCost then

10: OptCost← cost
11: OptCycle← S
12: for newV ertex ∈ (1, ..., N) do
13: for p ∈ (2, ...NS) do
14: Snew ← {S1:p−1, newV ertex,Sp:FS}
15: Add (Snew, τ(Snew)) to L
16: return OptCost,OptCycle

V. SIMULATION RESULTS

We implemented the SDP-PM Alg. 1 with dynamics as in
(1) with parameters

Ai = diag(1.1, 1.1), Qi = diag(0.1, 0.1), (25)

and observation model as in (3) with parameters

Hmax =

[
1√
2

1√
2

− 1√
2

1√
2

]
, Ri = diag(1, 1), ri = 0.6.

(26)
The agent maximum displacement in one time step is
bounded by umax = 0.33.

To the best of the authors’ knowledge, the only approaches
proposed in the scientific literature similar enough to be
used as a comparison are RRC and its variant RRC∗ [1].
Note that, in its original form, RRC considers a different
definition of γi(k) than Eq. (3) and a cost different from
(4). However, RRC can be trivially modified to match our
definitions. We implemented and compared it to our approach
(SDP-PM) in a simple environment and the results are shown
in Fig. 1. Due to the random nature of RRCs, we ran it 5
independent times and we show its best, worst and average
performances.

-1 -0.5 0 0.5 1 1.5 2 2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

RRC

SDP-PM

(a) Trajectories using SDP-PM and RRC.

0 50 100 150 200

Iteration number

160

180

200

220

240

260

280

300

320

C
o
s
t

0

50

100

150

200

250

300

350

400

T
im

e
 (

s
)

Cost

Computation time (s)

(b) Cost and computation time for SDP-PM.

400 600 800 1000 1200 1400

Iteration Number

0

2000

4000

6000

8000

10000

12000

14000

16000

C
o
s
t

0

200

400

600

800

1000

1200

1400

1600

1800

2000

C
o
m

p
u
ta

ti
o
n
a
l
T

im
e
 (

s
)

Cost

Computational Time (s)

(c) Cost and computation time for RRC.

Fig. 1: Simulation results. (a) Comparison of the trajectories generated by the RRC and the SDP-PM approaches. The
trajectory displayed for RRC is the one with lowest cost among 5 independent runs of the algorithm. The presented trajectory
was obtained after 200 iterations of the SDP-PM algorithm and 1500 iterations of RRC. The grey area represents the positions
for which the agent can sense a given target. (b) Cost and cumulative computation time as a function of the iteration number
for SDP-PM. (c) Cost and cumulative computation time as a function of the iterations of RRC. The solid lines represent
average among 5 runs and the dashed lines are the observed maximum and minimum of the cost and computational time.
None of the 5 instances of RRC found a feasible solution before 345 iterations.

In Figs. 1b and 1c, each iteration of the SDP-PM consists
in exploring one node (lines 6-14 of Alg. 1), while iterations
of RRC consist of adding a node to the tree. When consid-
ering the computation time of RRC, in order to ensure a fair
comparison, we only measured the time spent on solving the
ARE, since it is the most computationally demanding part of
RRC. The algebraic Ricatti equations were solved using the
MATLAB idare function. In the case of the SDP-PM, the
computation time in Fig. 1b corresponds to the time spent
solving SDPs.

From Fig. 1a, one can see that the trajectory produced by
SDP-PM travels between targets in a straight line, while RRC
does not. Also, when the agent visits a target in the SDP-PM
trajectory, it always moves as close as possible to the center
of the target (given total time steps and speed limitations),
which does not happen in RRC. The reason is that, for fixed
τ and logical variables bi,k, the trajectory generated by SDP-
PM is optimal, while RRC only has an asymptotic probabilis-
tic notion of optimality, with no deterministic guarantees for
a finite number of iterations. Moreover, Figs. 1b and 1c show
that, for reasonable computation times, SDP-PM produces
much better solutions in terms of cost. The solution found
at the first iteration of SDP-PM has the cost equal to 16.8%
of the cost of the best (in terms of cost) of the 5 runs of
RRC after 1500 iteration. Comparing our approach after 200
iterations and RRC after 1500, SDP-PM reports a cost of only
9% of the best solution of RRC. We also note that SDP-PM
produced a solution with bounded cost in its first iteration,
while RRC took between 345 and 1305 iterations to find its
first feasible solution, i.e. where the target covariances are
bounded. We refer the reader to [11] for simulations in more
complex scenarios.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented an approach to compute
persistent monitoring trajectories for systems that evolve in
discrete time, with linear, stochastic dynamics. Given the
optimal estimator (the Kalman Filter), we jointly optimized
the cost and the position of the agents, in a way that

minimizes the infinite horizon cost. The simulation results
have shown that our approach efficiently solves small sized
problems and that it significantly improves the state of the
art, both in terms of computational cost and performance.

For future work, we intend to extend the proposed tech-
nique to multi-agent systems and plan to analyze ways to
overcome the numerical issues with the SDP that arise when
the size of the problem grows. Finally, we also want to
improve the higher level search algorithm, enhancing the
way we explore the candidate optimal cycles, possibly by
greedily exploring from an initial candidate schedule.

REFERENCES

[1] X. Lan and M. Schwager, “Rapidly exploring random cycles: Persis-
tent estimation of spatiotemporal fields with multiple sensing robots,”
IEEE Transactions on Robotics, vol. 32, no. 5, pp. 1230–1244, 2016.

[2] M. Ostertag, N. Atanasov, and T. Rosing, “Robust Velocity Control
for Minimum Steady State Uncertainty in Persistent Monitoring Ap-
plications,” in American Control Conference, 2019, pp. 2501–2508.

[3] X. Lan and M. Schwager, “A Variational Approach to Trajectory Plan-
ning for Persistent Monitoring of Spatiotemporal Fields,” in American
Control Conference, 2014, pp. 5627–5632.

[4] S. C. Pinto, S. B. Andersson, J. M. Hendrickx, and C. G. Cassandras,
“Multi-Agent Infinite Horizon Persistent Monitoring of Targets with
Uncertain States in Multi-Dimensional Environments,” in IFAC World
Congress (to appear), 2020.

[5] S. Thrun, “Probabilistic Robotics,” Communications of the ACM,
vol. 45, no. 3, pp. 52–57, 2002.

[6] S. C. Pinto, S. B. Andersson, J. M. Hendrickx, and C. G. Cassandras,
“Optimal Periodic Multi-Agent Persistent Monitoring of a Finite Set
of Targets with Uncertain States,” in American Control Conference (to
appear), 2020.

[7] L. Zhao, W. Zhang, J. Hu, A. Abate, and C. J. Tomlin, “On the Optimal
Solutions of the Infinite-horizon Linear Sensor Scheduling Problem,”
IEEE Transactions on Automatic Control, vol. 59, no. 10, pp. 2825–
2830, 2014.

[8] B. D. Anderson and J. B. Moore, Optimal filtering. Courier
Corporation, 2012.

[9] K. Fujimoto, Y. Oji, and K. Hamamoto, “On Periodic Kalman Filters
and Multi-rate Estimation,” in IEEE Conference on Control Applica-
tions, 2016, pp. 934–939.

[10] V. Balakrishnan and L. Vandenberghe, “Connections Between Duality
in Control Theory and Convex Optimization,” in American Control
Conference, vol. 6, 1995, pp. 4030–4034.

[11] S. C. Pinto, S. B. Andersson, J. M. Hendrickx, and C. G. Cassandras,
“A Semidefinite Programming Approach to Discrete-time Infinite
Horizon Persistent Monitoring,” in ArXiV ID 2104.00166, 2020.

