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Abstract: This paper investigates the problem of persistent monitoring, where a finite set
of mobile agents persistently visits a finite set of targets in a multi-dimensional environment.
The agents must estimate the targets’ internal states and the goal is to minimize the mean
squared estimation error over time. The internal states of the targets evolve with linear stochastic
dynamics and thus the optimal estimator is a Kalman-Bucy Filter. We constrain the trajectories
of the agents to be periodic and represented by a truncated Fourier series. Taking advantage of
the periodic nature of this solution, we define the infinite horizon version of the problem and
explore the property that the mean estimation squared error converges to a limit cycle. We
present a technique to compute online the gradient of the steady state mean estimation error of
the targets’ states with respect to the parameters defining the trajectories and use a gradient
descent scheme to obtain locally optimal movement schedules. This scheme allows us to address
the infinite horizon problem with only a small number of parameters to be optimized.
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1. INTRODUCTION

In the problem of persistent monitoring, we consider a
set of targets which have internal states that accumulate
uncertainty over time. A finite set of mobile agents with
sensing capabilities moves around the environment with
the goal of keeping the mean uncertainty of the target
states as low as possible. It is often the case that not all the
targets can be continuously monitored, hence, the motion
policy of the agents has to be carefully planned in order
to reduce the mean uncertainty and to make sure that it
does not increase without bound as time goes to infinity.

This paradigm finds applications across a wide range
of domains, such as trajectory planning of underwater
vehicles to measure ocean temperature (Lan and Schwager,
2013; Alam et al., 2018), surveilance in smart cities (Kim
et al., 2018) and tracking of multiple macroparticles by
an optical microscope (Shen and Andersson, 2010). A
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very wide range of approaches to address this problem
has been proposed by different researchers (Nigam, 2014;
Yu et al., 2015; Zhou et al., 2018). While different works
consider different ways of modeling the uncertainty of
the target states, the approach in the present paper uses
the model presented in (Pinto et al., 2019), where the
targets are fixed in space, each one of them has an internal
state that evolves with linear stochastic dynamics, and
the measurement quality of an observing agent decays as
that agent moves away from the target. For this model, it
has been shown that the optimal estimator is a Kalman-
Bucy Filter and that the objective of reducing the mean
uncertainty can be directly associated to the covariance
matrix of this estimator.

In our previous work, (Pinto et al., 2020) the infinite
horizon persistent monitoring problem was addressed by
restricting the movement schedules to be periodic and
computing the steady state estimation error of the target
states. This work restricted both the agents and targets
to be in a one-dimensional environment, for which, under
some assumptions on the spatial distribution of the tar-
gets, it was shown that an optimal periodic policy can be
represented by a finite set of parameters. However, finding
a finite parameterization for an optimal policy in a general
multi dimensional environment is a much more complex
problem, as discussed, e.g., in (Lin and Cassandras, 2014).



In this work, we extend the investigation of the infi-
nite horizon persistent monitoring problem to the multi-
dimensional setting. Instead of looking for an exact repre-
sentation of an optimal control policy, we restrict ourselves
to a parameterized family of curves by representing the
periodic movement in each coordinate (e.g., x, y and z, for
3D spaces) of the multidimensional space as a truncated
Fourier series. This representation can provide very general
motion curves using only a small number of coefficients.
Also, even though this work is limited to simple agent
dynamics, this parameterization produces smooth curves
that can be used as reference trajectories for a wide range
of dynamics of the agents, as long as these trajectories are
used in conjunction with trajectory tracking controllers.

We use results originally derived in (Pinto et al., 2020)
to compute gradients of the steady state estimation error
with respect to the coefficients that represent the trajec-
tory and optimize them using a centralized gradient de-
scent scheme. However, in order to optimize the trajectory,
it is necessary to find an initial periodic schedule that
visits all the targets in a period, which avoids unbounded
growth in the uncertainty. In this paper, we introduce the
idea of combining these conditions along with a heuristic
solution of the Multiple Traveling Salesman Problem (Bek-
tas, 2006) to generate initial conditions that guarantee a
feasibile and efficient solution of the optimization.

2. PROBLEM FORMULATION

Consider an environment with a set of M points of interest
(targets) at fixed positions xi ∈ RP , i = 1, ...,M . Each of
these targets has an internal state φi ∈ RLi that needs to
be monitored and that evolves according to linear time-
invariant stochastic dynamics

φ̇i(t) = Aiφi(t) + wi(t), (1)

where wi(t) is a white noise process distributed according
to wi(t) ∼ N (0, Qi), i = 1, . . . ,M, and wi and wj are
statistically independent if i 6= j.

Suppose that there is a collection of N mobile agents at
positions si(t) ∈ RP that can move with the following
kinematic model:

ṡj(t) = uj(t), j = 1, ..., N, (2)

where uj is a controllable input. Each of these agents
is equipped with sensors that can observe the targets
according to the following model:

zi,j(t) = γj (sj(t)− xi)Hiφi(t) + vi,j(t), (3)

where vi,j(t) is a white noise process distributed according
to vi,j(t) ∼ N (0, Ri) and vi,j(t) is independent of vk,l if
i 6= k or j 6= l, and γi,j : RN 7→ R is a function that
captures the coupling between measurement quality and
the relative position from a given agent to the target. It is
worth noting that in most of the applications of mobile
agents to sensing it is assumed that there is a limited
sensing range or that the quality of the measurement gets
worse as the agent moves farther away from the target.
The general model of γi,j is capable of capturing both
the finite range and the dependence between measurement
quality and relative position of the target from the agent.
Even though the analysis in this paper does not depend
on the specific γi,j , for the sake of concreteness we use the
following expression:

γi,j(α) =

{
0, ‖α‖ > rj ,√

1− ‖α‖rj , ‖α‖ ≤ rj .
(4)

The intuition behind this specific form is that the best
measurement quality is achieved when the agent is on top
of the target with the quality decaying as it moves farther,
until the agents reaches the distance of its sensing radius
rj , from where only noise can be observed.

In this paper we approach the problem from a centralized
perspective. Therefore, at a given instant, the combined
observations from all the agents of a single target can be
grouped in a vector z̃(t) as:

zi(t) =
[
zTi,1 ... z

T
i,N

]T
= H̃i(s1, ..., sn)φi(t) + ṽi(t) (5)

where

H̃i =
[
γ1(s1 − xi)HT

i · · · γN (sN − xi)HT
i

]T
, (6)

ṽi(t) =
[
vTi,1(t) ... vTi,N (t)

]T
, (7)

and

E[ṽTi (t)ṽi(t)] = R̃i = diag(Ri, ..., Ri). (8)

The overall goal is to obtain estimators φ̂i(t, z(t)) and
open-loop control inputs uj(t) to minimize the following
infinite horizon cost, when the limit exists:

J = lim
t→∞

1

t

∫ t

0

 M∑
i=1

E[eTi (ζ)ei(ζ)] + ξ

N∑
j=1

uTj (ζ)uj(ζ)

 dζ,

(9)

where ei(t) = φ̂i(t)−φi(t). Note that this formulation has
a minor but important difference from our previous work
(Pinto et al., 2020), where there was no penalization ξ for
the control effort in the cost but the control was bounded
such that uj(t) ∈ [−1, 1]. The penalization of the control
effort avoids unbounded growth in the speed commanded
to the agents by optimizing the mean power consumption
over the trajectory.

The models in (6) and (7) define a linear time-varying
stochastic system and it has been shown in (Lan and
Schwager, 2014) that, for a finite time version of the cost
in (12), the optimal estimator is a Kalman-Bucy filter.
For the sake of conciseness, the proof of the fact that
the Kalman-Bucy filter is still the optimal estimator in
the infinite horizon setting of (12) is omitted, but the
derivation is analogous to the one in (Lan and Schwager,
2014). The dynamics of the filter are given by:

˙̂
φi(t) = Aiφ̂i(t) + Ω(t)iH̃

T
i (t)R̃−1

i

(
z̃i(t)− H̃i(t)φ̂i(t)

)
,

(10a)

Ω̇i(t) = AiΩi(t) + Ωi(t)A
T
i +Qi − Ωi(t)H̃

T
i R̃
−1
i H̃iΩi(t).

(10b)

where Ωi(t) is the covariance matrix of the estimator.
Using (6) and (7), we can rewrite (10b) as:

Ω̇i(t) = AiΩi(t) + Ωi(t)A
T
i +Qi −Ωi(t)GiΩi(t)

N∑
j=1

γ2
i,j(t),

(11)
where Gi = HT

i R
−1
i Hi and γi,j(t) = γi,j(sj(t)−xi). Using

the fact that

E
[
eTi (t)ei(t)

]
= tr(E

[
ei(t)e

T
i (t)

]
) = tr(Ωi(t)),



we can rewrite the cost function in (9) as

J = lim
t→∞

1

t

∫
t

0

 M∑
i=1

tr(Ωi(ζ)) + ξ
N∑
j=1

uTj (ζ)uj(ζ)

 dζ.

(12)
Notice that the goal is to minimize the cost (12) subject
to the dynamics in (11) and (2). In other words, the goal
is to design a trajectory that minimizes a weighted sum
of the mean control effort and the mean estimation error.
The estimation error and the trajectory are linked through
the dynamics of the covariance matrix (11).

3. PERIODIC PERSISTENT MONITORING

The concept of persistent monitoring is inherently linked
to the idea of visiting the targets infinitely often. In this
work, we constraint ourselves to look for periodic trajec-
tories since under some natural assumptions the covari-
ance matrices of the estimation error converge to steady-
state periodic matrices. Therefore, as time goes to infinity
the mean estimation error approaches the steady state
estimation error and transient effects can be neglected.
Hence it suffices to take into consideration the steady state
behavior of the estimation error, simplifying the trajectory
planning.

In order to proceed to a more complete discussion of
the steady state behavior, we state two very natural
assumptions.

Assumption 1. The pair (Ai, Hi) is detectable, for every
i ∈ {1, ...,M}.
Assumption 2. Qi and the initial covariance matrix Σi(0)
are positive definite, for every i ∈ {1, ...,M}.

The first assumption guarantees that sensing can make the
uncertainty bounded even for long horizons. The second
one imposes that the covariance matrix is always positive
definite, a property used to prove Prop. 2. We also define

ηi(t) =
N∑
j=1

γ2
i,j(t), (13)

which represents the instantaneous power level of the
signal, combining all the agents’ observations of the same
target i. In (Pinto et al., 2020) the following proposition
was established:

Proposition 1. If ηi(t) is T -periodic and ηi(t) > 0 for some
non-degenerate interval [a, b] ∈ [0, T ], then, under As-
sumption 1, there exists a unique non-negative stabilizing
T -periodic solution to (11).

Prop. 1 implies that, if ηi(t) is periodic, given any initial
covariance matrix Ωi(0), the estimation covariance for
target i converges to a T -periodic matrix Ω̄i(t), as long
as target i is visited for some non-zero amount of time in
the periodic trajectory. Therefore,

∀δ > 0, ∃ t0 s.t. |Ω̃i(t)− Ωi(t)| ≤ δ, ∀t ≥ t0,
which implies that

lim
t→∞

1

t

∫ t

t0

|tr(Ω̃i(ζ)− Ωi(ζ))|dζ ≤ δ,

and, since limt→∞
1
t

∫ t0
0
|tr(Ω̃i(ζ) − Ωi(ζ))|dζ = 0, we can

add up the integration limits and conclude that

lim
t→∞

1

t

∫ t

0

|tr(Ω̃i(ζ)− Ωi(ζ))|dζ ≤ δ. (14)

This discussion implies that, if we run a periodic trajec-
tory long enough, the mean estimation error will become
arbitrarily close to the mean steady state estimation error.
Therefore, if we plan only (one period of) the steady state
trajectory, the actual estimation error will be arbitrairly
close to the one we planned for the case where time goes
to infinity. Note that, even though Prop. 1 states that
the solution of the periodic Riccati equation is globally
attractive, it does not provide any convergence rate for its
numerical computation. However, the problem of comput-
ing numerical solutions to this equation has been studied
in other works and we refer the reader to (Varga, 2013)
for a good review and discussion of these methods.

Using similar ideas to the one-dimensional case in (Pinto
et al., 2020), we plan to use gradient descent to optimize
parameters that describe the periodic trajectory of the
agents in order to reduce the steady state estimation
error of the target states. In the rest of this section,
we will provide a procedure to compute these gradients,
along with a procedure to provide an initial parameter
configuration for the optimization.

3.1 Steady State Gradients

Assuming that the trajectory is periodic and all the targets
are visited, we introduce the change of variables q = t/T ,
where T is the period of the trajectory. The cost can be
rewritten as:

J =

∫
1

0

 M∑
i=1

tr(Ω̄i(q)) + ξ

N∑
j=1

ūTj (q)ūj(q)

 dq, (15)

where ū(q) = u(qT ). The dynamics of Ω̄i(q) are

˙̄Ωi(q) =
dΩ̄i(q)

dq
= T (AΩ̄i(q) + Ω̄i(q)A

T

+Q− ηi(q)Ω̄i(q)GΩ̄i(q)). (16)

Now, suppose that the trajectory of the agents is repre-
sented by a finite set of parameters θ1, ..., θO. If we want
to compute the gradient with respect to a parameter, we
get the following dynamics:

∂ ˙̄Ωi(q)

∂θ
− T

(
A
∂Ω̄i(q)

∂θ
+
∂Ω̄i(q)

∂θ
AT

− ηi(q)Ω̄i(q)G
∂Ω̄i(q)

∂θ
− ηi(q)

∂Ω̄i(q)

∂θ
GΩ̄i(q)

)
=

T
∂ηi(q)

∂θ
Ω̄i(q)GΩ̄i(q) +

∂T

∂θ

˙̄Ωi(q)

T
. (17)

Notice that if the partial derivative ∂Ω̄i(q)/∂θ exists, it is
a 1-periodic solution of (17), since Ω̄i itself is periodic with
period one. If we define the following auxiliary problems:

Σ̇H − T
(
A− ηiΩ̄iG

)
ΣH = 0, ΣH(0) = I, (18)

Σ̇ZI − T
(
A− ηiΩ̄iG

)
ΣZI − TΣTZI

(
A− ηiΩ̄iG

)T
= T

∂ηi
∂θ

Ω̄iGΩ̄i +
∂T

∂θ

˙̄Ωi(q)

T
, ΣZI(0) = 0, (19)

then we can use the following proposition, introduced in
(Pinto et al., 2020), to compute the partial derivatives:



Proposition 2. Suppose ΣH is a solution of (18), ΣZI is
a solution of (19), Assumptions 1 and 2 hold and that
target i is observed at least once in the period T . Then, if
the solution Λ of the equation

Λ = ΣH(1)ΛΣTH(1) + ΣZI(1)

exists, it is unique, and

∂Ω̄i(q)

∂θ
= ΣTH(q)ΛΣH(q) + ΣZI(q).

4. FOURIER CURVE REPRESENTATION FOR
AGENT TRAJECTORIES

While in previous work (Pinto et al., 2019, 2020) we
derived a parameterization with a finite number of pa-
rameters of the optimal solution, the same result does
not extend to the multi-dimensional scenario. Therefore,
instead of looking for an exact representation of the op-
timal trajectory, we focus on a family of parameterized
curves that can approximate very general curves. Since
periodicity is an essential feature of the paradigm discussed
in this work, a natural choice is to use a truncated Fourier
series to represent the movement of the agents in each of
the coordinates ep, p = 1, ..., P , i.e.

s
ep
j (q) = s

ep
j,0 +

K∑
k=1

a
ep
j,k sin(2πfkq) + b

ep
j,k(cos(2πfkq)− 1),

(20)
where fk are integer frequencies and, therefore, s

ep
j (q)

is periodic with period 1. The set of parameters that
fully characterize all the agents trajectories is Θ =
{{aepj,k}, {b

ep
j,k}, {s

ep
j,0}, T}, j = 1, .., N , p = 1, ..., P , k =

1, ...,K. In order to compute the derivative of the covari-
ance matrix using the procedure introduced in Prop. 2, we
still need to give a procedure to compute ∂ηi

∂θ , where ηi is
defined in (13). For any parameter θ ∈ Θ,

∂ηi(q)

∂θ
=

N∑
j=1

P∑
p=1

∂ηj(q)

∂s
ep
j

∂s
ep
j (q)

∂θ
, (21)

and, using (4) and the fact that ηi(t) =
∑N
j=1 γ

2
i,j(t),

∂ηj
∂seij

=

{
s
ep
j
−xep

i

rj‖sj−xi‖ , if ‖sj − xi‖ < rj ,

0, otherwise.
(22)

Moreover, in this parameterization,

∂s
ep
j

∂aerm,k
=

{
sin(2πfkq), if j = m and p = r,

0, otherwise,
(23a)

∂s
ep
j

∂berm,k
=

{
cos(2πfkq)− 1, if j = m and p = r,

0, otherwise,
(23b)

∂s
ep
j

∂serm,0
=

{
1, if j = m and p = r,

0, otherwise,
(23c)

∂s
ep
j

∂T
= 0. (23d)

The equations above give enough information to compute
the partial derivatives of the steady state covariance ma-
trix as indicated in Prop. 2. In order to compute the
gradient of the cost function, the following expression can
be used:

∂J

∂θ
=

∫ 1

0

N∑
i=1

tr

(
∂Ωi
∂θ

)
dq+ξ

∂

∂θ

N∑
j=1

∫ 1

0

∥∥∥∥dsjdt
∥∥∥∥2

dq. (24)

Note that
dsj
dq

= T
dsj
dt
. (25)

Using (20), we can compute

N∑
j=1

∫ 1

0

∥∥∥∥dsjdt
∥∥∥∥2

dq =

N∑
j=1

P∑
p=1

K∑
k=1

(2πfk)2

2T 2

((
a
ep
j,k

)2

+
(
b
ep
j,k

)2
)
, (26)

and, therefore,

∂

∂a
ep
j,k

N∑
j=1

∫ 1

0

∥∥∥∥dsjdt
∥∥∥∥2

dq =
(2πfk)2

2T 2
a
ep
j,k, (27a)

∂

∂b
ep
j,k

N∑
j=1

∫ 1

0

∥∥∥∥dsjdt
∥∥∥∥2

dq =
(2πfk)2

2T 2
b
ep
j,k, (27b)

∂

∂s
ep
j,0

N∑
j=1

∫ 1

0

∥∥∥∥dsjdt
∥∥∥∥2

dq = 0, (27c)

∂

∂T

N∑
j=1

∫ 1

0

∥∥∥∥dsjdt
∥∥∥∥2

dq =

N∑
j=1

P∑
p=1

K∑
k=1

−(2πfk)2

T 3

((
a
ep
j,k

)2

+
(
b
ep
j,k

)2
)
. (27d)

Algorithm 1 summarizes the procedure to compute the
gradient of the cost function of the parameterized trajec-
tory.

Algorithm 1 Agents’ Trajectory Optimization

1: procedure Gradient Descent
2: Input: Θ0,
3: ||∇J || ← ∞
4: l← 0
5: while ||∇J || > ε do
6: ∇J ←ComputeGradient(Θl)
7: Θl+1 ← Θl − κl∇J
8: l← l + 1
9: Output: Θl

10:

11: procedure ComputeGradient
12: Input: Θ
13: Compute s1(q), ..., sN (q) from the parameteriza-

tion
14: for i ranging from 1 to M do
15: Compute the steady state covariance Ω̄i(q)

16: for every θ in Θ do
17: for i ranging from 1 to M do

18: Compute ∂Ωi(q)
∂θ as indicated in Prop. 2

19: Compute ∂J
∂θ using (24) and (27)

20: Output: ∇J

4.1 Initial Parameter Computation

Alg. 1 describes a gradient descent approach to locally
minimize the cost function. However, in order to minimize
this cost, it is necessary to provide an initial parameter



configuration for the algorithm. Prop. 1 states that, if
every target is visited at least once, then the steady-state
covariance matrix exists. However, if in a periodic trajec-
tory one of the targets is never visited and its internal state
dynamics are unstable, then the estimation error will grow
without bound, and, therefore, the steady-state covariance
matrix would not exist. Therefore, such initial condition
must be excluded by ensuring that for any parameters we
select, the corresponding agent trajectories visit all the tar-
gets. In this section, we discuss a method for finding these
initial trajectories that will always lead to a feasible initial
configuration. Note that while we rely on the gradient
descent optimization to provide optimized solutions, the
problem described in this paper is non-convex and different
initial conditions can lead to different local optima. We,
therefore, leverage intuition about the problem to provide
reasonable initial solutions with the hope that they will
converge to good local optima. Approaching the problem
of initialization from a more systematic point of view is a
topic of current research.

The idea of finding a schedule where all the targets
are visited fits naturally into a graph search paradigm,
where the targets are modelled as nodes and the edge
weights between nodes are the distances between the
targets. The problem of finding a feasible schedule can
be translated to the one of finding N sequences (that
represent the schedule of each agent) of nodes where each
target is at least in one of these sequences. One can add
to that a cost function that guides the way in which these
sequences are created. A goal that intuitively will lead to
reasonable initial solutions is to minimize the distance of
the agent that has the longest travel path. This is the well
known Multiple Traveling Salesman Problem (MTSP).
(Bektas, 2006) provides a good overview of this problem
and approaches to solve it. It is worth mentioning that
the MTSP is NP-Hard, and therefore intractable to be
solved exactly in all but the simplest scenarios. However,
meta-heuristic approaches can provide feasible, though not
necessarily optimal, solutions. In this work, we use the
genetic algorithm described in (Tang et al., 2000) to find
heuristic solutions. This approach is interesting because it
finds a feasible solution in the first iteration and refines
it as the number of iterations increases. Therefore, one
can decide how much computation time to spend in this
solution, leveraging the tradeoff between optimality and
computation effort spent in this initial trajectory.

The solution of the MTSP problem gives, for each agent

j, a cyclic schedule of targets Sj = {y1
j , ..., y

Yj

j , y
1
j }.

However, it is still necessary to obtain the parameters Θ =
{{aepj,k}, {b

ep
j,k}, {s

ep
j,0}, T} from this schedule. We define dmj

as the cumulative distance that the agent has traveled
when it reaches the m-th target in the schedule Sj , and Dj

as the total distance traveled by an agent in one cycle. We
then look for a feasible truncated Fourier series trajectory
such that at the normalized time q = dmj /(DjT ), the agent
is at a distance (sj(d

m
j /(DjT ))− xym

j
) lower or equal than

the sensing radius (multiplied by a factor 1− δ, 0 < δ < 1,
in order to give some distance margin) from the target. The
position of the agent in the beginning of the cycle is set to
be the position of the first target in the schedule Sj , and
the period T set to any positive number. For each of the

agents, the following optimization problem gives a set of
feasible {aepj,k}, {b

ep
j,k}. The constraint in the optimization

problem represents the fact that the agent must be close
enough to see the target in a time analogous to the one it
visited the same target in the MTSP solution.

min
a
ep
j,k, b

ep
j,k

P∑
p=1

K∑
k=1

fk|a
ep
j,k|+ fk|b

ep
j,k|

s.t.

∥∥∥∥sj (dmjDj

)
− xym

j

∥∥∥∥
2

≤ (1− δ)rj , m = 1, .., Yj

(28)

Substituting the definition in (20) into the constraint (28),
we see that this optimization can be formulated as a
Quadratically Constrained Program, which is a convex
optimization problem and there exist efficient algorithms
to solve it. The one norm in the objective function in
(28) was selected because in our experience this yielded
smooth trajectories. Other objectives functions could be
used instead.

The trajectory generated by the heuristic solution of the
MTSP problem consists of segments of straight lines that
visit each of the targets in the schedule Sj . Note that
this trajectory, as a function of time, composed by a
sequence of straight lines can be projected onto each of
the axis ep and the projection in that axis will still be
a sequence of segments of straight lines. Since piecewise
linear functions can be represented by Fourier series, there
always exists a K large enough such that there is a solution
to (28) because for that K there is a representation of
the trajectory that would be close enough to the original
MTSP solution such that it satisfies the constraint in (28).
Therefore, we can always find feasible solutions to (28) if
we have a MTSP solution.

5. SIMULATION RESULTS

In this section, we demonstrate the results of the algorithm
in a simulated 2D scenarios, with three agents and 15
targets. All the internal states of the targets have the same
state dynamics, evolving according to (1) with

Ai =

[
−1 −0.1
−0.1 0.01

]
, Qi = diag(1, 1),

and the agents observation models (3) with

Hi = Ri = diag(1, 1), rj = 0.5, ξ = 10−3.

For each of the agents, their trajectories had the first five
harmonics in each axis, i.e., fk = k, k = 1, ...,Kj and Kj =
5, ∀ j. In the initial step of the optimization, the period T 0

was set to 1. The initial coefficients a
ep
j,k, b

ep
j,k were obtained

by solving the optimization problem in (28), using the
solution after 3000 iterations of the genetic algorithm
for solving the associated MTSP. The initial position of
each agent was set to coincide with the position of the
first target in the solution of the MTSP. For simplicity,
a constant descent stepsize κl = 10−4 was used in the
gradient descent.

The positions of targets were generated randomly from
independent uniform distributions ranging from −5 to 5 in
both axis. Fig. 1 compares the trajectories of the agents in
the first and last step of the gradient descent optimization,
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Fig. 1. Trajectories of the targets in the first (red, dashed)
and last (blue, solid) iterations of the gradient descent
optimization. The target locations are marked in
black and the grey shaded represent the regions where
the target can be sensed by an agent.
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Fig. 2. Evolution of the cost function in the gradient
descent optimization.

while Fig. 2 shows the evolution of the cost as a function of
the gradient descent step. The results of the optimization
show that the solution of (28) led to smooth trajectories
that still visited all the targets. The gradient descent
changed the trajectory geometry but did not change the
visiting order. As can be observed in Fig. 2, the cost has an
abrupt reduction in the beginning of the optimization and
then the convergence speed decreases significantly. The
optimization process leads to very significant reductions
of the cost, reducing it to less than one third of its initial
value.

6. CONCLUSION AND FUTURE WORK

In this work, we addressed the infinite horizon persistent
monitoring problem where the agents and targets lie in
a multi-dimensional environment, by constraining their
trajectories in each axis to be represented by truncated
Fourier series. We discussed conditions for convergence
of the covariance matrix as time goes to infinity and
described a procedure to compute the gradient of the cost
with respect to each agent’s trajectory parameters. We
linked the problem to the MTSP and used it to provide
feasible initial solutions to a gradient descent optimiza-
tion. Simulation results illustrated the effectiveness of the
proposed procedure.

In future work, we plan to study in more depth the effect
of the initial trajectories in the optimization. Also, in our
results we noted that each target was observed always
by a single agent. In this context, we do not need to
constrain all the agents to have the same period and
plan to allow different agents to have different periods in
their trajectories in future works. Finally, we also plan to
approach this problem from a decentralized perspective.
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