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Chapter 1

General Introduction

A natural trend when designing a system is either to make it monolithic or
hierarchic. A monolithic system is one designed as a whole to accomplish a
certain task. A hierarchic system is one in which blocks are designed to accom-
plish particular tasks, and those blocks are articulated and controlled according
to a certain hierarchy. Many of the complex devices that we use are hierar-
chical. Think for example of a computer where the controller leads the CPU,
computing unit of the processor, and where the CPU itself controls all other
devices such has the hard-disk or the screen. Large computer programs are
also designed hierarchically, with large functions implemented by many smaller
ones. Similarly, the main decisions about an airplane in flight are made by
the pilot that transmits them to the appropriate actuators via piloting devices.
This thesis is also written in a hierarchical way, with a main file containing
different parts that contains chapters etc. Finally many industrial plants also
work in a hierarchical (and often centralized) way with a control room where
all measures outputs are shown and where levers and buttons (or computers)
can be used to control the plant.

Nature provides however many examples of sophisticated group behaviors
that would never be achievable by individual members of the group, and that
are produced in the absence of clear or fixed hierarchy. Fish and birds move
sometimes as a group with such an efficient and smooth coordination that they
can give the impression of being one single large animal (see Figure 1.1). There
is no obvious leader or commanding chain in such groups, and the member
interactions depend on the opportunity of the moment, and not according to
some pre-specified order. Group of ants are also known to accomplish impres-
sive tasks without clear organization. In addition to what they are able to build
and move, they can also find as a group acceptable solutions to shortest paths
problems, something that no single ant could do. As an other example, think
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10 CHAPTER 1. GENERAL INTRODUCTION

of the kind of problems a group of persons can tackle as opposed to what a
single person can do.

Such systems have a large robustness with respect to the addition or removal
of agents. A school of fish remains approximately the same when the number
of fish is increased or decreased by 25%, but removing (or adding) one single
piece of a computer may lead to dramatic consequences. Whoever had to fight
with insects also knows that removing 75% of them may decrease but certainly
not suppress the nuisance.

Finally, the complementarity between different agent may also improve the
efficiency. Characteristics offering an advantage for one task may be a draw-
back for other tasks. The collaboration between different agents having different
characteristics may thus lead to the accomplishment of different tasks that no
single agent would be able to do. This specialization may however lead to a
decrease in robustness if some sort of agent has too few representatives.

The use of multi-agent systems and of its increased robustness properties
comes however at a cost: that of complexity. Describing and predicting the
behavior of a system of equal entities interacting with each other without clear
hierarchy may be extremely difficult, even if the systems observed in nature are
sometimes simple. In mechanics for example, describing the behavior of a single
point mass body is usually a simple task, but describing the evolution of a sys-
tem with three or more bodies interacting with each other may be delicate, as it
can present chaotic behavior. This inherent complexity might actually be the
reason why hierarchical structures are often designed, while non-hierarchical
structures are often rather observed. The former allows indeed focussing on
one single task almost without taking the rest of the system into account. Note
that in parallel with the development of the multi-agent system design ideas,
there was recently an increasing interest in the analysis of “natural” systems
that can be observed, probably in the hope of learning how to cope with their
inherent complexity.

Finally, providing a clear definition of multi-agent systems is not an easy
task, as any multi-agent system can be abstracted as a monolithic one using
appropriate state variables, and many monolithic systems can be decomposed
into subsystems interacting with each other. Besides, multi-agent systems can
sometimes present a relative hierarchy during their evolution. Let us however
take the risk of proposing a non-mathematical definition. In our opinion, a sys-
tem is multi-agent or totally decentralized if it can be decomposed into identical
entities called agents, that interact with each other, and whose number can be
modified without affecting the nature of the system. More generally, there
might be different classes of agent having different properties, but the number
of agent in each class should be modifiable without affecting the nature of the
system. As simple example of application of this definition, a car is not a multi-
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Figure 1.1: Example of school of fish and flock of birds spontaneously agreeing
on a common directions. The second image is used under the CC-BY-2.0
licence (http://creativecommons.org/licenses/by/2.0/), it was originally posted
to Flickr by kumon at http://flickr.com/photos/93965446@N00/11740533.
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agent system as the addition or removal of a wheel makes a big difference. Also,
no system with one fixed central controller is a multi-agent system as it does
not allow the removal of this controller or the addition of a new one. A school
of fish is on the other hand a multi-agent system, as it remains a school of fish
when fish are added or removed. The essence of a multi-agent is thus in our
opinion not the large number of agents, but the fact that their exact number
is of little importance.

We have worked on different issues related to multi-agent systems and the
use of graph theory in their analysis. Graphs arise indeed naturally when rep-
resenting the interactions between agents. The research presented in this thesis
contains two main parts.

In the first part, we consider the ability of a group of agents to remain in
formation, that is, to ensure that the agent positions describe a certain con-
stant shape, as represented in Figure 1.2. We describe and analyze the theory
of persistent graphs, which we have introduced in [64]. Persistence is a notion
related to rigidity. It characterizes the ability of agents to remain in formation
by the preservation of distances between agents, where each such distance con-
straint is the responsibility of one agent.

The second part concerns consensus issues. The domain of consensus con-
tains all multi-agent systems in which agents have to or tend to agree on some
value. Examples provided by nature include schools of fish or flocks of birds
agreeing on a common direction, as in Figure 1.1. We analyze more particularly
two models of opinion dynamics, in which agents are influenced by other agent
opinions, provided that their opinions are not too different. Such systems are
among the simplest ones for which the interactions depend on the agent values,
and we take explicitly this dependence into account.

Let us finally mention that for the sake of conciseness and coherence we do
not present in this thesis other results which we have also obtained during the
last three years. They include the derivation of an approximative but accurate
formulas to compute the distance distribution in Erdős-Rényi graphs [16]. This
allowed us to reproduce theoretically and analyze experimental results obtained
by Guillaume and Latapy [58] on networks exploration. We have also taken
part in a study of local degree leaders in random graphs [15]. A local degree
leader is a vertex having a degree larger than all its neighbors. Finally, we
have proposed in [17] a simple linear time algorithm for a combinatorial game,
based on a representation of the game as an optimization problem over a set of
words.
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Figure 1.2: Jet-fighters flying in formations, (c) Marcel Grand, www.swissjet.ch



14 CHAPTER 1. GENERAL INTRODUCTION

Key contributions

Part I

Brian D.O. Anderson, Vincent D. Blondel, Jean-Charles Delvenne, Baris Fi-
dan and Brad (Changbin) Yu have all collaborated to the research presented in
part I.

Our contributions in the first part of this thesis can be summarized as the
definition and the analysis of graph-theoretical notions characterizing the prop-
erties of structure of unilateral distance constraints in multi-agent formations.
In particular, we have defined persistence and constraint consistence, charac-
terizing respectively the ability to maintain a formation shape and the ability
to have all constraints satisfied once the formation reaches an equilibrium. We
have also defined structural constraint consistence and structural persistence,
partially characterizing the ability of the formation to reach an equilibrium.
We have provided necessary and sufficient conditions for a directed graph to be
constraint consistent, persistent and structural persistent. This lead to explicit
algorithms to check persistence for agents lying in a two-dimensional space.
For higher dimensions, the absence of known algorithm to check rigidity made
it impossible for us to design an algorithm to check persistence in the gen-
eral case. We have nevertheless obtained a polynomial-time algorithm to check
the structural persistence of graphs that are known to be persistent. We have
further analyzed the properties of persistent acyclic persistent graphs and of
minimally persistent graphs (in two dimensions), that are persistent graphs
with minimal sets of edges. For both sorts of graphs, we have provided sequen-
tial methods to transform one graph into another, while keeping persistence at
each step of the process. Note that we also present a polynomial time algorithm
to check persistence for a certain class of graphs that was obtained by Jørgen
Bang-Jensen and Tibor Jordán, and that is based on our characterization of
persistence. Finally, we have proposed several extensions of these notions, and
obtained partial characterizations for some of them.

Part II

The results presented ini part II were obtained in collaboration with Vincent D.
Blondel and John N. Tsitsiklis

Our main contribution in part II is a theoretical analysis of two paradigm
multi-agent systems, in which we have explicitly used the dependence of the in-
teraction topology in the system state. The two paradigm systems are Krause’s
opinion dynamics model and a continuous-time variation of it. We have (re)-
proved their convergence properties, and proposed a notion of stability with
respect to the addition of an agent to explain why some equilibria are almost
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never reached. We have made some conjectures about their asymptotic be-
havior for a growing number of agents. We have introduced and analyzed
extensions of these systems defined on agent continuum. For those models, we
have proved stronger results on the equilibria to which they can converge, and
partial convergence results. For Krause’s opinion dynamics model, we have
also formally established that the system on an agent continuum represents the
asymptotic behavior of the system on discrete agents for a growing number of
agents, on any finite time interval. Finally, we have analyzed several extensions
of these systems, to which we have generalized some of our results.

As a side contribution, we have also proposed a classification of multi-agent
systems involving consensus based on their important characteristics.
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Preliminary

Undirected graphs

An undirected graph G(V,E) consists of a set V whose elements are called
vertices (or nodes), and a set E of unordered pairs of vertices, called edges.
In this thesis, we label vertices with integer 1, 2, . . . , n, and denote by n their
number. We have thus |V | = n, where |V | denotes the cardinality of V . The
same convention is used for all sets. Vertices are usually represented by points
in the plane, and edges as lines connecting those points, as in the example in
Figure 1.3. We say that two elements i and j of V are connected or neighbors
if the unordered pair (i, j) or equivalently (j, i) is in E. Alternatively, we may
say that i is connected to j or j to i. Both i and j are then said to be incident
to the edge (i, j). In Figure 1.3 for example, 5 and 6 are connected. A graph
is complete if every pair of its vertices is connected by an edge. The complete
graph on n vertices is denoted by Kn, and contains 1

2n(n − 1) edges.

The degree di of a vertex i is the number of edges to which it is incident,
or equivalently its number of neighbors. We note it di,G when there is a risk
of ambiguity on the graph being considered. The vertex 3 in Figure 1.3 has a

1 2

3

4

5

6

Figure 1.3: Representation of an undirected graph.
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degree 3. The sum over all vertices of their degree is twice the number of edges:
∑

i∈V di = 2 |E|.

A path is a sequence of vertices v1, v2, . . . , vp such that there is an edge
incident to vi and vi+1 for every i = 1, . . . , p − 1. In Figure 1.3, (1, 3, 4) is a
path because (1, 3) and (3, 4) are edges, but (1, 5, 6) is not a path. The path
can also be described by its sequence of edges. We say that the first and the
last vertices of a path are connected by a path. A graph is connected if every
two vertices are connected by a path. The graph in Figure 1.3 is for example
not connected because there is no path from 5 to 1. A graph is k−connected if
it is connected, and if it is impossible to disconnect it by removing less than k
vertices. In particular, a connected graph is 1 − connected.

A subgraph of a graph G(V,E) is a graph G′(V ′, E′) with V ′ ⊆ V and
E′ ⊆ E. A subgraph G′ of G is a proper subgraph if it is different from G. A
subgraph is induced by a set of vertices V ′ if it is obtained from G(V,E) by
removing all vertices of V \ V ′ and the edges that are incident to them. In an
induced subgraph, two vertices are connected if and only if they are connected
in the initial graph. A connected component of a graph is a maximal connected
subgraph, that is, a subgraph that is connected and that is the proper subgraph
of no larger connected subgraph. In Figure 1.3, the vertices 5, 6 and the edge
(5, 6) constitute a connected component. On the other hand, the graph con-
taining 1, 2, 3, and the edges connecting them is not a connected component
of the initial graph, because it is a proper subgraph of the graph containing 1,
2, 3, 4 and all the edges between them, which is connected. Every graph can
be decomposed in a unique way into its connected components. The graph in
Figure 1.3 can for example be decomposed into two connected components.

Depending on the applications, one can also define an undirected graph as
a set of vertices V and a set of edges E, where each edge is incident to two
(possibly identical) vertices. This definition allows then self-loops and multiple
edges. A self-loop is an edge connecting a vertex to itself. It increases the de-
gree of the vertex by 2. Multiple edges are different edges connecting the same
vertices, i.e. repetitions of a an edge. Graphs without self-loops and multiple
edges are sometimes referred to as simple graphs. Unless otherwise specified,
all graphs in this thesis are simple graphs.

We often consider representation in real vector space, obtained by assigning
a position to each vertex. We denote by D the dimension of the space in which
the graph is represented.
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1 2

3

4

5

6

Figure 1.4: Representation of a directed graph.

Directed graphs

In simple words, a directed graph is a graph in which edges have a direction
as in Figure 1.4. Two vertices can thus be connected by two edges in oppo-
site directions. More formally, a directed graph consists of a set V of vertices
and a set E of ordered pairs of vertices called (directed) edges. It is denoted
by G(V,E), as for the undirected case. We mention explicitly the directed or
undirected character of the graph when there is some ambiguity.

We say that a vertex i is connected to j by a directed edge, or that j is a
neighbor of i, if (i, j) ∈ E. This does however not imply that i is a neighbor
of j, as the edge (j, i) is not necessarily present in the graph. The edge (i, j)
is then an outgoing edge for i and an ingoing edge for j. The direction of the
edges is usually represented by an arrow as in Figure 1.4. To every directed
graph corresponds an underlying undirected graph on the same vertices, ob-
tained by replacing directed edges by undirected ones. The graph in Figure 1.3
is for example the undirected graph underlying the graph in Figure 1.4. As in
the undirected case, some applications require the use of a different definition
allowing self-loops and multiple edges in directed graphs.

In a directed graph, the out-degree d+
i of a vertex i is its number of outgoing

edges, or number of vertices to which it is connected. The in-degree d−i is its
number of ingoing edges, or number of vertices that are connected to it. The
total degree is the sum of the in-degree and the out-degree. We note them d+

i,G

and d−i,G when there is a risk of ambiguity on the graph being considered. In
Figure 1.4, the vertex 3 has an out-degree 1 and an in-degree 2, so that its to-
tal degree is 3. In every directed graph, there holds

∑

i∈V d+
i =

∑

i∈V d−i = |E|.

A directed path is a sequence of vertices v1, v2, . . . , vp such that vi is con-
nected to vi+1 by a directed edge for each i = 1, . . . , p−1. We then say that vi is
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connected to vp by a directed path. In Figure 1.4, there is a directed path from
4 to 2 but not from 2 to 4. The path can also be described by the corresponding
sequence of directed edges. A cycle is a path starting and finishing at the same
vertex (and containing at least another vertex), as the one containing 1, 3 and 2.

A directed graph is said to be weakly connected if its underlying undirected
graph is connected. The graph in Figure 1.4 is not weakly connected, but
the subgraph containing 1, 2, 3, 4 and the edge connecting them is weakly con-
nected. A directed graph is strongly connected if for every two vertices, there
is a directed path connecting the first vertex to the second. The subgraph
containing 1, 2, 3, 4 is not strongly connected as there is no path from 2 to 4.
On the other hand, the subgraph containing 5, 6 and the two edges connecting
them is strongly connected.

Finally, we say that a directed graph is complete if its undirected underlying
graph is complete. Since edges can have different directions and since two
vertices can also be connected by two edges with opposite directions, there is
no unique complete directed graph on n vertices.



Part I

Rigidity and Persistence of

Directed Graphs
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Prologue

I became aware of the issue of formation shape maintenance on October the 7th
in 2004, during the second week of my PhD. On this particular day there was
at Cesame a seminar by Brian Anderson on the use of distance constraints to
maintain a formation shape. I felt a great interest in this topic, among other
reasons because it makes an extensive use of graph theory to analyze some real
dynamical systems. So I went to see him after his seminar, and asked if there
were some interesting open issue that could be relevant for me to study. He im-
mediately mentioned the possible extension of those results to directed graphs,
representing unilateral distance constraints, and gave me a few papers to read
in which this idea was explored, [11,41,45].

A few days later, we met to talk about ideas I had to solve some conjec-
tures in those papers. A few weeks later, after several discussions with Brian
Anderson, with Jean-Charles Delvenne and with my advisor Vincent Blondel,
we had a first definition of persistence, extending rigidity to directed graphs,
and which is described in our first paper on the subject [64]. After three years
and two visits in Canberra to work with Brian and his team, I am now happy
to see that, not only we have obtained many results and solved many problems
about persistence, but several other people have too. For example, Jørgen Bang-
Jensen and Tibor Jordán have provided a polynomial time algorithm to check
the persistence of a wide class of graphs representing two-dimensional forma-
tions [12], and thus partly closed one of the main open questions in our first
paper [64]. Brian Smith, Magnus Egerstedt and Ayanna Howard have analyzed
the automatic generation of persistent graphs taking an additional restriction
into account, namely that the agents have bounded sensing and communication
ranges [119]. Also, in the continuation of earlier works [11] (preexisting ours),
John Baillieul and Lester McCoy have investigated the enumeration of graphs
that are equivalent to two-dimensional acyclic minimally persistent graphs [10].
Finally, Laura Krick has analyzed in a part of her thesis [79]Section 6.2 some
stability issues for formations governed by unilateral distance constraints and
modelled by persistent graphs.
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In the meantime, and more particularly during this last year, I have often
thought about the basic definitions of persistence and related notions, and tried
to better understand what they exactly mean, and how they relate to each other.
So instead of compiling the different papers published on persistence, I have
taken this thesis as an opportunity to present things in a different (but equiva-
lent) way, resulting from this reprocessing work. In particular, the definition of
persistence is re-obtained from basic hypotheses on the agents’ behavior. Struc-
tural persistence is not presented as a condition defined for avoiding a particular
problem, but as a part of a more general convergence issue. Simpler proofs are
also presented for many results, partly thanks to the new formalism used.



Chapter 2

Introduction to Rigidity

and Persistence

2.1 Shape maintenance in formation control

We consider formations of autonomous agents evolving in a D-dimensional
space. By autonomous agent, we mean here any human controlled or unmanned
vehicle that can move by itself and has a local intelligence or computing ca-
pacity, such as ground robots, air vehicles or underwater vehicles. We suppose
here that the agents have no physical extension, that is, that their positions
are single points. A formation is a group of autonomous agents with commu-
nication capacities, in which the agents collaborate to achieve a common goal.
In many applications, the shape of an autonomous agent formation needs to be
preserved, that is, the positions of all the agents need to remain constant up to
a same translation, rotation, and/or reflection. For example, target localization
by a group of unmanned airborne vehicles (UAVs) appears to be best achieved
(in the sense of minimizing a localization error) when the UAVs are located at
the vertices of a regular polygon [40]. Other examples of optimal placements
for groups of moving sensors can be found in [97]. The displacement of the
agents can be decomposed into two components, the general formation trajec-
tory, and the local “internal” displacements of the agent seeking to maintain
or re-obtain the formation shape. In accordance with the literature, we do not
consider here the general displacement of the formation. The sole goal of the
agents is thus to maintain the shape of the formation, independently of their
position.

Obviously, to maintain a formation shape, agents have to sense some as-
pect of the formation geometry, i.e., an agent will need to measure some
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geometrically-relevant variable involving some of the other agents in the for-
mation, in order to apply a control to correct any error in formation shape.
For example, if three agents i, j and k have to maintain a triangle, this could
be done by sensing and correcting distances between agents, or by sensing and
maintaining one distance and two angles. Other sensed measurements in other
situations could include bearing relative to north, inclination/declination rela-
tive to the horizon, time-difference of arrival at two agents of a pulse transmitted
from a third agent, and so on.

2.2 Rigidity and distances preservation

In this thesis, we confine our attention to maintaining the formation shape by
explicitly keeping some inter-agent distances constant. Obviously, if the dis-
tance between any pair of agent is kept constant, the shape of the formation
is maintained. Maintaining all inter-agent distances may however be costly,
and not necessary, as it suffices to maintain a certain number of them. In
other words, some inter-agent distances can be explicitly maintained constant
so that all the inter-agent distances remain constant. Constraining the dis-
tances is however not the only way to maintain a formation shape, one could
for example imagine imposing constraints on the agent bearings (see Section
7.1.6).

The information structure arising from such a system can be efficiently
modelled by a graph, where agents are abstracted by vertices and actively
constrained inter-agent distances by edges. In Figure 2.1(a) for example, the
distances between the agents 1 and 2, 2 and 3, 3 and 4, and 4 and 1 are main-
tained constant, which is not sufficient to maintain the shape if the formation
evolves in a two-dimensional space. On the other hand, constraints in Figure
2.1(c) are sufficient to maintain the formation shape. Note that we always as-
sume the existence of a reference configuration in which all distance constraints
are satisfied.

Analyzing the ability of a structure of distance constraint to maintain the
shape of a formation can be done using the notion of rigidity, which has already
been the object of many studies in the past [6, 7, 11,30,37–39,41–45,47,56,57,
72,84,85,95,104,105,109,110,123,124,129]. A formation is rigid if the fact that
all distance constraints are satisfied is sufficient to maintain its shape constant.
This notion is reviewed in Chapter 3, in which it is shown that it almost only
depends on the graph of distance constraints. It is important not to confuse a
formation, a graph abstracting its distance constraints, and a representation or
drawing of this graph. At the intuitive level however, one can say that a graph
is rigid if its representation cannot be deformed without modifying the length
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Figure 2.1: For a two-dimensional space, the graph (a) is not rigid because its
representation can be deformed without changing the distance along the edges
as represented in (b). Such a deformation could not occur to the formation (c),
which is therefore rigid.

of its edges. The notion depends thus of course on the dimension in which the
graph is drawn, or in which the agents lie. The graphs represented in Figure 2.1
(a) and (c) are thus respectively non-rigid and rigid for two-dimensional spaces,
but they would both be rigid in a one-dimensional space, and both nonrigid in
a three-dimensional space. Note that this notion of rigidity also corresponds to
the undeformability of a structure of joints and beams. This was actually the
motivation behind its first formalization [30,72,124].

For large graphs, determining whether a given graph is rigid or not is not
as immediate as on the examples discussed above. Intuitively, a rigid body
in the plane has 3 degrees of freedom, while a set of n unconstrained point-
agents has 2n degrees of freedom. Each edge of the graph corresponds to one
constraint, and removes thus up to one degree of freedom. Rigidity in the
plane (respectively in the 3D-space) requires thus 2n − 3 edges (respectively
3n − 6 edges). But this condition is not sufficient as some of these edges may
be redundant and may not remove any degree of freedom. Examples of such
a graph are presented in Figure 2.2. The issue of recognizing rigid graphs is
further reviewed in Chapter 3, and in particular in Section 3.4.

2.3 Persistence and unilateral distance

constraints

Unlike in the case of frameworks where distance constraints are guaranteed by
the presence of bars between joints, constraints on inter-agent distances in for-
mations have to be maintained by means of measurements and control actions.
A distance between two agents can be cooperatively maintained by the two
agents, in which case the rigidity theory can directly be applied. But one can
also give full responsibility of maintaining the constraint to one agent, which
has to maintain its distance from the other constant, this latter agent being
unaware of that fact and taking therefore no specific action helping to satisfy
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Figure 2.2: Examples of non-rigid graphs having enough edges to be rigid (2n−3
and 3n − 6), but that are not rigid due to the redundance of some edges. In
the representation (a) in a two-dimensional space, 5 and 6 are not fixed with
respect to the other points. In the representation (b) in a three-dimensional
space, (3, 4, 5) and (6, 7, 8) can rotate around the axis defined by 1 and 2.

the distance constraint.

This unilateral character can be a consequence of the technological limita-
tions of the autonomous agents. Some UAV’s can for example not efficiently
sense objects that are behind them or have an angular sensing range smaller
than 360◦ [21,48,106]. Some of our collaborators are for example working with
agents in which optical sensors have blind three dimensional cones. Unilateral
distance constraints can also be desired to ease the trajectory control of the
formation, as it allows so-called leader-follower formations [11,44,121]. In such
a formation, one agent (leader) is free of inter-agent constraints and is only con-
strained by the desired trajectory of the formation, and a second agent (first
follower) is responsible for only one distance constraint and can set the relative
orientation of the formation. The other agents have no decision power and are
forced by their distance constraints to follow the first two agents. An example
of such a formation is shown in Figure 2.3(c). Finally, it has been argued [11]
that for some classes of control law, having the distance constraints maintained
by both agents can lead to unstable behaviors in the presence of measurement
errors if the agents are not allowed to communicate. Such behaviors can how-
ever be avoided by introducing dead-zones at the cost of limited inaccuracy in
the preservation of formation shape [52].

A structure of unilateral distance constraints can be represented using a
directed graph, where an edge from i to j means that the agent abstracted by
i has to maintain its distance to the agent abstracted by j constant. In Figure
2.3(a) for example, the agent 2 is responsible for maintaining its distance to 1
constant, but 1 is not aware of that and cannot be assumed to take any action
helping 2 in its task.
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Rigidity can still be applied to formations represented by directed graphs
as this notion does not depend on the presence or absence of directions for
the edges. A directed graph is thus rigid if the undirected graph obtained
by forgetting all edge directions is rigid. It still means that the formation
shape is maintained provided that the inter-agents distance along all edges are
preserved. But, the use of control laws, and particularly of their unilateral
character, brings a new issue: Nothing guarantees a priori that the constraints
will be satisfied. Consider for example the directed graph represented in Figure
2.3 (a), which we suppose to model a formation evolving in a two-dimensional
space. It is clearly rigid. Observe however that the agent 4 is responsible for the
maintenance of three constraints, while agents 2 and 3 are responsible for only
one constraint: each of them has to remain at a constant distance from agent
1, which has no constraint. Suppose that, starting from a reference position
in which all constraints are satisfied, 3 moves in the plane, while keeping its
distance to 1 constant as represented in Figure 2.3(b). Agent 4 is then unable
to simultaneously satisfy the three constraints for which it is responsible. On
the other hand, the three other agents satisfy all their constraints, and are thus
a priori not forced to change their positions. They are indeed not aware of
the constraints for which 4 is responsible, and have no reason for moving to
positions where these constraints can be satisfied. So, although the graph is
rigid, the formation shape is not always maintained, because some constraints
are not necessarily satisfied. Moreover, this is a consequence of the topology of
unilateral distance constraints, independently of the control laws used.

The characterization of the directed information structures which can effi-
ciently maintain the formation shape has begun to be studied under the name
of “directed rigidity” or “rigidity of a directed graph” [8, 11, 41]. These works
included several conjectures about minimal directed rigidity, i.e., directed rigid-
ity with a minimal number of edges for a fixed number of vertices. We have
proposed a theoretical framework analyzing these issues in [64], where the name
of “persistence” was used in preference to “directed rigidity”. Rigidity can in-
deed be indifferently applied to undirected and directed graphs, and we have
argued above that the rigidity of a directed graph is not sufficient for the shape
of its corresponding formation to be preserved. This part of the thesis presents
this framework and its further extensions [12,63,67–69,133,134]. Note that our
goal here is not to design particular control laws achieving shape maintenance
for certain types of constraint topologies, but to characterize the topologies for
which this goal can be achieved, and this as independently as possible from the
particular control laws used.

A simple way of avoiding the problem of agents having sets of constraints
that cannot be satisfied is to prevent agents evolving in a D-dimensional space
from being responsible for more than D constraints. It is indeed generally pos-



34 CHAPTER 2. INTRODUCTION TO RIGIDITY AND PERSISTENCE

1

2

3

4

1

2 3

4 ??

1

2

3

4

(a) (b) (c)

Figure 2.3: The graph (a) is rigid, but the shape of the corresponding 2D-
formation is not necessarily maintained as all constraints are not necessarily
always satisfied: Agent 3 has one single distance constraint to satisfy, and can
freely move on a circle centered on agent 1. If it does so, it becomes impossible
for 4 to simultaneously satisfy the three constraints for which it is responsible,
while the other agents satisfy all their constraints and have thus nor reason to
move, as represented in (b). Such a situation never happens with the formation
represented in (c). Formally, the graph (a) is rigid but not persistent because
it is not constraint consistent, while (c) is both rigid and constraint consistent,
making it persistent. The graph (c) represents also a so-called “leader-follower”
formation.

sible to satisfy as many constraints as the dimension of the space in which the
position is. This solution is for example preconized in [11]. Remember how-
ever that our goal is not to design one particular system but to characterize
the directed graphs for which the shape of the corresponding formation can be
maintained. And, bounding the number of constraints for each agent unneces-
sarily excludes some formations whose shape can efficiently be maintained even
though some agents are responsible for more than D constraints. Consider for
example the graph in Figure 2.4(a) representing the constraint topology of a
two-dimensional formation. The agent 4 is responsible for three distance con-
straints. Its task is thus impossible unless the positions of 1, 2 and 3 are such
that these three constraints are compatible, which is for example the case in the
reference configuration in which all constraints are satisfied. Observe now in
Figure 2.4(b) that 1, 2 and 3 can always satisfy their constraints, and that when
they do so, the shape of the sub-formation they constitute is preserved, i.e. is
the same as in the reference configuration. As a result, the three constraints
of 4 are compatible, and the shape of the whole formation can be maintained.
Another way of looking at this is to see that if 4 satisfies two of its constraints,
it automatically satisfies the third one. Note that the use of redundant con-
straints such as in Figure 2.4 can be desired for robustness purpose. It allows
maintaining the formation shape even if some distances are temporarily not
sensed or controlled due for example to noise or technical problems.
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Figure 2.4: Example of 2D-formation whose shape can be maintained although
one agent is responsible for three constraints (a). The three constraints of 4
are indeed made compatible by the fact that the constraints of 1, 2 and 3 are
sufficient to maintain the shape the triangle (1, 2, 3). The corresponding graph
is thus persistent.

In view of the non persistent formation represented in Figure 2.3(a) and
the persistent one in Figure 2.4(a), an agent can be responsible for more than
D constraints, provided that these constraints are made consistent with each
other by the rest of the constraint structure. We introduce in Chapter 4 the
notion of constraint consistence characterizing this property. Constraint consis-
tence is a notion defined independently of rigidity, and for which the direction
of the edges plays a major role. Intuitively, a graph is constraint consistent if
in the corresponding formation, the fact that all agents are trying1 to satisfy
the constraints for which they are responsible is sufficient to guarantee that
all constraints will be satisfied. As rigidity, this notion depends of course on
the dimension of the space in which the formation lies. Figure 2.5 represents
a constraint consistent graph and a non constraint consistent graph for a two-
dimensional space. In Figure 2.5(a), 1 can freely choose its position, and 2, 3,
and 4 have to remain at a constant distance from 1, which is always feasible for
them. In Figure 2.5(b), the agents 2, 3 and 4 can freely choose their positions,
and 1 is supposed to remain at a constant distance from the three of them,
which is generally impossible. The first formation is thus constraint consistent
while the second is not. But the analysis of constraint consistence can be more

1We do not consider here malevolent agents. The idea of an agent “trying” to satisfy
constraints is formalized in Chapter 4 by the notion of equilibrium position, the convergence
of the formation to which is further considered in Chapter 5.
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Figure 2.5: Examples of constraint consistent (a) and non-constraint consistent
(b) planar formations, sharing the same undirected underlying graph. In (a),
2, 3, and 4 can always remain at a constant distance from 1, which can freely
choose its position. In (b), it is generally impossible for 1 to maintain its
distance to 2, 3 and 4 constant while they freely move in the plane.

complicated. For example, the graph in Figure 2.4 is constraint consistent, as
we have already argued that all its corresponding distance constraints could
be satisfied. Also, it is not evident at first sight to determine if the graphs
represented in Figure 2.6 are persistent. It will be seen that the persistence
of (a) follows from Corollary 4.2. The persistence of (b) and (c) follow from
Theorem 4.5, the general criterion that we will obtain to determine if a graph is
persistent or not. The persistence of (c) can also be obtained in an easier way,
taking into account the fact that the graph can be made acyclic by removing
three edges leaving the same vertex. Finally, it will be seen in Figure 4.5 that
(d) is not persistent.

Persistence, introduced in Chapter 4 to characterize the ability of the struc-
ture of unilateral constraint to maintain the formation shape, is the combination
of rigidity and constraint consistence. A persistent formation is one for which
the fact that all agents are trying to satisfy their constraints is sufficient for the
shape to be maintained. So, not only the shape is maintained when all con-
straints are satisfied (rigidity), but all constraints are necessarily satisfied when
all agents are trying to satisfy the constraints for which they are responsible
(constraint consistence). This simple equivalence, formally proved in Section
4.2, is summarized below.
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Figure 2.6: Examples of graph for which it is uneasy to determine a priori if
they are persistent. Using results obtained in the next chapters, one can prove
that they are actually all persistent except (d).
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Constraint
Consistence

:
Agents trying to
satisfy constraints

⇒
All constraints
satisfied

+

Rigidity :
All constraints
satisfied

⇒ Shape preserved

=

Persistence :
Agents trying to
satisfy constraints

⇒ Shape preserved

2.4 Outline of part I

We begin by reviewing rigidity and some related concepts in Chapter 3. We
then introduce and give a full characterization of persistence and constraint con-
sistence in Chapter 4. These notions are based on an analysis of equilibrium
situation for formations, but do not take into account the issue of reaching
this equilibrium. The latter issue is considered in Chapter 5, leading to the
notion of structural persistence, for which we also provide a full characteriza-
tion. We then focus in Chapter 6 on particular classes of graphs, for which the
analysis of the notions introduced can be pushed further. We consider acyclic
graphs in Section 6.1, minimally persistent graphs in Section 6.2, and graphs
with three degrees of freedom in Section 6.3, the two latter sections consid-
ering only two-dimensional spaces. Minimally persistent graphs are persistent
graphs with a minimal set of edges. Graphs with three degrees of freedom in a
two-dimensional space are those whose corresponding formation trajectory can
fully be controlled using only local agent decisions, i.e., for which no decision
needs to be taken collectively. We present in Chapter 7 further directions for
research that could be undertaken. We mention some track that could be fol-
lowed, and partial results when available. We close then this first part of the
thesis by the concluding remarks in Chapter 8. To ease the reading, the main
definitions related to this part of the thesis are listed in Appendix A.

Since this part of the thesis is focussed on understanding the main notions
related to persistence, we do not present all the results that we have obtained
during these three years. In particular, we omit some recent results on merging
of persistent formations [70, 71]. We also only present the simplest method to
build all two-dimensional minimally persistent graphs in Section 6.2, and not
some other methods to build them, and results on the inexistence of certain
classes of methods [68].



Chapter 3

Rigidity of Graphs

In this chapter we review the definition and main characteristics of rigidity. In-
tuitively, a graph representation is rigid if it cannot be continuously deformed
without modifying the edge lengths. We formalize this notion in Section 3.1.
In Section 3.2 we introduce the notion of infinitesimal rigidity, which, roughly,
is a first-order analysis of rigidity. It allows a simpler analysis using linear-
algebraic tools. We describe the close link between infinitesimal rigidity and
rigidity, and see that the latter is actually a stronger condition than the former
as every infinitesimally rigid representation is rigid. We see in Section 3.3 that
rigidity actually only depends on the graph and not on the particular represen-
tation that is considered (up to a zero-measure set of representations forming
particular ill-conditioned cases). Finally, we introduce in Section 3.4 the notion
of minimal rigidity corresponding to rigidity with a minimal set of edges, and
show how this notion can be used to give a necessary condition for rigidity. We
also present a force based approach of rigidity in Section 3.5 and a generaliza-
tion of rigidity called tensegrity in Section 3.6. Note that in this chapter, we
do note take into account the possible directions of the edges, nor the fact that
they are directed or undirected. All definitions can thus be applied to both
directed and undirected graphs. For the sake of clarity, all graphs represented
are however undirected, as the possible direction of the edges has no influence
on the rigidity properties of the graph.

Before beginning, we believe it is worth emphasizing that rigidity is a notion
defined for representations of graphs and not for graphs. It is then a non-trivial
result presented in Section 3.3 that rigidity is a generic property of a graph. A
property of graph representations is generic for graphs if for each graph, either
almost all its representations have the property or almost all of them do not
have the property, where “almost all representations” refer to all representations
excluding a set of measure zero.
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Figure 3.1: Three representations of the same graph in ℜ2, all realizations of
the same distance set. (a) and (b) are congruent as they can be obtained one
from each other by rotations and translations, but (c) is not congruent to (b)
nor to (c).

3.1 Rigidity

A representation of a graph G(V,E) in ℜD is a function p : V → ℜD : i → pi.
We say that pi ∈ ℜD is the position of the vertex i, and define the distance
between two representations p and q of the same graph by

d(p, q) = max
i∈V

||pi − qi|| ,

endowing the set of representations with a structure of metric space. Two rep-
resentations p and q are congruent if they can be obtained one from each other
by a composition of Euclidean transformations (i.e., translations, rotations, and
reflections), which is actually the case if and only if the distance between the
positions of every pair of vertices (connected by an edge or not) is the same in
both of them: ||pi − pj || = ||qi − qj || for all i, j ∈ V .

A distance set d̄ for G is a set of distances dij ≥ 0, defined for all edges
(i, j) ∈ E. A distance set is realizable if there exists a representation p of the
graph for which ||pi − pj || = dij for all (i, j) ∈ E. Such a representation is then
called a realization. Intuitively, a distance set d̄ is realizable if it is possible
to draw the graph such that the distance between the positions of any pair of
vertices i, j connected by an edge is dij . Note that each representation p of
a graph induces a realizable distance set (defined by dij = ||pi − pj || for all
(i, j) ∈ E). Figure 3.1 shows three realizations of the same distance set for a
graph, two of which are congruent.

Definition 3.1. A representation p of a graph G is rigid if there is a neigh-
borhood of p in which all realizations of the distance set induced by p and G are
congruent to p.

As an example of the application of this definition, Figure 3.2(c) shows a
graph representation p and a realization p′ of the induced distance set - the
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Figure 3.2: Example of rigid (a),(b) and non-rigid (c) representations. (b) is
also minimally rigid, as the removal of any edge would lead to a loss of rigidity.
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Figure 3.3: Rigid (a) and not rigid (b) representations of the same graph. The
representation (b) is not rigid because there exists (arbitrarily close) realizations
of its induced distance set to which it is not congruent, as in (c).

lengths of all edges are indeed the same in p and p′ - which is not congruent
to p. Since such realizations p′ can be found arbitrarily close to p, this latter
is not rigid. On the other hand, it is possible to prove that the representations
in Figures 3.2(a) and (b) are rigid. Figure 3.3 shows two representations of a
same graph, one of which is rigid and the other is not. This shows that rigidity
does depend on the representation considered, and not only on the graph.

Before going further in our analysis, note that the definition of rigidity only
requires the congruence of all realizations in a certain neighborhood of p, so
that this notion is related to local variations. If large variations are considered,
a realization p′ of a distance set induced by a rigid graph representation p is
not necessarily congruent to p, as shown on the example in Figure 3.4. A graph
representation whose distance set defines a unique realization (up to congru-
ence) is called a globally rigid representation. We do not consider global rigidity
in this thesis, and refer the reader for example to [61] for more information on
this topic.
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Figure 3.4: The two-dimensional graph representation in (a) is provably rigid
but is not globally rigid, as (b) shows a realization of its induced distance set
that is not congruent with the representation in (a). Since it is rigid there exists
however a neighborhood of the representation (a) in which no such realization
can be found. The graph representation in (c) is on the other hand globally
rigid.

Note also that rigidity can equivalently be defined in the following more
compact way. For a graph G(V,E),let us define the morphisms

ΦV ×V : (ℜD)n → (ℜ+)n2

: p → {dij}(i,j)∈V ×V = {||pi − pj ||}(i,j)∈V ×V

and

ΦE : (ℜD)n → (ℜ+)|E| : p → {dij}(i,j)∈E = {||pi − pj ||}(i,j)∈E

mapping the space of sets of n D−dimensional points (representations) on the
distances between respectively all the pair of points, and all the pair of points
whose corresponding vertices are connected by an edge in the graph G. We say
that p is rigid as a representation of G if there exits a δ > 0 such that for all
p′ ∈ B(p, δ), ΦE(p′) = ΦE(p) implies that ΦV ×V (p) = ΦV ×V (p′).

3.2 Infinitesimal rigidity

Rigidity is conveniently analyzed by linearizing the constraints on the posi-
tions. We only present here an intuitive version of this linearization, and refer
the reader to [6, 7] or [124] for a more formal analysis.

Let p be a graph representation, which we consider here not as a function
defined on V but as a vector of ℜnD (with n = |V |) containing all vertices
positions:

p =
(

pT
1 pT

2 . . . pT
n

)T
.

Let δp be an infinitesimal displacement, that is a difference between two rep-
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resentations p and p + δp so small that ||δp||
2
2 is negligible1 δp is a Euclidean

displacement if it is a combination of infinitesimal translations and rotations.
More formally, an infinitesimal displacement δp is Euclidean if there exists a
time-continuous length-preserving transformation E : ℜD×ℜ+ → ℜD : (x, t) →

E(x, t) such that δpi = K dE(x,t)
dt |pi,0 holds with the same K for all i ∈ V . We

denote by Eup the set of Euclidean infinitesimal displacements for a represen-
tation p. If the convex hull of p has a dimension at least D−1, the dimension of
Eup is fD = 1

2D(D+1), corresponding to D independent translations along all
independent directions in ℜD and 1

2D(D−1) independent rotations for each pair
of independent directions in ℜD, a rotation being uniquely defined by a plane
and an intensity. If the convex hull of p has a dimension smaller than D − 1,
then the dimension of Eup is smaller than fD, as some rotations corresponding
to planes orthogonal to the convex hull of p can be expressed as combinations
of translations. Applying for example a rotation to a zero-dimensional object
either has no effect or is equivalent to a translation. For the sake of conciseness,
we do not explicitly treat this case here. Unless otherwise specified, we suppose
thus that the convex hull of the positions in p has a dimension D − 1 or D,
which is almost always the case if the number of vertices is at least D. The
case of graphs with a smaller number of vertices is considered at the end of
Section 3.4 and in Proposition 3.2. Note that reflections are not contained in
infinitesimal Euclidean displacements as they are by essence transformations of
finite size.

The distance between two vertices i, j in the representation p + δp is the
same as in the representation p if there holds

||pi − pj ||
2

= ||pi + δpi − pj − δpj ||
2

= ||pi − pj ||
2

+ 2(pi − pj)
T (δpi − δpj) + ||δpi − δpj ||

2
.

Since ||δp||
2
2 is neglected, this is equivalent to

(pi − pj)
T (δpi − δpj) = 0. (3.1)

We say that an infinitesimal displacement δp is admissible2 by a representa-
tion p of a graph G(V,E) if (3.1) holds for all (i, j) ∈ E. Intuitively, δp is
admissible for p and G if it preserves the distance between the positions of

1Some authors [124] define more formally an infinitesimal displacement as an assignment
of velocities to the vertices. We prefer here using the idea of small position variation as it
provides a better intuitive insight in the sequel.

2Some authors simply call infinitesimal displacements [124] what we call admissible in-
finitesimal displacements. Admissible infinitesimal displacements are indeed sufficient to
analyze rigidity so that inadmissible ones do not need to be considered. When analyzing per-
sistence as we do in the next sections however, it is essential to take inadmissible infinitesimal
displacements into account.
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Figure 3.5: Example of rigid representation that is not infinitesimally rigid. All
sufficiently close realizations of the distance set induced are congruent to this
representation. However, one can verify that the infinitesimal displacement
represented (with δp1 = δp2 = δp3 = δp4 = 0) is admissible but does not
correspond to a Euclidean displacement of the whole representation.

1 2

34

RG,p =

(p1 p2)
T (p2 p1)

T 0 0
0 (p2 p3)

T (p3 p2)
T 0

(p1 p3)
T 0 (p3 p1)

T 0
(p1 p4)

T 0 0 (p4 p1)
T

0 0 (p3 p4)
T (p4 p3)

T

(a) (b)

Figure 3.6: Rigidity matrix (b) associated to a graph representation (a).

any two vertices that are connected by an edge in G, and thus if p + δp is a
realization of the distance set induced by p. It can be easily proved that all
Euclidean infinitesimal displacements are admissible by p and G. Following the
intuitive meaning of rigidity, a representation p should be infinitesimally rigid
if for any admissible δp, p + δp and p are “congruent”, that is, can be obtained
by Euclidean transformations one from each other. We have thus the following
definition:

Definition 3.2. A representation of a graph is infinitesimally rigid if all its
admissible infinitesimal displacements are Euclidean.

It can be proved that every infinitesimally rigid representation is rigid [6,7].
The converse only holds for almost all representations, i.e., there is a zero-
measure set of representations that are rigid but not infinitesimally rigid, such
as the one shown in Figure 3.5.

Since all constraints defining the admissibility of the infinitesimal displace-
ments are linear, they can be written under the more compact form

RG,pδp = 0, (3.2)
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where the RG,p ∈ ℜ|E|×Dn is the rigidity matrix associated to G and p. Vertices
of the graphs correspond to D columns of the matrix, and each line of the latter
corresponds to an edge (i, j) in G and is equal to

(

. . . 0 (pi − pj)
T 0 . . . 0 (pj − pi)

T 0 . . .
)

,

the non-zero column being the (i−1)D+1st to the iDth and the (j−1)D+1st to
the jDth. An example of correspondence between a graph representation and its
rigidity matrix is shown in Figure 3.6. A representation is then infinitesimally
rigid if each infinitesimal displacement satisfying (3.2) is Euclidean, that is if
KerRG,p ⊆ Eup. Since Eup ⊆ KerRG,p always trivially holds because every
Euclidean displacement is admissible by any representation of any graph, this
condition is then equivalent to KerRG,p = Eup and can be expressed in terms
of the matrix rank as

rankRG,p = Dn − dimEup = Dn − fD = Dn −
1

2
D(D − 1).

The infinitesimal rigidity of p is thus equivalent to the presence of Dn − fD

independent lines in RG,p. Note that since Eup ⊆ KerRG,p, a rigidity matrix
never has a rank larger than Dn − fD.

3.3 Generic rigidity of graphs

Infinitesimal rigidity is a notion defined for representations of graphs, and not
for graphs. We now show however that they (almost) only depend on graphs.

Definition 3.3. Let P be a property defined for graph representations. A graph
is generically P if the set of its representations not having the property P has
zero measure. A graph is generically not P if the set of its representations
having the property P has zero measure. The property is a generic property if
every graph is either generically P or generically not P .
For the sake of conciseness, we omit the word “generically” in the sequel, unless
when the context could allow ambiguities.

Intuitively, a generic notion is one that, although defined for representations
of graphs, only depends on the graph to the exception of a zero-measure set of
particular cases. Having a convex hull of dimension D is for example a property
defined for a representation (in ℜD) that is a generic notion.

For a representation p of a graph G, we say that a set of edges is inde-
pendent if the corresponding lines in RG,p are linearly independent. It can be
proved [6, 7] that the independence of edges is a generic notion. As a conse-
quence, so is infinitesimal rigidity. We call generic representations those repre-
sentations for which every generically independent set of edges is independent.
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Figure 3.7: p is a representation of a graph that can be proved (by Theorem
3.2) to be rigid in ℜ2. However, (b) shows a realization p′ of the distance
set induced by p, but which is not congruent to p. p is thus a non-generic
representation.

Intuitively, any representation that is not a particular case (in term of inde-
pendence of rigidity matrix lines) is a generic representation. Clearly, almost
all representations are generic representations. Trivial examples of non-generic
representations involve collinear positions or vertices with same positions as
in Figure 3.3, but more surprising examples exist as well; see e.g. Figure 3.7.
We can define the generic rank of the rigidity matrix of a graph as the rank of
the rigidity matrix associated to a generic representation of a graph. It follows
from the definition of generic representation that this is a well-defined notion
which only depends on the graph.

It can be proved that rigidity is also a generic notion, and that a graph is
rigid if and only if it is infinitesimally rigid3 [6, 7]. For the sake of conciseness,
we simply call such a graph a rigid graph in the sequel. The rigidity of the graph
depends of course on the dimension in which its representations are considered.
We generally designate by D the dimension in which the graph is represented,
without mentioning it explicitly when the context allows no ambiguity.

Let us also mention that when a graph is not rigid, none of its representa-
tions are infinitesimally rigid, but some of it non-generic representations form-
ing a zero-measure set are rigid. One can for example verify that any repre-
sentation for which all vertices have the same positions are rigid provided that
the graph is connected. On the other hand, a rigid graph may have some non
trivial non-generic representations that are not rigid, see for example Figure
3.7.

3Formally, generic rigidity is equivalent to generic infinitesimal rigidity
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Figure 3.8: The rigidity matrix of the subgraph representation (a) is a sub-
matrix (b) of the graph rigidity matrix.

3.4 Minimal rigidity for a characterization of

rigid graphs

The analysis of rigidity is made easier by using the notion of minimal rigidity.
A a graph is minimally rigid if it is rigid and if the removal of one or several
of its edges automatically destroys its rigidity. For example, the graph repre-
sented in Figure 3.2(b) is minimally rigid while the one in Figure 3.2(a) is not.
It is indeed possible to remove an edge to the graph represented in (a) without
losing rigidity. Clearly, every rigid graph contains a minimally rigid subgraph
on all its vertices. The converse is also true, so that a graph is rigid if and
only if it contains a minimally rigid graph on all its vertices. Indeed, adding
edge to a graph correspond to adding lines to its rigidity matrix, which never
decreases its rank. Rigidity is thus preserved by addition of edges, and a graph
containing a (minimally) rigid subgraph on all its vertices is thus rigid.

Consider a generic representation p of a minimally rigid graph. All lines
of the associated rigidity matrix RG,p are linearly independent. If it was not
the case one edge could indeed be removed without affecting the rank of RG,p,
preserving therefore rigidity and preventing the initial graph from being mini-
mally rigid. The number of edges in a minimally rigid graph is thus equal to
the generic rigidity matrix rank, that is Dn − fD since the representation is
rigid. Moreover, if a graph is rigid and contains Dn − fD edges, the removal
of any edge decreases its generic rank and destroys its rigidity. A rigid graph
is thus minimally rigid if and only if its number of edges is the smaller one
allowing rigidity for its number of vertices, that is Dn − fD.

The independence of the lines in a minimally rigid graph also has conse-
quences on the number of edges in the subgraphs of G. The rigidity matrix
RG′,p of a subgraph G′ of G for the restriction of p to its vertices is the restric-
tion of RG,p to the columns and lines corresponding respectively to the vertices
and edges that are present in G′, as can be seen on the example in Figure 3.8.
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One can verify that its lines are thus obtained from lines of RG,p by removing
zero-elements. As a consequence, they are linearly independent if and only if
the corresponding lines in RG,p are independent. The rigidity matrix of any
subgraph of G contains thus only independent lines, which again implies that
any subgraph G′′(V ′′, E′′) of G (on more than D vertices) contains at most
D |V ′′|−fD edges. The above discussion is summarized by the following result:

Theorem 3.1. A graph G(V,E) with at least D vertices is rigid in ℜD if
and only if it contains a minimally rigid (in ℜd) subgraph G′(V,E′) on all its
vertices. Moreover, if a graph G′(V,E′) is minimally rigid, then

• There holds |E′| = D |V | − fD

• For every subgraph G′′(V ′′, E′′) of G there holds |E′′| ≤ D |V ′′| − fD

As a consequence, a rigid graph G(V,E) is minimally rigid in ℜd if and only if
|E| = D |V | − fD holds.

For two-dimensional spaces, the necessary condition for independence of the
lines, i.e. absence of subgraph G(V ′′, E′′) with |E′′| > 2 |V ′′| − 3, is actually
also sufficient, leading to necessary and sufficient condition for rigidity:

Theorem 3.2 (Laman [84]). A graph G(V,E) (with |V | ≥ 2) is rigid in ℜ2 if
and only if there exists a subgraph G′(V,E) on the same vertices such that

• There holds |E′| = 2 |V | − 3

• For all subgraphs G′′(V ′′, E′′) of G′ with V ′′ ≥ 2, there holds |E′′| ≤
2 |V ′′| − 3.

As a consequence, a rigid graph is minimally rigid if it is rigid and if |E| =
2 |V | − 3 holds.

Note that several algorithms have been proposed to check the criterion of
Theorem 3.2 in a polynomial time, see [74,101] for example or [124] for a survey
on minimal rigidity. The equivalence of Theorem 3.2 does not hold for larger
dimensions, as shown by the so-called “double-banana” graph in Figure 3.9,
and no result similar to Theorem 3.2 is known for these dimensions. However,
the following result allows in some situation to guarantee the rigidity of some
subgraphs.

Proposition 3.1. Let G(V,E) be a minimally rigid graph (in ℜD). A subgraph
G′(V ′, E′) of G on at least D vertices is rigid if and only if there holds |E′| ≥
D |V ′| − fD. In that case, there necessarily holds |E′| = D |V ′| − fD and the
subgraph G′ is also minimally rigid.
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Figure 3.9: Example of a graph satisfying the necessary condition for rigidity
of Theorem 3.1 with D = 3 but that is not rigid in ℜ3. The parts of the
graphs defined by {3, 4, 5} and {6, 7, 8} can rotate around the axis defined by
the positions of vertices 1 and 2.

Proof. Consider a generic representation p of G and its restriction p′ to G′,
which clearly is also generic. Since G is minimally rigid, all lines of RG,p are
linearly independent, and so are therefore those of RG′,p′ . The rank of RG′,p′

is thus equal to the number of its lines, that is, to |E′|. The result follows
then from the fact that a representation of a graph on at least D vertices is
infinitesimally rigid if and only if the rank of its rigidity matrix is D |V |−fD.

We have assumed until here that the number of vertices was at least as
large as the dimension of the space in which the graph is represented. If this
assumption is not satisfied, then it can be proved that a graph is rigid if and
only if it is the complete graph. The sufficiency of this condition is trivial as, for
generic representations, a complete graph implies constraints on the distance
between all vertices positions. To understand its necessity, consider the fact
that n vertices define generically a n−1 dimensional affine variety. If the graph
is rigid in ℜD, it must be rigid in this affine variety, and contains therefore at
least (n − 1)n − fn−1 = 1

2 (n − 1)n edges, which is only the case if the graph is
complete. As a result, one can verify that a rigid graph G(V,E) always satisfies
|E| ≥ nD − fD.

Proposition 3.2. A graph G on less than D vertices is rigid in ℜD if and only
if it is a complete graph.

Finally, we present the following corollary with an intuitive meaning that
in a rigid graph, each vertex must have sufficiently many constraints on its
position.

Corollary 3.1. If a graph G(V,E) contains a vertex with a degree smaller than
min(D, |V | − 1), it is not rigid.



50 CHAPTER 3. RIGIDITY OF GRAPHS

Proof. If |V | < D, the result follows from Proposition 3.2. If |V | ≥ D, the
result can for example be obtained by applying Theorem 3.1, taking for G′′ the
subgraph of G′ obtained by removing the vertex with degree smaller than D.

3.5 Force based approach to rigidity matrix

Our obtention of the rigidity matrix and of the related results is based on dis-
tance constraints, consistently with the motivations of this work. The same
results can actually be obtained using a different approach based on force equi-
librium, which we briefly describe here. For more information we refer the
reader to [124].

Suppose that the vertices represent joints and the edges beams between
joints. Each joint i has a position pi ∈ ℜ3. Beams can transmit forces parallel
to their axis. The beam corresponding to the edge (i, j) can thus apply simul-
taneously two opposite forces λij(pi − pj) and λij(pj − pi) on the joint i and j,
where λij = λji ∈ ℜ is proportional to the intensity of the force and inversely
proportional to the length of the beam. If we suppose moreover than a force
fi ∈ ℜ3 can be applied on each joint, the equilibrium condition of the joint is
described by the following three-dimensional relation

−fi =
∑

j:(i,j)∈E

λij(pi − pj).

Let now f = (fT
1 , . . . , fT

n )T , one can verify that the equilibrium conditions of
all joints can be written under the compact form

−f = RT
G,pλ,

where RG,p is the rigidity matrix, and λ a vector containing all λij , in an
order consistent with that of the edges in the rigidity matrix. As an example,
the system of equations describing the equilibrium conditions of all joints in a
framework modelled by the graph in Figure 3.6 is

−f =









(p1 − p2) 0 (p1 − p3) (p1 − p4) 0
(p2 − p1) (p2 − p3) 0 0 0

0 (p3 − p2) (p3 − p1) 0 (p3 − p4)
0 0 0 (p4 − p1) (p4 − p3)





















λ12

λ23

λ13

λ14

λ34













.

Intuitively, such a framework is rigid if the application of forces to the joint
does not result in internal deformations, but only in rotations and translations
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of the framework as a whole, i.e., Euclidean displacements. By the superpo-
sition principle, a rigid framework is thus one that undergoes no deformation
when loaded by a set of forces f ∈ Eu⊥

p . Note that in a three-dimensional
space, the orthogonality to Eup conveniently expressed by

∑

i fi = 0 and
∑

i pi × fi = 0. Let us now define formally static rigidity.

Definition 3.4. A representation p of a graph G is statically rigid if for any
load f ∈ Eu⊥

p , there exists a λ ∈ ℜ|E| such that all joints are at equilibrium,

that is, a λ solution of −f = RT
G,pλ.

More compactly, p is statically rigid if Eu⊥
p ⊆ ImRT

G,p, or equivalently, if
(

ImRT
G,p

)⊥
⊆ Eup. Using the well known relation KerAT = (ImA)⊥, we finally

obtain that p is statically rigid if and only if KerRG,p ⊆ Eup. Since this con-
dition is also necessary and sufficient for infinitesimal rigidity, the two notions
are equivalent.

Note finally that a more comprehensive notion of rigidity exists in civil and
mechanical engineering, allowing beams to also transmit orthogonal forces and
torque. This is equivalent to consider structures of more complex geometric
constraints, such that constraints on the angle between edges. Such extended
notions of rigidity are however out of the scope of this thesis.

3.6 Tensegrity

The initial motivation of rigidity was to characterize frameworks of bars, that
impose a certain distance between pairs of joints and can transmit any force
parallel to their axes. Tensegrity has been introduced [54] to characterize frame-
works that also contain cables and struts. A cable imposes a maximal distance
between two joints, and can be loaded in tension. A strut imposes a minimal
distance between two joints, and can be loaded in compression. Simple exam-
ples of such structures are shown in Figure 3.10, and more complex structures
that cannot be deformed are shown in Figure 3.11. In this section, we give
a formal definition of tensegrity, or more formally of “rigidity of a tensegrity
framework”, and mention some of its properties. For more information, we
refer the reader to [29,114].

A tensegrity framework G(V,B,C, S) is a set V of vertices, together with
pairwise disjoint sets of pairs of vertices, referred to as bars, cables, and struts
respectively. We denote by E the union B ∪ C ∪ S of these three sets. The
notion of representations and distance set can immediately be extended. We
say that a representation p of G is a tensegrity-realization of a distance set d
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cable

beam

(a) (b)

beam

strut

(c) (d)

Figure 3.10: Examples of structures containing two bars and one cable (a),
or two bars and one strut (c). Similar structures containing only bars could
not be deformed. However, the structure (a) can be deformed by reducing the
distance between the extremities of the cable as in (b), and the structure (c)
by increasing the length of the strut as in (d). These structures are thus not
rigid.

(a) (b)

Figure 3.11: Rigid representations of two tensegrity frameworks. Neither of
the two represented structures can thus be deformed. The two frameworks are
complementary, i.e., can be obtained one from the other by replacing the struts
by cables and the cables by struts.



3.6. TENSEGRITY 53

a

a

(a) (b)

Figure 3.12: Two representations of a same tensegrity framework. The repre-
sentation in (a) is rigid, but the one in (b) is not. The position of a can indeed
be moved to the left hand side without breaking any of the constraints implied
by the three cables. Moreover, any representation “close” to (a) is rigid, and
any representation “close” to (b) is not, which proves that rigidity is not a
generic notion for tensegrity frameworks.

associated to a tensegrity framework G(V,B,C, S) if there hold

||pi − pj || = dij ∀(i, j) ∈ B,
||pi − pj || ≤ dij ∀(i, j) ∈ C,
||pi − pj || ≥ dij ∀(i, j) ∈ S.

(3.3)

Definition 3.5. A representation p of a tensegrity framework G(V,B,C, S) is
rigid if there is a neighborhood of p in which all tensegrity-realizations of the
distance set induced by p and G are congruent to p.

A consequence of the introduction of cable and struts is that rigidity is not
a generic notion for tensegrity frameworks. Figure 3.12 shows for example two
representations of a same tensegrity framework, one of which is rigid and the
other not, and both belonging to positive measure sets of representations hav-
ing the same rigidity properties.

A notion of infinitesimal rigidity can also be defined for tensegrity frame-
works similarly as in Section 3.2, but with a different definition of admissible
displacements that takes the new types of constraints into account. It follows
from the linearization of (3.3) that an infinitesimal displacement δp is admissi-
ble by a representation p of G if there hold

(pi − pj)
t(δpi − δpj) = 0 ∀(i, j) ∈ B,

(pi − pj)
t(δpi − δpj) ≤ 0 ∀(i, j) ∈ C,

(pi − pj)
t(δpi − δpj) ≥ 0 ∀(i, j) ∈ S.

A representation of a tensegrity framework is then infinitesimally rigid if all its
admissible infinitesimal displacements are Euclidean. Again, every infinitesi-
mally rigid representation of tensegrity framework is rigid, and almost all rigid
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representations of a tensegrity framework are infinitesimally rigid. A notion
equivalent to infinitesimal rigidity can also be defined using a force transmis-
sion approach, as in Section 3.5. A representation p of a tensegrity framework
G(V,B, S,C) is statically rigid if for any load f ∈ Eu⊥

p , there exists a λ ∈ ℜ|E|

such that −f = RT
G,pλ, with λij ≥ 0 for all (i, j) ∈ S and λij ≤ 0 for all

(i, j) ∈ C. Using algebra on cones, one can prove that static rigidity and in-
finitesimal rigidity are equivalent notions for tensegrity frameworks.

We finish this section by mentioning an interesting complementarity prop-
erty. Let G be a tensegrity framework. We call complement of G the tensegrity
framework Ḡ obtained by replacing all struts of G by cables, and all cables of
G by struts. The two frameworks represented in Figure 3.11 are for example
complement one of each other.

Proposition 3.3. A representation p of a tensegrity framework G is infinites-
imally rigid if and only if it is infinitesimally rigid as a representation of the
complement framework Ḡ.

Proof. Observe that an infinitesimal δp displacement is admissible by p as a
representation of G if and only if the opposite infinitesimal displacement −δp
is admissible by Ḡ. Moreover, since Eup is a vector space, δp ∈ Eup ⇔ −δp ∈
Eup. Therefore, every infinitesimal displacement admissible by p and G is
Euclidean if and only if every infinitesimal displacement admissible by p and
Ḡ is Euclidean.
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3.7 History and literature

Putting a precise date on the first apparition of rigidity is of course a hard, if
not impossible, task. Early human beings leaving caves must indeed have had
at least some intuitive idea of rigidity to build huts. Mentions of rigidity in
scientific works go back to at least Euler who has conjectured in 1766 that “A
closed spatial figure allows no changes, as long as it is not ripped apart” [47].

In the first part of the twentieth century, several rules for building rigid
and isostatic frameworks have been developed, for example by Henneberg in
1911 [72] and Cox in 1936 [30]. According to Tay and Whiteley [124], some of
the rules proposed were however vague or unproven, and even uncorrect [30].

A more rigorous mathematical study of rigidity has then been undertaken
since the years 1970’, following the famous theorem of Laman [84], which fully
characterizes rigidity in two-dimensional space. These works were conducted
by authors such as Asimow and Roth [6, 7], Tay [123, 124], Whiteley [129],
Gluck [56], Graver et al. [57], Lovasz and Yemini [95], and Recski [109,110].

The first appearances of formation shape maintenance by enforcement of
distance constraints seems to go back to Desai et al. [37–39] and Lewis and
Tan [85]. Further studies of the use of rigidity for autonomous agent formation
were then proposed notably by Eren et al. [41–45], by Olfati-Saber and Murray
[104,105], and by Baillieul an Suri [11].

Tensegrity, presented in Section 3.6, appears to have been defined by Richard
Buckminster Fuller in is second “Synergetics” book [54]. It was latter studied
by Calladine [24], and by various authors such as Roth, Whiteley and Con-
nely [29,114].
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Chapter 4

Persistence of Directed

Graphs

We now consider directed graphs abstracting formations governed by unilat-
eral distance constraints. Each vertex represents an agent, and a vertex i is
connected to a vertex j by a directed edge (i, j) if the agent i has the respon-
sibility of maintaining the distance between i and j constant. Our goal is to
analyze the ability of a set of unilateral distance constraints to maintain the
shape of the formation, as independently as possible from the particular control
laws used to govern the agents. Remember that when control laws are used
to satisfy the constraints, nothing guarantees a priori that all constraints will
be satisfied. To analyze this, we need to make some basic assumptions on the
agents’ behavior, which we detail in Section 4.1. We then define persistence of
a graph representation in Section 4.2 in the same way as in [64,134]. We intro-
duce infinitesimal persistence in Section 4.3. Both persistence and infinitesimal
persistence are notions defined for representations of graphs and not for graphs,
but the characterization we give in Section 4.4 shows that they are both generic
notions for graphs. Finally, we introduce in Sections 4.5 and 4.6 the related
notions of degrees of freedom and minimal persistence.

We would like to emphasize that that the concepts introduced in this chapter
are formally defined for graphs or for their representations, and are motivated
by formation issues and by the assumptions on the agents’ behavior in Section
4.1. In particular, they can be used to characterize the situation of such for-
mations at equilibrium. Whenever possible, we provide thus an interpretation
of our graph-theoretical notions in terms of autonomous agent formations.

Before going further, it is also important to notice that two opposite directed
edges (i, j) and (j, i) are not equivalent to one undirected edge. The latter
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represents a distance constraint whose responsibility is shared by two agents,
which can thus collaborate in order to maintain the prescribed distance. Two
opposite directed edges represent on the other hand two unilateral constraints
on the same distance, and the agents are not assumed to collaborate, nor even
to be aware of the fact that they are both responsible for the maintenance of the
same distance. We do not consider in this thesis hybrid formations with both
unilateral and bilateral constraints, and are not aware of any work in which
this would have been done, although it could be an interesting research topic.

4.1 Agent behavior

Let i be an agent responsible for maintaining its distance to the agents j1, . . . , jd

constant. We suppose that the behavior of i is dictated by a control law 1

ṗi = ui (p1, p2, . . . , pd) ,

where u should be invariant under rotation and translation of all agent po-
sitions, as we assume that the agents have no absolute or common notion of
positions and directions. We say that an agent is at equilibrium when ṗi = 0.
The position of an agent at equilibrium remains thus constant unless one of its
neighbors moves. To represent the fact that the control laws are designed with
the objective of satisfying the agent’s distance constraints, we need to make
basic assumptions on the conditions under which an agent is at equilibrium
according to these control laws, and on the fact that they drive the agent to an
equilibrium.

Assumption 4.1.
(a) All other agent positions being fixed, an agent reaches or asymptotically
tends to equilibrium.
(b) An agent satisfying all its distance constraints is at equilibrium.
(c) An agent not satisfying all its constraints but for which there is a position
at which it would satisfy all its constraints is not at equilibrium.

This assumption is a natural one as it just means that the control laws’ goal
is for the agent to satisfy all its constraints when it is possible. When the con-
straints assigned to an agents are compatible (i.e. simultaneously satisfiable),
Assumptions 4.1(b) and 4.1(c) reduce thus to “An agent is at equilibrium if and
only if it satisfies all its constraints”. This is for example almost always the case

1For the sake of clarity, we use here a first order control law depending only on the present
position of the neighbors. More elaborate control laws are likely to be use in practice, using
for example second order models, and the history or the positions. Our reasoning remains
valid for such control laws provided that the notion of equilibrium is appropriately redefined.
One could for example say that i is at equilibrium is ui = 0 and would remain so if all other
agent positions were fixed.
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when an agent has no more than D constraints. An agent in a D-dimensional
space can indeed satisfy at least D constraints except in some degenerated cases
(see Section 4.4 for more details). More problematic is the case of an agent for
which the constraints assigned are incompatible, about the equilibrium condi-
tion of which Assumption 4.1 does not state anything. Incompatible constraints
can appear in some degenerate cases and, more importantly, when more than
D constraints are assigned to an agent. The latter case may not be ruled out
as an unrealistic one, as redundances in structure are often used for robustness
purposes. Moreover it may be possible for an agent to simultaneously satisfy
more than D constraints, as represented for example in Figure 2.4. Following
the idea initially proposed in [63, 64], we further assume that an agent unable
to satisfy all its constraints satisfies then a maximal subset of compatible con-
straints2. Intuitively, this may be seen as the result of a greedy process, in
which the agent tries to satisfy additional constraints as long as it is possible to
do so without breaking those already satisfied. It is then at equilibrium if and
only if it cannot satisfy any additional constraint without breaking one that it
already satisfies. This behavior together with Assumption 4.1 fully characterize
the agent equilibrium conditions, and can be reformulated as

Assumption 4.2.
(a) All other agent positions being fixed, an agent reaches or asymptotically
tends to equilibrium.
(b) An agent is at equilibrium if and only if it satisfies a maximal subset of its
constraints, i.e., there is no position at which it would satisfy more distance
constraints while still satisfying those that it already satisfies.

Unlike Assumption 4.1, Assumption 4.2(b) is partly arbitrary and therefore
debatable by definition. One could have also assumed for example that the
agent minimizes some continuous cost function3. We partly explore the use of
such different hypotheses in Section 7.1.2. Assumption 4.2 represents however
well the fact that redundant constraints are added for the purpose of robustness
with respect to the “loss” of a constraint, due for example to problems of com-
munications or of measures. Note that it does not forbid the agent to choose
the constraints that it ignores when its set of constraints becomes incompatible.

Naturally, a formation is at an equilibrium when all agents are at an equi-
librium. In view of Assumption 4.2, a formation is thus at an equilibrium if no
agent can satisfy any additional constraint by modifying its position without
breaking a constraint that it already satisfies, considering the positions of the

2A maximal set of compatible constraints is a set of compatible constraints that is strictly
contained in no other set of compatible constraints. It should not be confused with a maxi-
mum set of compatible constraints, which is a set containing the largest possible number of
compatible constraints

3Such functions would however necessarily be non-convex if considered globally.
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Figure 4.1: Suppose that the desired distances are d41 = d42 = d43 = c. Agent
4 is not at equilibrium in (a) because it only satisfies the constraint on the
distance d41 while there exists a position where it could satisfy the distance
constraints on both d41 and d43. On the other hand, its position in (b) is an
equilibrium one because no point can be at a distance d42 = c of 2 in addition
to being at a distance d41 = d43 = c of 1 and 3.

other as fixed. The equilibrium of a formation can be interpreted as a Nash
equilibrium where the agents are players trying to maximize the set of satisfied
constraints. Figure 4.1 shows for example a formation at equilibrium and an-
other one that is not at equilibrium.

Constraint consistence intuitively introduced in Chapter 2 characterizes the
fact that all distance constraints are satisfied when each agent is trying to
satisfy its constraints. Intuitively, the fact that a formation is at equilibrium
means that all agents are “trying” to satisfy their constraints. A constraint
consistent formation should thus be one for which all constraints are satisfied
at equilibrium. Similarly, persistence characterize the fact that the formation
shape is maintained when each agent is trying to satisfy its constraints. A
persistent formation should thus be one for which the shape at equilibrium is
(locally) unique. We formally define and analyze persistence and constraint
consistence in the next sections. Remember however that these notions char-
acterize the situation at equilibrium and not the dynamics of the agents. They
are thus independent of the particular control laws used. On the other hand,
they do not guarantee the possibility of reaching an equilibrium, which is a non
trivial issue as there exist formations for which an equilibrium may never be
reached or approached. We analyze this question further in Chapter 5.
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4.2 Persistence and constraint consistence

Remember that the notions of graph representation, distance set realization,
congruence introduced in Section 3.1 can also be applied to directed graphs,
and so is thus rigidity. Let us now fix a directed graph G, desired distances
dij > 0 for all (i, j) ∈ E, and a representation p. Consistently with Assumption
4.2, we have the following definition of equilibrium position and representation.

Definition 4.1. Given a representation p, a vertex i is at an equilibrium
position4 pi for a distance set d̄ and a graph G if there is no p∗ ∈ ℜD for which
the following strict inclusion holds:

{(i, j) ∈ E : ||pi − pj || = dij} ⊂ {(i, j) ∈ E : ||p∗ − pj || = dij}, (4.1)

A representation is an equilibrium representation (or a representation at equi-
librium) for a certain distance set d̄ and graph G if all the vertices are at
equilibrium positions for d̄ and for G.

Note that any realization of a distance set is always an equilibrium represen-
tation of this distance set, as it satisfies by definition all distance constraints.
As a consequence, any realizable distance set trivially admits equilibrium rep-
resentations. But when the distance set is not realizable, the existence of an
equilibrium representation is possible but not guaranteed. As a simple exam-
ple, consider a cycle graph of length 3, and a distance set that does not satisfy
the triangular inequality. The distance set is not realizable, so there is no rep-
resentation simultaneously satisfying the three constraints. On the other hand,
the vertices have an out-degree 1, so that there is always a p∗ for which the
inclusion (4.1) holds if the constraint corresponding to their out-going edge is
not satisfied. There is thus no equilibrium representation. All distance sets
considered in the sequel are however realizable as they are induced by graph
representations, so that they always admit equilibrium representations. We can
now formally define the concepts of constraint consistence and persistence.

Definition 4.2. A representation p of a graph G is constraint consistent if
there is a neighborhood of p in which every representation that is at equilibrium
for the distance set induced by p and G is a realization of this distance set.
A representation p of a graph G is persistent if there is a neighborhood of p in
which every representation that is at equilibrium for the distance set induced by
p and G is congruent to p.

The following theorem shows that we could have alternatively defined per-
sistence as the intersection of rigidity and constraint consistence, where rigidity
was introduced in Section 3.1 for both directed and undirected graphs.

4“equilibrium position” is preferred to the term “fitting position” used in [63] as it corre-
sponds more to the interpretation of the notion given in Section 4.1
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Figure 4.2: The formation represented in (a) is constraint consistent. Each of
1, 3 and 4 can indeed always satisfy its unique distance constraint. On the
other hand, the representation (b) is not constraint consistent because there
exists a configuration of positions of 1, 2 and 3 such that 4 is unable to satisfy
its three distance constraints.

Theorem 4.1. A representation of a directed graph is persistent if and only
if it is rigid and constraint consistent.

Proof. Let p be a rigid and constraint consistent representation, and call Nr

and Nc the neighborhood of p coming from the application of the definitions of
rigidity and constraint consistence to p. Take now a representation p′ ∈ Nr∩Nc

that is at equilibrium for the distance set induced by p. The constraint consis-
tence of p implies that p′ is a realization of this distance set, and the rigidity
of p implies then that p and p′ are congruent.

Conversely, consider now a persistent representation p of a graph G, its
induced distance set d̄, and the neighborhood N coming from the application
of the definition of persistence to p. We show that this neighborhood is appro-
priate for both constraint consistence and rigidity. Since p is persistent, any
representation p′ ∈ N at equilibrium for G and d̄ is congruent to p, and is
thus a realization of d̄. The representation p is therefore rigid. Moreover, any
realization p′ ∈ N of d̄ by definition also an equilibrium representation for d̄.
The persistence of p implies then that it is congruent to p, which is therefore
also rigid.

Note that this result formally holds for any definition of equilibrium rep-
resentation, provided that every realization of a distance set is at equilibrium
for this distance set. Before continuing, we believe important to insist on the
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fact that as rigidity, the notions of persistence and constraint consistence are
defined with respect to local variations of positions. They can thus a priori
not be applied when large deformations are considered. We see in Section 7.1.3
that this can cause practical problems for formations that are constraint con-
sistent but not rigid, due to the possibility of having large deformations while
satisfying all constraints. Persistent formations are however immune to those
phenomena.

4.3 Infinitesimal persistence

As with rigidity and infinitesimal rigidity, it is convenient to use the notion of
infinitesimal persistence, which corresponds to a first order analysis of persis-
tence. We do not analyze formally the link between persistence and infinitesi-
mal persistence, but we arrive in Section 4.4 at a characterization of infinites-
imal persistence equivalent to the characterization of persistence in [64, 134],
proving the equivalence of the two notions (up to a zero-measure set as will be
seen).

Let us again consider a representation p of a graph G, and an infinitesimal
displacement δp, which as in Section 3.2 is assumed to be sufficiently small
so that ||δp||

2
is negligible. Suppose that i is connected by directed edges to

j1, j2, . . . , jd+

i
. The distance constraints corresponding to the outgoing edges of

i are
||(pi + δpi) − (pjk

+ δpjk
)||

2
= ||pi − pjk

||
2

for k = j1, j2, . . . , jd+

i
. Due to our linearization hypothesis ||δp||

2
= 0, this is

equivalent to
(pi − pj1)

T (δpi − δpj1) = 0
(pi − pj2)

T (δpi − δpj2) = 0
...

(pi − pj
d
+
i

)T (δpi − δpj
d
+
i

) = 0.

(4.2)

This system is actually the restriction of the system (3.2) RG,pδp = 0 to the
lines of the rigidity matrix corresponding the edges leaving i. It is therefore
satisfied by any admissible δp.

From an autonomous agent point of view, the agent i has the responsibility
for the satisfaction of the constraints (4.2), but can only act on its own dis-
placement5 δpi. According to Assumption 4.2, it is thus at equilibrium if and
only if it satisfies a maximal set of those constraints, considering all other agent
displacements δpj as fixed. The formation is then at equilibrium if no agent

5We assume here that i is not taking the potential reaction of other agents to its action
into account.
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could satisfy any additional constraint without breaking one that it already
satisfies, considering the displacement of the other agents as fixed.

To formalize this idea, let us rewrite the system (4.2) in a way that empha-
sizes the role of δpi,











(pi − pj1)
T

(pi − pj2)
T

...
(pi − pj

d
+
i

)T











δpi =











(pi − pj1)
T δpj1

(pi − pj2)
T δpj2

...
(pi − pj

d
+
i

)T δpj
d
+
i











. (4.3)

Observe that the matrix of the system (4.3) contains d+
i lines and D columns.

For almost all representations, any subset of at most D lines is thus linearly
independent. So if the right hand-side term is considered as fixed, then for
almost all representations this system admits a unique solution when d+

i = D
and a non-unique one when d+

i < D. We say that i is at equilibrium with δpi

(with respect to p, G, and δp), if δpi satisfies a maximal subsystem of (4.3),
that is, if there is no δp∗i ∈ ℜD satisfying all equations of (4.3) satisfied by δpi

and at least another one, all other δpj being fixed. We say then that the in-
finitesimal displacement δp is an equilibrium infinitesimal displacement if every
vertex i ∈ V is at equilibrium with δpi, and denote by EquilG,p the set of equi-
librium infinitesimal displacement for a representation p of a directed graph G.
We can now formally define infinitesimal persistence and constraint consistence.

Definition 4.3. A representation p of a directed graph G is infinitesimally
constraint consistent if all its equilibrium infinitesimal displacements are ad-
missible, that is if EquilG,p ⊆ KerRG,p holds.
A representation p of a directed graph G is infinitesimally persistent if f all its
equilibrium infinitesimal displacements are Euclidean, that is if EquilG,p ⊆ Eup

holds.

The structure of EquilG,p is a priori unknown, but clearly every admissi-
ble infinitesimal displacement is in EquilG,p as for such displacements all con-
straints are satisfied. We have thus the inclusion relation Eup ⊆ KerRG,p ⊆
EquilG,p. The following theorem analogous to Theorem 4.1 follows then di-
rectly from the definitions of infinitesimal rigidity, constraint consistence, and
persistence.

Theorem 4.2. A representation of a directed graph is infinitesimally persistent
if and only if it is infinitesimally rigid and infinitesimally constraint consistent.
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Figure 4.3: The representation (a) is degenerate (in ℜ2) as the vectors (p2−p1)
and (p3 − p1) define a one-dimensional space. On the other hand (b) is non-
degenerate as the same two vectors define a two dimensional-space.

4.4 Characterization and generic character

Infinitesimal constraint consistence and persistence are notions defined for rep-
resentations of graphs and not for graphs. We now show that they are also
generic notions and give a characterization of constraint consistent and per-
sistent graphs. To establish this generic character, we need a notion of non-
degenerate representation. A representation p of a directed graph G is non-
degenerate if for any i and any subset {j1, j2, . . . , jn′

i
} of at most D of the

vertices to which it is connected by directed edges, the collection of vectors
{

(pj1 − pi), (pj2 − pi), . . . , (pjn′
i
− pi)

}

spans a n′
i-dimensional space. Exam-

ples of degenerate and non-degenerate representations are shown in Figure 4.3.
Clearly, the set of degenerate representations has zero measure.

Lemma 4.1. Let p be a non-degenerate representation of a directed graph G
and δp be an infinitesimal displacement. The vertex i is at equilibrium with

δpi if and only if the constraints corresponding to at least min
(

D, d+
i,G

)

of its

outgoing edges are satisfied. As a consequence, δp is an equilibrium infinitesi-

mal displacement if and only if, for each i, at least min
(

D, d+
i,G

)

constraints

corresponding to edges leaving i are satisfied by δp.

Proof. Consider a δp, one particular vertex i and its associated system (4.3).
Since p is non-degenerate, every collection of at most D lines of the system
matrix is linearly independent. As a consequence, every subsystem of at most
D equations admits a solution, and this solution is unique if the subsystem
contains exactly D equations.
Suppose first that d+

i ≤ D, that is, that the system associated to i contains no
more than D equations. Then it admits a solution, so that i is at equilibrium
if and only if it satisfies all equations. Suppose now that the system contains
more than D equations and that δpi satisfies S of them. If S < D, then
there is a subsystem of D equations containing those already satisfied and
admitting a solution, and i is not at equilibrium. On the other hand, if S ≥ D,
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Figure 4.4: Examples of closed subgraphs, minD-subgraphs and strict minD-
subgraphs (with D = 2). Gb is a closed subgraph of G as all vertices of Ga

have the same out-degree as in G. Gc and Gd are strict min D- subgraphs of G
as all their vertices have an out-degree 2 or the same out-degree as in G when
it is smaller than 2. Note that Gd is a proper subgraph although it contains all
the vertices of G.

then the subsystem of satisfied equations admits a unique solution, so that
no different δp∗i could satisfy another equation in addition to the S already
satisfied. i is thus at equilibrium (for p and δp) if and only if δpi satisfies at

least min
(

D, d+
i,G

)

equations of (4.3). The first part of the result follows then

from the fact that the equations of the system (4.3) for each i are equivalent to
those in RG,pδp = 0 restricted to the lines of the rigidity matrix corresponding
to the outgoing edges of i. The second part of the result follows from the fact
that an equilibrium infinitesimal displacement is one for which every i is at
equilibrium.

The notion of closed subgraph of a directed graph is well known. A subgraph
G′(V ′, E′) of G(V,E) is a closed subgraph of G if all vertices of V ′ have the
same outgoing edges in G′ as in G. Equivalently, G′ is a closed subgraph of
G if all its vertices have the same out-degree in G′ as in G. Motivated by
Lemma 4.1, we introduce a more general class of subgraphs. A subgraph G′

is a a min D-subgraph of G if every vertex of G′ has in G′ an out-degree at
least D or equal to its out-degree in G if the latter is smaller than D. In other

words, if there holds d+
i,G′ ≥ min

(

D, d+
i,G

)

. We say that such a subgraph is

a strict min D-subgraph if the condition is tied, that is if it contains no vertex
with an out-degree larger than D. In a strict minD-subgraph, there holds

thus d+
i,G′ = min

(

D, d+
i,G

)

. Examples of such subgraphs are shown in Figure

4.4. It trivially follows from these definitions that every closed subgraph is a
min D-subgraph, although not necessarily a strict one.

Intuitively, observe that the information about other agent’s position in a
formation travels in the directions opposite to the edges. Agents in a closed
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subgraph G′ ⊆ G receive thus no information about agents in G \ G′ because
no edge leaves G′. Besides, when an agent has more than D constraints, it may
select D or more of them and ignore the others if they become incompatible.
It then ignores the information travelling on the corresponding edges. So, in a
min D-subgraph G′ ⊆ G, the agents may receive information about agents in G\
G′ but are not necessarily influenced by it, because all constraints corresponding
to edges leaving G′ can simultaneously be ignored. Even if the subgraph is not
closed, the agents may thus behave independently of the rest of the formation.
For this reason, we called such subgraphs “practically closed subgraphs” in [133,
134]. The term min D-subgraph is preferred here for conciseness and readability
reasons. Note that the selection of constraints described above is of course not
necessarily unique, and could change with time.

Lemma 4.2. Let p be a non-degenerate representation of a directed graph G.
δp is an equilibrium infinitesimal displacement for p and G if and only if δp
is admissible by p and at least one strict min D-subgraph S of G containing all
the vertices of G, that is, if there is such an S for which δp ∈ KerRS,p.

Proof. Consider a graph G and a non-degenerate representation p of G in ℜD.
Suppose that δp is an equilibrium infinitesimal displacement. It follows from

Lemma 4.1 that for each i, at least min
(

D, d+
i,G

)

of the constraints correspond-

ing to the outgoing edges of i are satisfied. Let us build a subgraph S of G

by taking all the vertices of G and, for each vertex i, min
(

D, d+
i,G

)

outgoing

edges whose corresponding constraints are satisfied. S is by construction a
strict min D-subgraph G. Moreover δp is admissible by S since it satisfies the
constraints corresponding to all edges of S.
To prove the reverse implication, suppose now that δp is admissible by p and
consider a strict min D-subgraph S on all vertices of G. For each i, δp satisfies

at least min
(

D, d+
i,G

)

constraints corresponding to edges leaving i, which by

Lemma 4.1 implies that δp is an equilibrium infinitesimal displacement for p
and G.

We can now give a characterization of (infinitesimal) constraint consistence
and persistence6.

Theorem 4.3. Let G be a directed graph. A non-degenerate representation p
of G in ℜD is constraint consistent if and only if rankRG,p = rankRS,p holds
for every subgraph min−D-subgraph S of G.
As a consequence, p is infinitesimally persistent as representation of G if it is
infinitesimally rigid as a representation of all min D-subgraphs of G subgraphs
in Σ(G).

6In [64, 134] we only gave a characterization of persistence, which was a particular case
of the characterization of constraint consistence. Different characterizations of constraint
consistence have also been obtained independently by Jia Fang [50].
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Proof. Let Σ(G) be the set of min−D-subgraphs of G. By Lemma 4.2, there
holds EquilG,p =

⋃

S∈Σ(G) KerRS,p. And by Definition 4.3, p is infinitesimally
constraint consistent as a representation of G if and only if EquilG,p ⊆ KerRG,p

holds. It is thus infinitesimally constraint consistent if and only if KerRS,p ⊆
KerRG,p holds for every S ∈ Σ(G). Since KerRG,p ⊆ KerRS,p holds trivially
for every S ⊆ G, this condition is equivalent to rankRG,p = rankRS,p.
The result for infinitesimal persistence follows then from Theorem 4.2 and from
the fact the infinitesimal rigidity only depends on the rank of the representation
rigidity matrix.

A consequence of this theorem is that a representation p of a directed graph
G is infinitesimally constraint consistent if and only if EquilG,p is a vectorial
space. More importantly, since the rank of the rigidity matrix is a generic
notion, Theorem 4.3 shows that both infinitesimal constraint consistence and
persistence are actually generic notions. We have then the following two theo-
rems:

Theorem 4.4. A graph is (infinitesimally) constraint consistent in ℜD if all its
strict min D-subgraphs on all its vertices have the same generic rigidity matrix
rank as itself.

Theorem 4.5. A graph is (infinitesimally) persistent in ℜD if all its strict
min D-subgraphs on all its vertices are rigid.

This last condition is exactly the one obtained in [64,134] for persistence, so
that persistence and infinitesimal persistence are equivalent notions. Moreover,
one could also prove that infinitesimal constraint consistence is equivalent to
constraint consistence7. For the sake of conciseness, we therefore say in the
sequel that a graph is persistent in ℜD if almost all its representations in ℜD

are infinitesimally persistent and that a graph is constraint consistent if almost
all its representations in ℜD are infinitesimally constraint consistent. These
notions depend thus again on the particular dimension in which the graph is
suppose to be represented. Moreover, we omit in the sequel the word “infinites-
imal” except when it is essential.

Figure 4.5 shows an example of application of Theorem 4.5. The graph in
Figure 4.5(a) is rigid but not persistent for ℜ2. Observe that only the vertex
3 has an out-degree larger than 2. The strict minD-subgraphs on all vertices
are thus obtained by taking two edges leaving 3 and all edges leaving other ver-
tices. Since at least one such graph, represented in Figure 4.5(b), is not rigid,
the graph in Figure 4.5(a) is not persistent. From an autonomous agent point
of view, 3 has an out-degree 3 and can thus be led to “ignore” one of them.

7This is not theoretically difficult, but long. Moreover, it does not provide more insight
on the notion than the result for infinitesimal constraint consistence.
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Figure 4.5: The graph (a) is rigid but not persistent for ℜ2 because one of its
strict min D-subgraph on all its vertices is (b), which is not rigid. Besides, the
graph (a) can be obtained by adding an edge to the provably persistent graph
(c), which proves that persistence is not necessarily preserved by addition of
edge.

It if ignores (3, 1), the remaining graph is not rigid and thus not sufficient to
maintain the formation shape. Observe also that the graph in Figure 4.5(a) is
obtained from the provably persistent graph in Figure 4.5(c) by addition of only
one edge. This shows that persistence is not necessarily preserved by addition
of an edge, a major difference between rigidity and persistence. From an au-
tonomous agent point of view, the addition of an edge introduces a redundant
constraint. In the presence of too many redundant constraints, a combination
of unfortunate selections among the various possible constraints architecture
available to the agents may lead to one that does not preserve the shape, as
the one in Figure 4.5(b).

The criterion of Theorems 4.3 and 4.5 does not immediately lead to a
polynomial-time algorithm to check the persistence of a directed graph, as
it requires checking the rigidity of a number of subgraphs that can grow ex-
ponentially with the graph size. The existence of a polynomial-time algorithm
remains actually an open question (see Section 7.2.3) in the general case. Re-
sults can however be obtained for particular classes of directed graphs, as will
be seen in Chapter 6.

The following corollaries are direct consequences of Theorems 4.4 and 4.5:

Corollary 4.1. A graph is persistent if and only if it is rigid and constraint
consistent.
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Corollary 4.2. Every graph containing no vertex whose out-degree is larger
than D is constraint consistent in ℜD. As a consequence, such a graph is
persistent in ℜD if and only if it is rigid.

Corollary 4.3. Let G be a graph that is persistent in ℜD. A graph obtained
from G by removing an edge leaving a vertex with an out-degree larger than D
is also persistent in ℜD.

Proof. Let G′(V,E′) be a graph obtained from G(V,E) by removing an edge
leaving a vertex with an out-degree larger than D. For every i ∈ V , there holds

min
(

D, d+
i,G′

)

= min
(

D, d+
i,G

)

. Therefore, every strict min D-subgraph of G′

is also a strict min D-subgraph of G. The result follows then from Theorem
4.5, stating that persistence of a graph is equivalent to the rigidity of all its
min D-subgraphs.

4.5 Degrees of freedom

In a non-degenerate representation, for a vertex i to be at equilibrium, δpi

must either a solution of the system (4.3) or a solution of one of its subsystems
containing at least D equations. Considering the other displacements δpj as
fixed, there is thus a unique δpi for which it is at equilibrium if the out-degree d+

i

is D or more. But if d+
i < D, the set of δpi for which i would be at equilibrium

is a (D−d+
i )-affine variety. In the corresponding autonomous agent formation,

this intuitively means that the agent i has in the latter situation some degrees
of freedom or of decision in the choice of its displacement.

Definition 4.4. The number of degrees of freedom (in ℜD) of a vertex in
a directed graph is the generic dimension of the set of its possible equilibrium
displacement (in ℜD), considering the other displacements as fixed.

The following proposition allowing the computation of the number of de-
grees of freedom follows directly from the discussion above.

Proposition 4.1. Let G(V,E) be a directed graph. The number dofi,G of
degrees of freedom of a vertex i ∈ V in ℜD is D − min

(

D, d+
i

)

.

We now show that the total number of degrees of freedom in a persistent
graph is bounded by the number of independent rotations and translations in
a D-dimensional space.

Proposition 4.2. The sum of the degrees of freedom over all vertices of a
persistent graph is at most fD = 1

2D(D + 1).

Proof. Let G(V,E) be a directed graph and S(V,ES) be a strict min D-subgraph
subgraph of G on all its vertices. Vertices having no degree of freedom in G
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Figure 4.6: Example of persistent graph in ℜ2 in which no vertex has any degree
of freedom.

have an out-degree D in S. A vertex i having dofi,G > 0 degrees of in G has
an out-degree d+

i,S = D − dofi,G in S. The number of edges in S is thus

ES =
∑

i∈V

d+
i,S =

∑

i∈V

(D − dofi,G) = nD − dof(S),

where dof(S) is the sum over all vertices of S of their number of degrees of
freedom. It follows from the persistence of G and Theorem 4.5 that S is rigid
and contains therefore at least nD − fD edges. There holds thus dof(S) ≤
fD.

There exist however graphs for which the total number of degrees of free-
dom is smaller than fD, even if they contain more than D − 1 vertices. See
for example the graph in Figure 4.6. This may seem paradoxical as there is
generically fD degrees of freedom when representing a rigid graph in ℜD, or
when assigning a Euclidean displacement to this graph. To understand this
apparent paradox, remember that the number of degrees of freedom that we
have defined characterizes for each agent in a formation the dimension of the
space in which it can choose its equilibrium position/displacement, considering
the other agents as fixed. It concerns therefore the displacements resulting from
the decision of a single agent, and not from a collective decision8. In Figure
4.6 for example, a collective decision could allow a 3-dimensional space of dis-
placement, although no agent alone has the power to make the formation move.
Collective decisions are however not considered in the persistence framework
and are beyond the scope of this thesis.

We now show that, except if it belongs to some closed subgraph on less
than D vertices, each vertex is connected by a directed path to all vertices
having degrees of freedom. Intuitively, remember that in the autonomous agent
formation, the information travels in the directions opposite to the edges. This

8For this reason, “degree of decision” would probably be a more appropriate terminology
than “degree of freedom”. However, we prefer here to use the latter phrasing so as to be
consistent with previously published work [64,69,134].
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means that the information about the decisions taken by the agent with degrees
of freedom can reach every agent in the formation, except some agent having
a sufficient freedom.

To prove this result, we introduce the notion of redundance number of a
rigid graph for a particular dimension. The redundance number rD(G) of a
graph G for ℜD is defined by rD(G) = |E| − nD + fD if n ≥ D and by
rD(G) = 0 if n < D. For a rigid graph, it follows from Theorem 3.1 that
the redundance number corresponds to the maximal number of edges that can
be removed without breaking rigidity. More generally it is always possible to
remove rD(G) edges to a graph without affecting the generic rank of its rigidity
matrix, as this rank is never larger than nD − fD when n ≥ D.

Lemma 4.3. Let G∗(V ∗, E∗) be a subgraph of a rigid graph G(V,E). There
holds rD(G∗) ≤ rD(G).

Proof. If G∗ or G contains less than D vertices, the result is trivial. Otherwise,
the rigidity of G together with Theorem 3.1 implies the existence of a subgraph
G′(V,E′) of G on the same vertices such that |E′| = D |V | − fD, and for any
subgraph G′′(V ′′, E′′) of which there holds |E′′| ≤ D |V ′′| − fD. In particular,
considering the subgraph G′ ∩ G∗, there holds |E′ ∩ E∗| ≤ D |V ∩ V ∗| − fD =
D |V ∗| − fD. Moreover, it follows from the definition of rD(G) that G′ is
obtained from G by removing rD(G) edges. Therefore the intersection of G′

with G∗ ⊆ G is obtained from G∗ by removing at most rD(G) edges, and we
have

|E∗ ∩ E′| ≥ |E∗| − rD(G).

Since |E∗ ∩ E′| is no greater than D |V ∗| − fD, this leads to

|E∗| ≤ D |V ∗| − fD + rD(G),

and thus by definition of rD(G∗) to rD(G∗) ≤ rD(G).

Theorem 4.6. Let G(V,E) be a persistent graph for ℜD. If i ∈ V does not
belong to any closed subgraph on less than D vertices, there are directed paths
starting at i and reaching all vertices with positive number of degree of freedom.
As a consequence, every closed subgraph on at least D vertices contains all
vertices with positive number of degrees of freedom.

Proof. Let Vi be the set of vertices in G that can be reached from i via a di-
rected path. Let then F =

∑

j∈V dofG(j) and Fi =
∑

j∈Vi
dofG(j) be the sum

over all vertices of respectively V and Vi of their number of degrees of freedom
in G or equivalently in S. Obviously, Fi ≤ F . We now show that Fi ≥ F also
holds, so that the number of degrees of freedom in the set of vertices reachable
from i is the same as the number of degrees of freedom in the whole graph,
which implies the desired result. The relation between the different graphs and
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Figure 4.7: Illustration of different graphs and sets appearing in the proof of
Theorem 4.6. In (a), Vi is the set of vertices that can be reached from a certain
vertex i in a graph G. A strict min 2-subgraph S of G is shown in (b), and its
restriction Si to the vertices of Vi in (c). The symbol “*” represents one degree
of freedom.

sets introduced in the sequel is illustrated by an example in Figure 4.7.

Consider a strict min D-subgraph S(V,ES) ⊆ G on all the vertices of
G. It follows from Theorem 4.5 that S is rigid. Moreover, the definition of
number of degrees of freedom implies that the vertices have the same num-
ber of degrees of freedom in S as in G. The number of edges in S is then
∑

j∈V d+
S (j) =

∑

j∈V (D − dofS(j)) = |V |D − F , and the redundance number
of S is rD(Si) = D |V | − F − |V |D + fD = fD − F

Let now Si be the restriction of S to the vertices of Vi. By construction every
edge of ES ⊆ E leaving a vertex of Vi arrives at a vertex of Vi. The vertices of
Vi have thus the same out-degree and number of degrees of freedom in Si as in
S, and their number of degrees of freedom is also the same as in G. The total
number of edges in Si is thus |ESi| =

∑

j∈Vi
d+

Si
(j) =

∑

j∈V (D − dofSi
(j)) =

|V |D − Fi. By assumption, |Vi| ≥ D. Therefore the redundance number of Si

is rD(Si) = D |Vi| − Fi − |Vi|D + fD = fD − Fi. It follows then from Lemma
4.3 that Fi ≥ F , which as explained above proves our result.

Since a vertex with no degree of freedom has at least D neighbors and is
therefore never in a closed subgraph of less than D vertices, this implies that
every vertex without degree of freedom is connected by directed paths to all
vertices with positive number of degrees of freedom. Moreover, it follows from
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Theorem 4.5 that every min D-subgraph on all the vertices of a persistent graph
is persistent. In each such subgraph, a vertex with at least D neighbors is thus
connected to every vertex with positive number of degrees of freedom in the
initial graph, as the degrees of freedom in the initial graph are also present
in the minD-subgraph. From a formation point of view, remember that the
agents may “ignore” the information travelling on some edges as long as the
edges that are not ignored constitute a minD-subgraph. This means thus that
the agents receive the information about the decisions made by those with
degrees of freedom for any allowed choice of ignored constraints.

4.6 Minimal persistence

We say that a graph is minimally persistent in ℜD if it is persistent in ℜD and if
no graph obtained from it by removing one or several of its edges is persistent in
ℜD. Clearly, every persistent graph contains a minimally persistent subgraph
on all its vertices. The converse is however not true, as adding an edge to a
(minimally) persistent graph does not necessarily lead to a persistent graph.
The graph in Figure 4.5(a) contains for example the (minimally) persistent
graph of Figure 4.5(c) as subgraph.

Theorem 4.7. Let G(V,E) be a directed graph. The following conditions are
equivalent:
(a) G is minimally persistent;
(b) G is minimally rigid and its largest out-degree is at most D;
(c) G is persistent and minimally rigid;
(d) G is persistent and contains D |V |−fD edges if |V | ≥ D and 1

2 |V | (|V |−1)
edges if |V | < D;
(e) G is persistent and contains a minimal number of edges, i.e., every persis-
tent graph on |V | vertices has at least |E| edges.

Proof. (a) ⇒ (b): It follows from Corollary 4.3 that a minimally persistent
graph has no vertex with an out-degree larger than D, for otherwise one could
obtain a smaller persistent graph by removing an edge leaving such a vertex.
Moreover, if such a graph is not minimally rigid, there is at least one edge
whose removal gives a rigid graph, which by Corollary 4.2 is also persistent.

(b) ⇒ (c): Corollary 4.2 implies that every rigid graph graph with no out-
degree larger than D is persistent.

(c) ⇒ (a): If G is minimally rigid, the removal of any of its edges leads to
a non-rigid graph, which by Corollary 4.1 is therefore not persistent. So if G is
also persistent, is minimally persistent.
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(c) ⇔ (d): Suppose that G is persistent and therefore rigid. If |V | ≥ D,
it follows from Theorem 3.1 that G is minimally rigid if and only if |E| =
D |V | − fD holds. If |V | < D, the result follows from the fact G is then rigid if
and only if every pair of vertices is connected by an edge.

(d) ⇒ (e): Every persistent graph is rigid, and it follows from Theorem
3.1 that a rigid graph contains at least D |V | − fD edges if |V | ≥ D and
1
2 |V | (|V | − 1) edges else. Therefore, if G satisfies the condition (d), no graph
having the same number of vertices but less edges than G is persistent.

(e) ⇒ (a): If G is persistent and no graph having the same number of
vertices and less edges is persistent, then the removal of any edge of G leads
clearly to a non-persistent graph, so that G is minimally persistent.

This theorem implies that persistence can be checked in linear time when
the graph is minimally rigid (b ⇔ c), and that minimal persistence can be
checked in linear time when the graph is persistent (a ⇔ d). The following
corollary follows immediately from Theorem 4.7 and Proposition 4.1

Corollary 4.4. The total number of degrees of freedom in a minimally persis-
tent graph on D or more vertices is always fD.

4.7 Double edges

To close this chapter, we would like to remove the possible ambiguity that
could arise in the presence of so-called “double-edges”. Since the graphs are
directed, we may have a case in which i is linked to j by a directed edge
(i, j), and j to i by another directed edge (j, i). As explained in Section 4.1,
these two directed edges representing two unilateral distance constraints on
the same distance are not equivalent to one undirected edge representing a
bilateral distance constraint. In all the results about persistence and rigidity,
they are considered as two different edges, and the fact that they connect the
same pair of vertices is not taken into account. For rigidity however, such edges
are exactly equivalent to one single edge, as the algebraic expression of their
corresponding constraints are indeed identical. One of them can thus always be
removed without losing rigidity. The following results shows that one of them
can always be removed from a persistent graph without losing persistence. This
means that such edges are never needed to ensure persistence. Moreover it has
been argued in [11] that “double-edges” may cause some instabilities when some
class of control laws is used.

Proposition 4.3. Let i, j be two vertices of a persistent graph G(V,E) such
that (i, j) ∈ E and (j, i) ∈ E. Then at least one of the two graphs obtained
from G by removing (i, j) or (j, i) is persistent.
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Figure 4.8: The graph represented in (a) is (minimally) persistent in ℜ2, as can
be seen using Theorem 4.7. The graph represented in (b), obtained by adding
one additional edge (2, 4) between agents which were already connected by the
edge (4, 2) in the opposite direction, is not persistent in ℜ2. It contains indeed
the non-rigid graph (c) as strict minD-subgraph.

Proof. If one vertex among i and j has an out-degree larger than D, the result
follows directly from Lemma 4.3. If both have an out-degree no greater than
D, then both (i, j) and (j, i) belong to all strict min D-subgraph of G on all
its vertices. The removal of anyone of those two edge preserves therefore the
rigidity of all these subgraphs. By Theorem 4.5, it also preserves the persistence
of the graph.

The converse implication is however not true as shown by the example
in Figure 4.8. Another consequence of Proposition 4.3 is that a minimally
persistent graph never contains double-edges.

4.8 History and literature

The main results in this Chapter appeared first in [63, 64] for two-dimensional
spaces and were then extended to higher dimensional spaces in [67,133,134] (ex-
cept for Theorem 4.6 which was first published in [67,133,134]). The difference
between the way they are obtained here and in those publications comes from
the use of infinitesimal displacements to define persistence and constraint con-
sistence. This allows indeed simpler proofs using linear algebraic tools. Besides,
the proof of Theorem 4.6 and Lemma 4.3 on which it is based are new.



Chapter 5

Structural Persistence

5.1 Convergence to equilibrium

Persistence and constraint consistence defined in Chapter 4 characterize for-
mations at equilibrium. They do not however take the convergence to this
equilibrium into account. Indeed, although Assumption 4.1 states that every
agent’s control law leads it to an equilibrium if all other agents are fixed, it
does not say anything about convergence of the entire formation. Neglecting
the convergence of the formation could have dramatic consequences. Consider
for example the graph represented in Figure 5.1(a). It follows from Corollary
4.2 that this graph is persistent in ℜ3. Observe however that agents 1 and
2 are not responsible for any distance constraint, and can thus freely choose
their positions or displacements. Even if the distance between the positions
they choose is different from the distance separating them in the reference rep-
resentation as in Figure 5.1(b), they are at equilibrium and there is no reason
for them to change their position. But in such a situation, the shape of the
formation is obviously not preserved.

This apparent paradox is not in contradiction with the persistence of the
graph. Agents 3, 4 and 5 are indeed responsible for three constraints each.
Considering the positions of the four other agents as fixed, each of them is able
to satisfy all its constraints. As a result, each of these agents is at equilibrium if
and only if it satisfies its three constraints. But despite the ability of each agent
to satisfy individually all its constraints, it may not be possible for 3, 4 and 5
to simultaneously satisfy all their constraints, so that they are never simulta-
neously at equilibrium. More formally, a representation in which the distance
between 1 and 2 is not the same as in the reference representation is never an
equilibrium representation, because there always is at least one vertex that has
not an equilibrium position. The non-congruence of such a representation to

77
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Figure 5.1: (a) Persistent representation (in ℜ3) of a graph for which the con-
vergence to an equilibrium is not guaranteed. 1 and 2 have indeed no constraint
and can therefore freely choose their positions. They can then keep their po-
sitions independently of the positions of 3, 4 and 5. If, as in (b), the distance
between the position they choose is not the same as in the reference repre-
sentation, it becomes impossible for 3, 4 and 5 to simultaneously satisfy all
their constraints, although each of them could satisfy its three constraints if
the other were fixed. As a consequence, they never converge to equilibrium.
No such example is possible in the plane.
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the initial representation does thus not contradict the persistence or constraint
consistence of the graph.

The example of Figure 5.1 shows the importance of taking the convergence
issue into account when analyzing the ability of a structure of unilateral distance
constraints to preserve a formation shape. A complete characterization should
provide a guarantee that all agents converge to equilibrium. And a necessary
condition for this is the absence of invariant set (in the position domain) whose
closure contains no equilibrium representation. More formally, let p(t) ∈ ℜnD

be the vector containing all agent positions pi(t) ∈ ℜD at time t, One should
make sure that there exists no S ⊆ ℜnD such that

• If p(t) ∈ S, then p(t′) ∈ S for all t′ ≥ t.

• No p ∈ S̄ is an equilibrium representation.

In the example of Figure 5.1, the set S := {p1 = p∗1; p2 = p∗2; p3, p4, p5 ∈ ℜD}
is such a forbidden set for almost all p∗1, p

∗
2 ∈ ℜD, as agents 1 and 2 keep their

position independently of the other agent’s positions.

There is no full characterization available yet of the set of directed graphs
for which each invariant set’s closure contains at least an equilibrium represen-
tation. It is however possible to characterize the directed graphs ruling out a
subset of those problematic invariant sets: those in which some of the agents
positions or displacements are fixed while other are totally free. This leads to
the notion of structural persistence presented below and introduced in [134].
No problematic invariant set has been found yet that cannot be treated using
structural persistence and the graph of Figure 5.1 is for example not struc-
turally persistent. Moreover, we will show below that every graph persistent
in ℜ2 is structurally persistent, and a graph persistent in ℜ3 is structurally
persistent if and only if it does not contain two vertices with three degrees of
freedom each.

5.2 Structural persistence

Let p be a representation of a graph G(V,E). We call partial (infinitesimal)
displacement a subset of vertices Vc ⊆ V together with an (infinitesimal) dis-
placement δpi for each i ∈ Vc. We denote it by δpVc

. A partial displacement
is thus the restriction of a displacement to a subset of the vertices. For a par-
tial displacement δpVc

, any displacement δp whose restriction to Vc is δpVc
is

called a completion of δpVc
. Finally, we say that a partial displacement δpVc

is a partial equilibrium (for p and G) if, for any completion δp of δpVc
(i.e.

for any assignment of displacements to the vertices of V \ Vc), every i ∈ Vc

is at equilibrium with its δpi. In the a representation of the graph of Figure
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5.1 for example, any assignment δp1, δp2 is a partial equilibrium. 1 and 2 have
indeed an out-degree 0, and are thus always at equilibrium independently of
their displacement and of those of the other vertices.

Definition 5.1. A representation p of a graph G is structurally persistent
(respectively constraint consistent) if it is persistent (respectively constraint
consistent) and if every partial equilibrium can be completed to obtain an equi-
librium displacement, that is an displacement for which every vertex is at equi-
librium.

Intuitively, a representation that is constraint consistent but not structurally
constraint consistent is one in which

a) Some agents in a subset Vc could take positions such that they are at
equilibrium independently of the positions of the agents in V \ Vc, and have
thus no reason to move;

b) Due to the positions of the agents in Vc, it becomes impossible for the
other agents to be all simultaneously at equilibrium.
This situation corresponds thus to a invariant set defined by fixing some agent
positions while keeping other free, and that contains no equilibrium position
for the whole formation.

5.3 Characterizing structural persistence

Although we have also defined structural constraint consistence, our analysis
in the sequel focusses solely on structural persistence. We refer the reader to
Section 7.1.3 for more information on constraint consistence in the absence of
rigidity.

We have intuitively argued that the agents in a minD-subgraph can ignore
all information coming from outside the subgraph. Provided that they satisfy
sufficiently many constraints inside the subgraph, they can thus be at equilib-
rium independently of the agents out of the subgraph. The following lemma
establishes this formally, and also proves that being in a minD-subgraph is
necessary for the agents to behave independently.

Lemma 5.1. Let p be a non-degenerate representation of a directed graph
G(V,E), and Vc ⊆ V a subset of the vertices of G. A partial displacement
δpVc

on Vc ⊆ V is a partial equilibrium for G and p if and only if it is admis-
sible by at least one min D-subgraph Gc(Vc, Ec) of G on all the vertices of Vc

and the restriction of p to it.

Proof. Let p be a non-degenerate representation of G and Gc(Vc, Ec) be a
min D-subgraph of G. Consider an displacement δpVc

admissible by Gc, i.e.,
satisfying all constraints corresponding to edges of Gc. Since Gc is a min D-
subgraph of G, the out-degree in Gc of every vertex i ∈ Vc is at least min(D, d+

i,G).
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Therefore, for any completion δp of δpVc
, at least min(D, d+

i,G) constraints cor-
responding to edges leaving i in G are satisfied for each i ∈ Vc. It follows then
from Lemma 4.1 that every i ∈ Vc is at equilibrium with its δpi, so that δpVc

is a partial equilibrium.

To prove the converse implication, consider now a partial equilibrium δpVc

on the vertices of Vc. It follows from Lemma 4.1 that for any i ∈ Vp, at least
min(D, d+

i,Gc
) constraints corresponding to edges leaving i are satisfied, inde-

pendently of the δpj assigned to vertices j of V \ Vc. Remember that the con-
straint of (4.3) corresponding to an edge (i, j) is (pi − pj)

T δpi = (pi − pj)
T δpj .

In a non-degenerate representation, there is for any δpi a δpj such that the con-
straint is not satisfied. Similarly, for a group of constraints corresponding to
edges (i, j1), (i, j2), . . . (i, jd+

i
) leaving i and for any δpi, it is possible to choose

δpj1 , δpj2 , . . . δpj
d
+
i

in such a way that none (or any selection) of the constraints

is satisfied, provided again that the representation is non-degenerate. No con-
straint corresponding to an edge arriving in V \ Vc can thus be satisfied for
all completions δp of δpVc

. This implies that at least min(D, d+
i,G) of the edges

leaving each i ∈ Vc arrive at another vertex of Vc, and are satisfied by the par-
tial displacement δpVc

. Consider then the graph Gc(Vc, Ec) obtained by taking
Vc and all edges of E connecting two vertices of Vc and whose corresponding
constraint is satisfied by δpVc

. δpVc
is clearly admissible by Gc and the restric-

tion of p to Vc. Moreover, each vertex of Vc has in Gc at least an out-degree
min(D, d+

i,G), so that Gc is a min D-subgraph of G.

Lemma 5.2. A partial displacement is Euclidean if and only if can be com-
pleted to obtain a Euclidean displacement of all vertices. As a consequence, the
restriction of a Euclidean displacement to a subset of vertices is Euclidean.

Proof. Let p be a representation of a graph G(V,E). A displacement is Eu-
clidean if and only if there is a continuous Euclidean transformation E(t, x)
of ℜD (that is, a combination of rotations and translations of ℜD), such that

δpi = K dE(x,t)
dt |pi,0 holds for all i ∈ V for a same K. As a consequence, the

restriction of a Euclidean displacement to a subset of vertices is Euclidean.
Moreover, a Euclidean partial displacement can always be completed to obtain

a (full) Euclidean displacement by assigning δpi = K dE(x,t)
dt |pi,0 to all remaining

vertices.

Theorem 5.1. Let p be a non-degenerate representation of a directed graph
G(V,E). The representation p is structurally persistent if and only if its re-
striction to every strict min D-subgraph of G is rigid as a representation of this
subgraph.

Proof. We prove the result supposing that p is persistent as a representation
of G. The complete results follows then directly from Theorem 4.3.
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Suppose first that p is not structurally persistent but is persistent. There
exists then a partial equilibrium displacement δpVc

for which no completion
is an equilibrium displacement for p and G. The admissibility of δpVc

by a
min D-subgraph Gc of G and the restriction of p to Gc follows from Lemma
5.1. Moreover, δpVc

is not a Euclidean displacement, for otherwise it could by
Lemma 5.2 be completed to obtain a Euclidean displacement of all vertices,
which would trivially also be an equilibrium displacement for all vertices. The
restriction of p to Gc is therefore not rigid as a representation of Gc because it
admits a non-Euclidean displacement δpV . By removing some edges to Gc one
can then obtain a strict minD-subgraph of G, and the restriction of p to Vc is
not rigid as a representation of this subgraph either, for otherwise it would be
rigid as a representation of Gc.

Conversely, suppose now that there exists a strict min D-subgraph Gc of
G such that the restriction of p to Gb is not rigid as a representation of Gc.
Gb and the restriction of p to it admits then a non-Euclidean displacement.
It follows from Lemma 5.2 that this δpVc

cannot be completed to obtain a
Euclidean displacement. Therefore, none of its completions is an equilibrium
displacement for p and G. The persistence of p as a representation of G implies
indeed that every equilibrium displacement is Euclidean. And since it follows
from Lemma 5.1 that δpVc

is a partial equilibrium for p and G, this implies
that p is not structurally persistent as a representation of G.

This theorem shows that structural persistence is a generic notion. The
following characterization of structurally persistent graphs follows then directly.

Theorem 5.2. A graph is structurally persistent if and only if each of its strict
min D-subgraphs is rigid.

Observe the interesting parallelism between Theorem 5.2 and Theorem 4.5
characterizing persistent graphs. Checking the structural persistence of a graph
is equivalent to checking the rigidity of all its strict minD-subgraph, while
checking the persistence of a graph is equivalent to checking the rigidity of a
subclass only of these subgraphs, those containing all the vertices of the initial
graph. From an intuitive point of view, the condition of Theorem 4.5 means
that for any selection of constraints to be ignored by the agents, the remaining
constraints need to be sufficient to maintain the formation shape. Theorem
5.2 adds the condition that if agents in a set Vc can ignore the other agents,
then the constraints on distance between agents in Vc should be sufficient to
maintain the shape of the sub-formation containing the agents of Vc.
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5.4 Toward a simpler characterization

The necessary and sufficient condition of Theorem 5.2 involves detecting and
checking a number of subgraphs that can grow exponentially with the size of
the graph. It does therefore not lead to a polynomial time algorithm checking
structural persistence. We now establish a simpler characterization of structural
persistence for persistent graphs, leading to an algorithm requiring O(D2n)
operations. This algorithm can not be used to test persistence, but it does
detect some particular sort of non-persistent graphs.

Proposition 5.1. Let G be a graph that is persistent in ℜD. Then every strict
min D-subgraph on at least D vertices is rigid.

Proof. Let G(V,E) be a persistent graph and G∗(V ∗, E∗) one of its strict
min D-subgraph on at least D vertices. Let us build S(V,ES) by adding to
G∗ all vertices of V \V ∗, and for each of them, D of its outgoing edges or all of
them if its out-degree is smaller than D. Observe that every edge of Es leaving
a vertex of V ∗ belongs to E∗ and arrives at a vertex of V ∗.

S is by construction a strict min D-subgraph of G on all its vertices. The
persistence of G and Theorem 4.5 imply then that S is rigid, and thus that there
exists a minimally rigid subgraph S′(V,ES′) on all its vertices. Let S∗(V ∗, ES∗)
be the restriction of S′ to the vertices V ∗ of G∗ (obtained by removing edges
that are incident to one or two vertices of V \ V ∗). Since S′ is minimally
rigid and |V ∗| ≥ D, it follows from Proposition 3.1 that proving the relation
|ES∗ | ≥ D |V ∗| − fD is sufficient to establish the rigidity of S∗ and therefore
also the rigidity of G.

The minimal rigidity of S′ implies that |ES′ | = D |V | − fD. Besides, every
edge of ES′ \ ES∗ is incident to at least one vertex of V \ V ∗ because S∗

is the restriction of S′ to V ∗. Since we know that every edge of S′ ⊆ S
leaving a vertex of V ∗ arrives at a vertex of V ∗, this implies that all edges
of ES′ \ ES∗ leave vertices of V \ V ∗. |ES′ \ ES∗ | is then upper-bounded by
∑

i∈V \V ∗ d+
i,S′ ≤ D |V \ V ∗|, where we have used the fact the all out-degrees in

S and a fortiori in S′ are bounded by D. This implies then

|ES∗ | = |ES | − |ES′ \ ES∗ | ≥ D |V | − fD − D |V \ V ∗| = |V ∗| − fD.

This result leads to a stronger characterization of structural persistence,
which we use to show that problems related to partial equilibrium never appear
in ℜ2, and are very simply detected in ℜ3.

Corollary 5.1. A graph that is persistent in ℜD is structurally persistent in
ℜD if and only if all its closed subgraphs on less than D vertices are rigid.
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Proof. It follows from Proposition 5.1 and Theorem 4.5 that a persistent graph
is structurally persistent if and only if all its strict minD-subgraph on less then
D vertices are rigid.
The result follows then from the fact that any minD-subgraph on less than D
vertices is always a closed subgraph. A min D-subgraph subgraph that is not
a closed subgraph contains indeed at least a vertex with an out-degree at least
D, and contains thus at least D + 1 vertices.

Corollary 5.2. All graphs persistent in ℜ2 are structurally persistent. A graph
persistent in ℜ3 is structurally persistent if and only if at most one of its vertices
has three degrees of freedom, that is, an out-degree 0.

Proof. A graph containing only one vertex is trivially always rigid. The result
for ℜ2 follows then directly from Corollary 5.1.
The same corollary implies that a graph persistent in ℜ3 is structurally per-
sistent if and only if it contains no non-rigid closed subgraph on less than 3
vertices. The only non-rigid graph on less than 3 vertices is the empty graph
on 2 vertices. And, one can verify that it appears as a closed subgraph of a
directed graph if an only if the latter graph contains 2 vertices with out-degree
0. Vertices have indeed the same out-degree in a closed subgraph as they have
in the graph.

Note that persistent but non-structurally persistent graphs may have more
complicated structure in higher dimensions. One can for example easily build
graphs in which the problematic closed subgraph is connected. We now achieve
the characterization by considering the closed subgraph on less than D vertices.

Proposition 5.2. Let G be a directed graph persistent in ℜD, and χ the set of
its closed subgraphs Ci on less than D vertices. The union of these subgraphs
C∗ =

⋃

Ci∈χ Ci is a closed subgraph on less than D vertices.

Proof. We prove that the union of two graphs of χ is also in χ, which due to
the finite size of χ implies that the union of all graphs in χ is itself in χ. Con-
sider C1(V1, E1), C2(V2, E2) ∈ χ. Clearly, C1 ∪ C2 is also a closed subgraph of
G. Suppose now to obtain a contradiction that it contains D or more vertices.
Then by Proposition 5.1 it should be rigid as C1∪C2 is a strict min D-subgraph
of G. All vertices in C1 and C2 have indeed the same out-degree in G,C1, C2

and C1 ∪ C2, and this out degree is smaller than D.

Let x = |V1 ∩ V2|, y = |V1 \ (V1 ∩ V2)| = |V1| − x and z = |V2 \ (V1 ∩ V2)| =
|V2| − x. We have |V1 ∪ V2| = x + y + z ≥ D. Since it is rigid and contains
at least D vertices, C1 ∪ C2 has at least D(x + y + z) − 1

2D(D + 1) edges
(counting pairs of “double edges” as one single edge). On the other hand, the
maximal number of edges (counting again pairs of “double edges” as one single
edge) that C1 ∪ C2 can contain is 1

2 (x + y + z)(x + y + z − 1) − yz, obtained
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by connecting every pair of vertices except those composed by one vertex of
V1 \ V2 and one of V2 \ V1. We now prove that there holds

1

2
(x + y + z)(x + y + z − 1) − yz < D(x + y + z) −

1

2
D(D + 1),

which implies that C1∪C2 does not have enough edges to be rigid, contradicting
our hypothesis. The inequality above is equivalent to

(x + y + z)2 − (x + y + z) − 2yz < 2D(x + y + z) − D2 − D,

which can be rewritten as

(x + y + z − D)2 − (x + y + z − D) < 2yz. (5.1)

Remember now that x + y + z is no smaller than D. Moreover, since x + y
and x + z are smaller than D, there holds (x + y + z − D)2 < yz, so that the
inequality (5.1) holds. As explained above, this proves our result.

Theorem 5.3. Let G(V,E) be a persistent (in ℜD) directed graph, and Vc ⊆ V
the set of vertices that belong to closed subgraphs of G on less than D vertices.
G is structurally persistent if and only if its restriction to Vc is a complete
graph.

Proof. Let χ be the set of closed subgraphs Ci of G on less than D vertices.
Note that the restriction of G to Vc is the union of all graphs in χ. By Corollary
5.1, G is structurally persistent if and only if every Ci ∈ χ is rigid. And by
Proposition 3.2, graphs on less than D vertices are rigid if and only if there are
complete graphs.
It follows from Proposition 5.2 that the union of the graphs in χ is itself in χ.
The structural persistence of G implies thus that it is a complete graph. On
the other hand, since each Ci is a closed subgraph of G, if the restriction of G
to the union of the Ci is a complete graph then its restriction to any of the Ci

is also a complete graph, which is trivially rigid. As a result, G is structurally
persistent.

The condition of this latter Theorem can be checked in linear time. Observe
first that a vertex belongs to a closed subgraph on less than D vertices if and
only if at most D − 2 vertices can be reached from it by a directed path.
Checking if a vertex belongs to Vc is thus done by a graph exploration limited
to D vertices, which requires at most O(D2) operations. As a result, identifying
Vc requires at most O(nD2) operations. Verifying whether the restriction of the
graph to Vc is a complete graph requires then at most O(D2) operations since we
know that Vc contains less then D vertices. The whole algorithm requires thus
at most O(D2n) operations. Note that if the set Vc found contains more than
D − 1 vertices, it follows from Proposition 5.2 that the graph is not persistent.
This algorithm could thus be used to filter some non-persistent graphs.
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5.5 History and literature

The main results presented in this Chapter 5 were first published in [67, 133,
134]. Our presentation here is however different. First, we use infinitesimal
displacements. Second, structural persistence is introduced in the more general
framework of the formation convergence to an equilibrium. Besides, the graph-
theoretical proofs in Section 5.4 are further simplified.



Chapter 6

Particular Classes of

Graphs

Our characterization of persistence in Theorem 4.5 does in general not lead to a
polynomial-time algorithm to check if a given graph is persistent, as it requires
checking the rigidity of a potentially exponential number of subgraphs. As a
related issue, it is non-trivial to see if a graphs remains persistent after some
minor transformations such as the addition or removal of vertices and/or edges.
We provide in this chapter stronger results on these issues for some particu-
lar classes of graphs. In Section 6.1, we show that the persistence of acyclic
graphs can be efficiently checked, and that simple transformations preserve their
persistence and their acyclicity. We have seen in Section 4.6 that (minimal)
persistence can be checked in polynomial time for minimally rigid graph. We
focus in Section 6.2 on two-dimensional minimally persistent graphs, and show
how such graphs can be transformed one into another using simple operations,
in such a way that all intermediate graphs are minimally persistent. Finally,
we present in Section 6.3 a polynomial-time algorithm to check persistence of
graphs having three degrees of freedom in a two-dimensional space.

6.1 Acyclic graphs

6.1.1 Introduction and relevance

A (directed) graph is said to be acyclic if it contains no path starting and arriv-
ing at the same vertex. Acyclic persistent graphs are an important subclass of
persistent graphs, as the corresponding formations are easy to control and have
good stability properties. Consider for example a two-dimensional formation
corresponding to the graph of Figure 6.1, and observe that a move of an agent

87
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1
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Figure 6.1: Example of acyclic graph with its topological sort. Besides, the
graph is persistent in ℜ2.

can only influence the agents with higher labels. Intuitively, the agent 1 freely
chooses its position. It is never influenced by other agents and is thus always
at equilibrium. Agent 2 chooses its position on a circle centered on agent 1,
and is then also at equilibrium since it can only be influenced by 1 which is
already at equilibrium. The agent 3 can then uniquely determine its position,
followed by 4, 5 and 6. Each of them remains at equilibrium once it has reached
it. Note that the out-degree 3 of the sixth agent is not a problem, as once the
five other agents are at equilibrium, their relative positions guarantee that the
three constraints of 6 are compatible.

Some initial works on formation control by Baillieul and Suri only consid-
ered acyclic formation [11]. Recent studies have however shown that formations
involving cycles could be stabilized and lead to equilibrium [3, 132]. Although
we recognize the important stability advantage of acyclic formations, we be-
lieve that non-acyclic graphs are also worth studying, not only for theoretical
completeness, but also because they could be useful for some applications. The
absence of cycle removes indeed all possibility of feedback, guaranteeing the sys-
tem stability. Feedback could however be desirable for some formations with
large number of agents, in order to control the accumulation of small errors
into large deformation.

Suppose for example that UAV’s are required to fly around a circular surface
without entering it, with the additional constraint that the distance between
the UAV’s should remain constant or at least not vary too much. This can
theoretically be done using an acyclic topology of constraints such as the one
presented in Figure 6.2(a). In the real world however, there would much likely
be small errors on all measurements and relative positions of the agents. Even
if these errors are insignificant for one single agent, their accumulation could
cause the last agent to be at a position significantly different from its desired
position, as represented in Figure 6.2(b). In particular, the distance between 1
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Figure 6.2: (a) Example of acyclic formation in which small errors can accu-
mulate to produce large deformations, such as represented in (b). This phe-
nomenon could be avoided by introducing cycles to created feedback, such as
in (c). The symbol “*” represents one degree of freedom.

and n could be significantly larger than what is acceptable for the application.
This could especially be the case if the angles made by the vectors joining each
agent i to the agents i − 1 and i − 2 are small, as a small variation in the per-
ception by i of the positions of i− 1 and i− 2 can then cause a proportionally
large variation in the position of i. One solution to avoid this phenomenon
could be to introduce a feedback by asking 1 and 2 to remain at a constant
distance from n, as represented in Figure 6.2(c), and so introducing a cycle.
In that case, two other constraints could be removed without losing persistence.

When analyzing acyclic graphs, it is convenient to use the notion of topo-
logical sort.

Definition 6.1. Let G be a directed graph. A labelling l : V → {1, . . . , |V |} of
the vertices is a topological sort if for every edge (i, j) there holds l(i) > l(j).

An example of topological sort is shown in Figure 6.1. The following Propo-
sition is a well known result on acyclic graphs. For a proof and more details on
acyclic graphs, we refer the reader for example to [31,80].

Proposition 6.1. A directed graph is acyclic if and only if it admits a topo-
logical sort. As a consequence, d+

i,G < i and d−i,G < n − i hold for each i in an
acyclic graph where the vertices have been relabelled according to a topological
sort, with in particular d+

1,G = 0 and d−n,G = 0.

Note that topological sort is in general not unique. In the sequel, we sup-
pose that the vertices are always labelled by integers according to a topological
sort. For every edge (i, j), there holds thus i > j.
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6.1.2 Rigidity and persistence of acyclic graphs

To analyze the persistence of acyclic graphs, we need some results on addition
and deletion of vertices

Proposition 6.2. A minimally rigid graph G(V,E) remains minimally rigid
by addition of a vertex with degree min(D, |V |) or by deletion of a vertex with
degree min(D, |V | − 1).

Proof. If |V | ≤ D, the result follows from the equivalence, for graphs on no more
than D vertices, between rigidity and being a complete graph (see Section 3.4).
We now consider graphs with |V | > D, and first treat the case of the deletion.

The minimal rigidity of G implies that |E| = D |V | − fD holds. Let
G′(V ′, E′) be the graph obtained from G by removing the vertex with de-
gree D. There holds |E′| = |E| − D = D(|V | − 1) − fD = D |V ′| − fD. It
follows from Proposition 3.1 that this relation together with the fact that G′ is
a subgraph of G on more than D vertices imply the minimal rigidity of G′.

Suppose now that G′(V ′, E′) is a graph obtained from G by adding a vertex
n+1 connected by D edges to vertices of V . There holds again |E′| = D |V ′|−
fD, so that the minimal rigidity of G′ is equivalent to the (generic) independence
of its edges. Let p′ be a generic representation of G′ and p its restriction to
G. The minimal rigidity of G implies that the |E| = D |V | − fD lines of the
rigidity matrix RG,p of G are linearly independent. The rigidity matrix is then

RG′,p′ =











RG,p 0
(p′n+1 − pj1)

T

X
...

(p′n+1 − pjD
)T











,

which clearly contains only independent lines as the D × D sub-matrix on the
lower right-hand side is (generically) nonsingular.

Corollary 6.1. Let G(V,E) be a rigid graph. The graphs obtained by addition
of a vertex connected to at least min(D, |V |) of the vertices of G or by deletion
of a vertex with a degree at most min(D, |V | − 1) are rigid.

Proof. Let S be a minimally rigid subgraph of G, and i be a vertex of G having
a degree no greater than min(D, |V |−1) in G and a fortiori also in S. Let then
G′ and S′ be the graphs obtained from respectively G and S by the removal of
i. S′ is a subgraph of G. Moreover, it follows from Proposition 6.2 that it is
minimally rigid, so that G′ is rigid.

Let now G′′ be a graph obtained from G by the addition of a vertex j
connected to at least min(D, |V |) vertices, and S′′ the graph obtained from S
by adding j to S and connecting it to min(D, |V |) of the vertices to which it is
connected in G′′. S′′ is by construction a subgraph of G′′. And, it follows from
Proposition 6.2 that it is minimally rigid, so that G′ is rigid.



6.1. ACYCLIC GRAPHS 91

Proposition 6.3. Let G(V,E) be an acyclic graph, and G′ be a graph ob-
tained from G by adding a vertex with in-degree 0 and connecting it to at least
min(D, |V |) vertices of V . G′ is persistent if and only if G is persistent.

Proof. Let Σ(G) be the set of all strict min D-subgraph of G on all its vertices
(that is, the set of all subgraphs that can be obtained from G by removing
edges leaving vertices with out-degree larger than D until all vertices have an
out-degree no greater than D), and Σ(G′) the corresponding set for G′. Call
i the vertex added to G to obtain G′. In any graph S′ ∈ Σ(G′), i has an in-
degree 0 and an out-degree d+

i,S′ = max(D, d+
i,G′) = min(D, |V |). Observe that

any graph in Σ(G) can be obtained by removing i from one graph in Σ(G′).
Similarly, any graph of Σ(G′) can be obtained by adding i and min(D, |V |)
outgoing edges to a graph in Σ(G).

Suppose first that G is persistent and therefore (by Theorem 4.5) that all
graphs in Σ(G) are rigid. Take a graph S′ ∈ Σ(G′) and call S a graph in Σ(G)
from which S′ can be obtained by adding i and connecting it to min(D, |V |−1)
vertices of V . It follows from the rigidity of S and from Corollary 6.1 that S′ is
rigid, and therefore that G′ is persistent since this is true for any S′ ∈ Σ(G′).
Suppose now that G′ is persistent and therefore that all graphs of Σ(G′) are
rigid. Take a graph S ∈ Σ(G), and a graph S′ ∈ Σ(G′) from which S can
be obtained by removing i. It follows again from the rigidity of S and from
Corollary 6.1 that S′ is rigid, and therefore that G is persistent since this is
true for any S ∈ Σ(G).

Using these results, we can now give a full characterization of persistence
for acyclic graphs, constructing them by adding vertices one by one.

Theorem 6.1. Let G(V,E) be an acyclic graph whose vertices are labelled
according to a topological sort. G is persistent if and only if any vertex i ≤ D
has an out-degree i− 1 and any other vertex has an out-degree no smaller than
D.

Proof. The result clearly holds if |V | = 1. To prove it inductively for other
values of |V |, we suppose that it holds for |V | = n, and prove that it then holds
for |V | = n + 1. Note that d+

i,G < i and d−i,G < |V | − i follows from Proposition
6.1 and the acyclicity of G.

Let G′ be a graph of n + 1 vertices, and G the graph obtained by the
removal of the vertex n + 1, which has an in-degree 0. Observe that if d+

n+1 <
min(D,n) holds, then G′ is not rigid nor persistent by Corollary 3.1, and does
also clearly not satisfy the condition of this theorem. We now suppose that
d+

n+1 ≥ min(D,n). The graph G′ can in that case be obtained from G by
adding a vertex with an out-degree at least min(D,n) = min(D, |V |) and an
in-degree 0. It follows then from Proposition 6.3 that G′ is persistent if and
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only if G is persistent, and our induction hypothesis implies that G is persistent
if and only if it satisfies the condition of the theorem. As a consequence, and
since d+

n+1 ≥ min(D,n), G′ is persistent if and only if it satisfies the condition
of this theorem.

Note that the necessary part of the theorem above could also easily be ob-
tained by verifying that the total number of degrees of freedom in the graph is
not larger than fD.

It follows from Theorem 6.1 that all acyclic persistent graphs can be built by
starting from a single vertex and sequentially adding vertices with min(D, |V |−
1) outgoing edges. In this process, all intermediate graphs are persistent and
acyclic. Besides, the condition of this theorem can be checked in O(E) and
even in O(V ) if the out-degrees are known, providing a linear time algorithm
to check persistence for acyclic graph. Note that acyclicity can be checked in
O(E). We can also particularize Theorem 6.1 to minimally persistent graphs.

Corollary 6.2. An acyclic graph G(V,E) is minimally persistent if and only
if there exists an ordering 1, . . . , |V | of the vertices such that any vertex i ≤ D
has an out-degree i − 1 and every other vertex (if any) has an out-degree D.

Proof. An acyclic graph satisfying the condition of this corollary is persistent by
Theorem 6.1. Moreover, the removal of any one or several of its edges diminishes
the out-degree of one of its vertices, so that the graph obtained does not satisfy
anymore the condition of Theorem 6.1 and is therefore not persistent. The
initial graph is thus minimally persistent. Conversely, if an acyclic persistent
graph does not satisfy the condition of this Corollary, it contains by Theorem
6.1 a vertex with an out-degree larger than D. The same theorem implies
then that the graph obtained by removing an edge leaving this vertex is also
persistent, preventing the initial graph from being minimally persistent.

In recent works, Baillieul and McCoy [10] analyze the possibility of count-
ing the number of two-dimensional acyclic minimally persistent graphs. They
obtain an algorithmic procedure for carrying the enumeration based on a result
presented in Corollary 6.2, but a general closed-form solution remains to be
found. We now prove another consequence of Theorem 6.1, that all persistent
acyclic graphs are structurally persistent. This is in agreement with the in-
tuition that equilibrium can always be reached sequentially, starting with the
first vertex and finishing with the last one according to a topological sort.

Corollary 6.3. All persistent acyclic graphs are structurally persistent.

Proof. Let G be an acyclic persistent graph labelled according to a topological
sort. All vertices (if any) with a label i ≥ D have an out-degree at least D − 1
and do therefore not belong to any closed subgraph on less than D vertices.
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Every other vertex i has by Theorem 6.1 an out-degree i − 1, so that the
restriction of G to these vertices or to any subset of them is a complete graph.
The structural persistence of G follows then from Theorem 5.3.

6.2 2-dimensional minimally persistent Graphs

6.2.1 Introduction and relevance

Minimally persistent graphs have a minimal number of edges and minimize
thus the number of distances to be measured in the corresponding formation.
Such formations are however not robust to the loss of communication, since
the loss of one edge in a minimally persistent graph always results in a loss of
persistence. Minimal persistence also implies the absence of redundant infor-
mation, a property which has been argued to be necessary for the formation
stability when some types of control laws are used [9, 11]. More complex con-
trol laws can however deal with redundant constraints. In view of Assumption
4.2 stating that an agent should satisfy a maximal subset of constraints, one
can for example suppose that an agent facing incompatible constraints just
temporarily discard some of them. Another solution is provided by the use of
“death-zones” [51].

In this section, we study the construction and transformation of two-dimen-
sional persistent graphs. Analogously to the powerful results about Henneberg
sequences for minimally rigid graphs, we propose different types of directed
graph operations allowing one to sequentially build any minimally persistent
graph or to obtain it from any other minimally persistent graph, each interme-
diate graph being also minimally persistent.

Before starting, remember that a minimally rigid graph is a rigid graph such
that no edge can be removed without losing rigidity. Particularizing Laman’s
Theorem (3.2) to minimally rigid graphs, we obtain the following criterion:

Proposition 6.4. A graph G = (V,E) with |V | > 1 is minimally rigid in ℜ2

if and only if the two following conditions hold

a)|E| = 2 |V | − 3,

b) for all E′′ ⊆ E,E′′ 6= ∅, there holds |E′′| ≤ 2 |V (E′′)| − 3.

A minimally persistent graph is a persistent graph such that no edge can
be removed without losing persistence. The following Proposition is obtained
by applying Theorem 4.7 to ℜ2.

Proposition 6.5. A graph is minimally persistent in ℜ2 if and only if it is
minimally rigid in ℜ2 and no vertex has an out-degree larger than 2.
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Figure 6.3: Representation of (a) the undirected vertex addition operation and
(b) the edge splitting operation.

It follows from Proposition 4.1 that a vertex i has in ℜ2 max (0, 2 − d+(i))
degrees of freedom. In a minimally persistent graph, Proposition 6.5 implies
then that this number is equal to 2 − d+(i). Moreover, the total number of
degrees of freedom in the graph is exactly 3, provided that the graph has at
least 2 vertices. Note that all graphs considered in this section are supposed to
be represented in ℜ2, although we do not always explicitly repeat it.

6.2.2 Henneberg sequences for minimally rigid graphs

Let j, k be two distinct vertices of a minimally rigid graph G = (V,E). A
vertex addition operation consists in adding a vertex i, and connecting it to j
and k, as shown in Figure 6.3(a). It follows from Proposition 6.2 or 6.4 that
this operation preserves minimal rigidity. The same proposition implies that if
a vertex has a degree 2 in a minimally rigid graph, one can always perform the
inverse vertex addition operation by removing it (and its incident edges) and
obtain a smaller minimally rigid graph.

Let j, k, l be three vertices of a minimally rigid graph such that there is
an edge between j and k. An edge splitting operation consists in removing
this edge, adding a vertex i and connecting it to j, k and l, as shown in Fig-
ure 6.3(b). This operation provably preserves minimal rigidity [124]. Consider
now a vertex i connected to three vertices j, k and l. A reverse edge splitting
consists in removing i and adding one edge among (j, k), (k, l) and (l, j), in
such a way that the graph obtained is minimally rigid. This operation can be
performed on every vertex with degree 3 in a minimally rigid graph [84, 124],
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Figure 6.4: Example of unfortunate added edge selection in reverse edge split-
ting. After the removal of the vertex 5 from the minimally rigid graph (a),
minimal rigidity can be preserved by the addition of the edge (1, 4) but not of
(1, 6), as shown respectively on (b) and (c). The pair (1, 6) defines an implicit
edge in the minimally rigid subgraph induced by 1, 2, 3 and 6.

but one cannot freely choose the edge to be added as shown on the example in
Figure 6.4.

A Henneberg sequence is a sequence of graphs G2, G3, . . . , G|V | with G2

being the complete graph on two vertices K2 and each graph Gi (i ≥ 3) can
be obtained from Gi−1 by either a vertex addition operation or an edge split-
ting operation. Since these operations preserve minimal rigidity and since K2

is minimally rigid in ℜ2, every graph in such a sequence is minimally rigid in ℜ2.

A simple degree counting argument based on Proposition 6.4 shows that
every minimally rigid graph G|V | = (V,E) with more than 2 vertices contains
at least one vertex with degree 2 or 3. One can thus always perform either
a reverse vertex addition or a reverse edge splitting operation and obtain a
smaller minimally rigid graph G|V |−1. Doing this recursively, one eventually
obtains a minimally rigid graph on two vertices, which can only be K2. It
is straightforward to see that the sequence K2 = G2, G3, . . . G|V | is then a
Henneberg sequence. We have thus proved the following result [124]:

Theorem 6.2. A graph on more than one vertex is minimally rigid in ℜ2 if
and only if it can be obtained as the result of a Henneberg sequence.

Henneberg operations have been partly extended to minimally rigid graphs
in three dimensions. Three minimal rigidity-preserving operations exist that
add vertices with degree 3, 4 and 5 respectively. The reverse versions of the
first two operations allow the removal of any vertex with a degree 3 or 4 while
preserving minimal rigidity. But, no such operation is known yet to remove
a vertex with a degree 5 (or more) and to always preserve minimal rigidity.
Since there are three-dimensional minimally rigid graphs where all vertices
have a degree at least 5, the argument proving Theorem 6.2 can thus not be
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generalized. The existence of a three-dimensional equivalent to Theorem 6.2
actually remains an open question. As a consequence there is no obvious way to
generalize the result that we present in this section to higher dimensions. For
more information on three-dimensional operations, we refer the reader to [124].

6.2.3 Natural extension of the Henneberg operations to

directed graphs

Let j, k be two distinct vertices of a minimally persistent graph G = (V,E). A
directed vertex addition [44, 63] consists in adding a vertex i and two directed
edges (i, j) and (i, k) as shown in Figure 6.5(a). A reverse (directed) vertex
addition consists in removing a vertex with an out-degree 2 and an in-degree 0
from a minimally persistent graph.

Let now (j, k) be a directed edge in a minimally persistent graph and l a
distinct vertex. A directed edge splitting [44, 63] consists in adding a vertex
i, an edge (i, l), and replacing the edge (j, k) by (j, i) and (i, k), as shown in
Figure 6.5(b). Let now i be a vertex with out-degree 2 and in-degree 1, call j
the vertex left by an edge arriving at i, and k, l the other neighbors of i. The
reverse directed edge splitting operation consists in removing i and its incident
edges, and adding either (j, k) or (j, l) (k and l being interchangeable) in such
a way that the graph obtained is minimally rigid.

Lemma 6.1. The directed vertex addition and edge splitting operations pre-
serve minimal persistence, and so do the reverse directed vertex addition and
reverse directed edge splitting operations.

Proof. All these operations preserve minimal rigidity as their undirected coun-
terpart do. Moreover, they respectively add or remove a vertex with out-degree
2 without affecting the out-degree of the other vertices. It follows thus from
Proposition 6.5 that they preserve minimal persistence.

We denote by S the set of operations containing the directed vertex addition
operation and the directed edge splitting operation, and by S−1 the set of
operations containing their reverse versions (the same convention is used in the
sequel for all operation sets). The smallest minimally persistent graph on more
than one vertex consists in two vertices connected by one directed edge. We
refer to this graph as a leader-follower pair, the leader being the vertex with
an out-degree 0. Since the operations in S preserve minimal persistence, any
graph obtained by performing a sequence of directed vertex addition or edge
splitting operations on an initial leader-follower pair is minimally persistent.
The following result establishes that to any minimally rigid graph corresponds
a minimally persistent graph that can be obtained in that way.
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Figure 6.5: Representation of the directed vertex addition (a) and edge splitting
(b) operations.

Proposition 6.6. It is possible to assign directions to the edges of any mini-
mally rigid graph such that the obtained directed graph is minimally persistent
and can be obtained by performing a sequence of operation in S on an initial
leader-follower pair. Moreover, all intermediate graphs are minimally persis-
tent.

Proof. Let G be a minimally rigid (undirected) graph. By Theorem 6.2, it can
be obtained by performing a sequence of undirected vertex additions and edge
splittings on K2. By performing the same sequence of the directed version of
these operations on an initial leader-follower pair, one obtains a directed graph
having G as underlying undirected graph. Moreover, since this initial seed is
minimally persistent and since the directed versions of both vertex addition
and edge splitting preserve minimal persistence, the obtained graph and all the
intermediate graphs are minimally persistent.

The operations of S are however not sufficient to build all minimally persis-
tent graphs. We have indeed shown the existence of infinitely many minimally
persistent graphs that cannot be obtained from a smaller graph by perform-
ing an operation of S [66, 68, 69]. In the same works, we have also considered
generalized versions of vertex addition and edge splitting operations, defined
by allowing any direction for the added edges. These operations can generally
not be used on any vertex as they may increase some vertices’ out-degrees,
but their use allows one to build more minimally persistent graphs. However a
minimally persistent graph on 24 vertices was found that cannot be built even
with those generalized operations.
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6.2.4 A third purely directed operation

Edge reversal

Let (i, j) be an edge such that j has at least one degree of freedom, i.e., d+(j) =
0 or d+(j) = 1. The edge reversal operation consists in replacing the edge (i, j)
by (j, i). As a consequence, one degree of freedom is transferred from j to i.
This operation is its auto-inverse and preserves minimal persistence since it
does not affect the underlying undirected graph and the only increased out-
degree d+(j) remains no greater than 2. From an autonomous agent point of
view j transfers its decision power or a part of it to i. We now define two
macro-operations based on repeated applications of edge reversal.

Path reversal

Given a directed path P between a vertex i and a vertex j such that j has
a positive number of degrees of freedom, a path reversal consists in reversing
the directions of all the edges of P . As a result, j loses a degree of freedom, i
acquires one, and there is a directed path from j to i. Moreover, the number
of degrees of freedom of all the other vertices remain unchanged. Note that i
and j can be the same vertex, in which case the path either has a trivial length
0 or is a cycle. In both of these situations, the number of degrees of freedom is
preserved for every vertex.

The path reversal can easily be implemented with a sequence of edge rever-
sals: Since j has a degree of freedom, one can reverse the last edge of the path,
say (k, j), such that j loses one degree of freedom while k acquires one. One
can then iterate this operation along the path until i, as shown in Figure 6.6.
At the end, i has an additional degree of freedom, j has lost one, and all the
edges of the paths have been reversed. Note that the sequence of edge rever-
sals can usually not be performed in another order, for the condition requiring
the availability of a degree of freedom would not be satisfied. The final result
would be the same, but all the intermediate graphs would not necessarily be
minimally persistent.

The following lemma, which is a particular case of Theorem 4.6, implies
that a degree of freedom can be transferred from any vertex having at least one
to any other having less than two of them using a path reversal.

Lemma 6.2. Let G be a minimally persistent graph, i and j two vertices of G
with d+(i) ≥ 1 and d+(j) ≤ 1. Then, there is a directed path from i to j.
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Figure 6.6: Implementation of the path reversal by a sequence of edge reversals.
The symbol “*” represents one degree of freedom.

Cycle reversal

A cycle reversal consists in reversing all the edges of a directed cycle. This
operation does not affect the number of degrees of freedom of any vertex nor
the underlying undirected graph, and preserves therefore minimal persistence.
Besides, as opposed to a path reversal operation applied to the particular case
of a cycle, it does not require the presence of a degree of freedom.

A cycle reversal on a minimally persistent graph can be implemented by a
sequence of edge reversals. Let us indeed first suppose that there is a vertex
i in the cycle that has at least one degree of freedom. In that case, the cycle
reversal is just a particular case of the path reversal, with i = j. We now
assume that no vertex in the cycle has a degree of freedom. Let l be a vertex in
the cycle, and m a vertex that does not belong to the cycle but has a degree of
freedom. The existence of a directed path from l to m follows from Lemma 6.2.
Let i be the last vertex in this path belonging to the cycle. There is trivially a
path P from i to m such that every other vertex of this path does not belong
to the cycle. The implementation of a cycle reversal by three path reversals
is then represented in Figure 6.7. One begins by reversing the path P into P ′

such that i acquires a degree of freedom. As explained above, the cycle can
then be reversed since it is a particular case of path reversal, and finally, one
reverses the path P ′ back to P such that the degree of freedom acquired by i
is re-transmitted to m.

Both cycle reversal and path reversal are their auto-inverse, as is the case
for edge reversal. Moreover, the fact that they can be implemented using only
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Figure 6.7: Implementation of the cycle reversal operation using path reversals.
The “*” represents one degree of freedom.

edge reversals is another way to show that they preserve minimal persistence.

It follows from Lemma 6.2 that one can arbitrarily reposition degrees of
freedom using path reversals. The following result implies that two minimally
persistent graphs having the same underlying undirected graph and the same
positions for their degrees of freedom (all vertices having therefore the same
out-degree in the two graphs) can differ only by cycles of opposite edges, and
its proof provides a greedy algorithm to find such a cycle.

Lemma 6.3. Let GA = (V,EA) and GB = (V,EB) be two graphs having the
same underlying undirected graph and such that every vertex has the same out-
degree in both graphs. If an edge of GA has the opposite direction to that in
GB, then it belongs to a cycle of such edges in GA.

Proof. Suppose that (i0, i1) ∈ EA and (i1, i0) ∈ EB (i.e., this edge has opposite
directions in GA and GB); then there exists at least one vertex i2 6= i0 such
that (i1, i2) ∈ EA and (i2, i1) ∈ EB . For if the contrary holds, we would have
d+(i1, GA) = d+(i1, GB)− 1, which contradicts our hypothesis. Repeating this
argument recursively, we obtain an (infinite) sequence of vertices i0, i1, i2, . . .
such that for each j ≥ 0, (ij , ij+1) ∈ EA and (ij+1, ij) ∈ EB . Since there are
only a finite number of vertices in V , at least one of them will appear twice
in this sequence. By taking the subsequence of vertices (and induced edges)
appearing in the infinite sequence between any two of its occurrences we obtain
then a cycle of edges of GA having opposite directions to those in GB . This
cycle does not necessarily contain (i0, i1). But if it does not, we can re-apply
the same argument to G′

A, G′
B obtained from GA and GB by removing the

edges of the cycle found. (i0, i1) has indeed an opposite direction in G′
A to that

in G′
B , and these graphs satisfy the other hypotheses of the lemma. Moreover,

they contain less edges than GA, GB . Therefore by doing this recursively, we
eventually obtain a cycle containing (i0, i1) since the number of edges in the
graphs is finite.
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6.2.5 Obtaining all minimally persistent graphs

Using the results on the two macro-operations defined above, we can now show
the following proposition.

Proposition 6.7. By applying a sequence of edge reversals to a given mini-
mally persistent graph, it is possible to obtain any other minimally persistent
graph having the same underlying undirected graph. Moreover, all the interme-
diate graphs are then minimally persistent.

Proof. Let GA and GB be two minimally persistent graphs having the same
underlying undirected graph. Suppose that there is a vertex i which has less
degrees of freedom in GA than in GB . Since at most three vertices have posi-
tive degree of freedom, there are at most three such vertices i. And since the
total number of degrees of freedom is 3 in all minimally persistent graphs, there
exists a vertex j which has more degree(s) of freedom in GA than in GB . In GA

i has thus necessarily less than two degrees of freedom and j has at least one
degree of freedom. It follows then from Lemma 6.2 that there exists a directed
path from i to j in GA. The reversal of this path transfers a degree of freedom
from j to i without affecting the number of degrees of freedom of the other
vertices. Doing this at most two more times, the two graphs will have the same
positions for their degrees of freedom.

We now show that the following algorithm, which uses only cycle reversals,
transforms then GA into GB :

while ∃ e having opposite direction in GA to that in GB do

Select a cycle C of such edges
Reverse C in GA

end do

existence of C when GA 6= GB : This is a direct consequence of Lemma 6.3
since both graphs have the same underlying undirected graph and since all the
vertices have the same out-degrees in both of them.

end of the algorithm: At each step of the loop, the number of edges hav-
ing opposite directions in GA and GB is strictly reduced because all the edges
for which directions are changed in GA initially had an opposite direction in
GB (and because Proposition 6.4 forbids the presence of cycles of length 2 in
a minimally persistent graph). Since there are only a finite number of edges,
the algorithm finishes, and all the edges have then the same directions in both
graphs.
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The result of this proposition then follows from the fact that both path
reversal and cycle reversal can be implemented by a sequence of edge reversals,
which preserves minimal persistence.

From an autonomous agent formation perspective, suppose that a reorgani-
zation of the distance constraints distribution needs to be performed, and that
this reorganization preserves the structure of constraints from an undirected
point of view, i.e., the reorganization only involves changes of some directions.
Proposition 6.7 implies that this can be done by a sequence of local degree of
freedom transfers, in such a way that during all the intermediate stages, the
formation shape is guaranteed to be maintained.

Let T be the set of operations containing vertex addition, edge splitting,
and edge reversal. We can now state the main result of this section.

Theorem 6.3. Every minimally persistent graph can be obtained by applying
a sequence of operations in T to an initial leader-follower seed. Moreover, all
the intermediate graphs are minimally persistent.

Proof. Consider a minimally persistent graph G. This graph is also minimally
rigid. By Proposition 6.6, there exists thus a (possibly different) minimally
persistent graph having the same underlying undirected graph that can be ob-
tained by performing a sequence of operations in S ⊂ T on an initial leader
follower seed. By Proposition 6.7, G can then be obtained by applying a se-
quence of edge reversals on this last graph. Moreover, since all the operations
in T preserve minimal persistence, all the intermediate graphs are minimally
persistent.

To illustrate Theorem 6.3, consider the graph G represented in the right
hand side of Figure 6.8(c). This graph cannot be built using operations of S, as
none of its vertices can be removed using an operation of S−1. Only 4 satisfies
indeed the necessary condition on the out-degree. And if 4 is removed by a
reverse edge splitting, either (3, 5) or (3, 2) should be added, leading in both
cases to a non-rigid graph. The graph can however be obtained by applying
a sequence of operations in T on an initial leader-follower seed. Let us take
1 and 2 as respectively leader and follower of this initial seed. One can begin
by adding 3, 4 and 5 using three vertex additions as shown in Figure 6.8(a).
The graph obtained has the same underlying undirected graph as G, but the
degrees of freedom are not allocated to the same vertices. By reversing the path
(5, 4, 2, 1) using a sequence of edge reversals, one can then transfer one degree
of freedom from 1 to 5 as shown in Figure 6.8(b) such that in the obtained
graph, all vertices have the same number of degrees of freedom (and therefore
same out-degree) as in G. As stated in Lemma 6.3, any edge of this graph that
does not have the same direction as in G belongs to a cycle of such edges. The
only such cycle here is C. By reversing it using a sequence of edge reversals, one
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Figure 6.8: Example of obtaining of a minimally persistent graph by applying a
sequence of operations in T on a leader-follower seed. The graph G is obtained
from the leader-follower seed by (a) three vertex additions, (b) the reversal of
the path P and (c) of the cycle C.

finally obtains the graph G, as shown in Figure 6.8(c). Note that, consistently
with Theorem 6.3, all the intermediate graphs are minimally persistent.

Corollary 6.4. Every minimally persistent graph can be transformed into any
other minimally persistent graph using only operations in T ∪ T −1.

Proof. Let GA and GB be two minimally persistent graphs. Since GA can be
obtained by applying a sequence of operations in T on a leader-follower pair, the
leader-follower pair can be re-obtained from GA by applying the reverse versions
of these operations (which are all in T −1) in the reverse order. By Theorem
6.3 one can then obtain GB from this leader-follower pair by a sequence of
operations in T .

The method proposed in the proof of Corollary 6.4 is generally not optimal
in terms of the number of operations. Note also that unlike in the case of undi-
rected Henneberg sequences, the number of operations to build a minimally
persistent graph is not uniquely fixed by its number of vertices, although it is
bounded in O(|V |2). The first part of our construction requires indeed |V | − 2
operations of S. The second part requires up to 3 path reversals (one for each
degree of freedom), and up to 1

3 |V | cycle reversals (the smallest possible cycles
have a length 3 in a minimally persistent graph). The bound follows then from
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Figure 6.9: Implementation of the edge splitting by a vertex addition and an
edge reorientation. The vertex i is first added with two outgoing edges by
vertex addition, and the edge (j, k) is then reoriented and becomes (j, i).

the fact that a path reversal requires at most |V | edge reversals, and a cycle
reversal can be implemented by two path reversals. The existence of a smaller
bound or of minimally persistent graphs that requires O(|V |

2
) operations to be

built remains an open question.

Finally, observe that the three operations in T are basic operations that can
be performed locally. They can thus easily be implemented in a local way on
an autonomous agent formation. It might however be possible to improve this
basic character using for example an operation such as an edge reorientation,
i.e., an operation consisting in changing the arrival vertex of an edge. As
shown in Figure 6.9, a vertex addition operation and an edge reorientation
operation can indeed implement an edge splitting operation which could thus
be discarded. However, this would require an efficient and simple criterion to
determine when such an edge reorientation operation can be performed, and
no such criterion is presently available.

6.3 Two-dimensional graphs with three degrees

of freedom

6.3.1 Introduction and relevance

In this section, we consider graphs representing two-dimensional formations
that have three degrees of freedom. We show how their persistence can be
checked in polynomial time, a result recently obtained by Bang-Jensen and
Jordán [12]. Graphs with three degrees of freedom are those in which all ver-
tices have an out-degree 2 or more, except either three vertices who have an
out-degree 1 or one vertex with an out-degree 1 and one vertex with an out-
degree 0. It follows from Proposition 4.2 that 3 is the maximal number of
degrees of freedom that a persistent graph can have in ℜ2. Although some
persistent graphs have less than 3 degrees of freedom, the class of those hav-
ing three of them is in practice the most important one. They are indeed the
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only ones whose corresponding formation can be fully controlled by individual
actions of the agents. As explained in Section 4.5, formations with less degrees
of freedom can indeed not perform certain moves unless a common decision is
made by several agents in a collaborative way, an hypothesis that we do not
consider in this thesis.

Particular cases of two-dimensional persistent graphs with three degrees of
freedom include acyclic graphs (see Theorem 6.1), minimally persistent graphs
(see Corollary 4.4 or Section 6.2.1) and leader-follower graphs. A leader-follower
graph is one in which one “leader” vertex has an out-degree 0, and one “first
follower” vertex has an out-degree one, with its single outgoing edge arriving at
the leader vertex. These graphs are advisable for many practical applications
as the displacements of the corresponding formation are easy to control. The
leader is indeed responsible for the formation’s position and the first follower
for its orientation. Recent results have shown that any minimally persistent
two-dimensional leader-follower formation can efficiently be controlled [3]. How-
ever, the study and use of graphs with less degrees of freedom should not be
a priori ruled out, especially in applications where the orientation for example
of the formation is less relevant than its robustness with respect to loss of edges.

All results in this section were obtained by Bang-Jensen and Jordán [12],
but the presentation and notations are modified to be consistent with the other
chapters. Besides, all graphs in this section are supposed to be represented in
ℜ2.

6.3.2 Polynomial-time algorithm

We first give a simpler criterion for persistence that can be applied to graphs
with three degrees of freedom.

Proposition 6.8 (Bang-Jensen and Jordán [12]). Let G be a directed graph for
which the total number of degrees of freedom in ℜ2 is 3. G is persistent if and
only if there is no subgraph G′(V ′, E′) of G for which

∑

i∈V ′ max(0, 2−d+
i,G′) <

3, i.e. a subgraph in which the total number of degrees of freedom is smaller
than 3.

Proof. Let Σ(G) be the set of all strict min D-subgraph of G on all its ver-
tices, i.e., the set of the subgraphs S of G on all its vertices such that d+

i,S =

min(2, d+
i,G). Theorem 4.5 characterizing persistent graphs states that G is per-

sistent if and only if every graph in Σ(G) is rigid. Since
∑

i∈V min(2, d+
i,G) =

2 |V | − 3 as G has three degrees of freedom, every graph S ∈ Σ(G) contains
2 |V | − 3 edges. So by Theorem 3.2, it is rigid if and only if it contains no
subgraph S′(V ′, ES′) for which there holds |ES′ | > 2 |V ′| − 3.
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Suppose first that there exists a subgraph G′ of G for which
∑

i∈V ′ max(0, 2−

d+
i,G′) < 3 holds. By removing edges leaving vertices with out-degree larger than

2, one can obtain a subgraph of S′(V ′, ES′) of G′ for each vertex i of which
there holds d+

i,S′ = min(2, d+
i,G′) and thus max(0, 2− d+

i,G′) = 2− d+
i,S′ . For this

graph, there holds then

|ES′ | =
∑

i∈V ′

d+
i,S′ = 2 |V ′| −

∑

i∈V ′

(2 − d+
i,S′) > 2 |V ′| − 3.

Since for each i ∈ V ′ there holds d+
i,S′ = min(2, d+

i,G′) ≤ min(2, d+
i,G), it is

possible to obtain a subgraph S ∈ Σ(G) from S′ by adding all the vertices
of V \ V ′ and some outgoing edges. Since S′ is a subgraph of S for which
|ES′ | > 2 |V ′| − 3, S is not rigid and G is not persistent.

Conversely, suppose that G is not persistent, and thus that there is a graph
S ∈ Σ(G) admitting a subgraph S′(V ′, ES′) for which there holds |ES′ | >
2 |V ′|−3. There holds thus

∑

i∈V ′ d+
i,S′ ≥ 2 |V ′|−3. Since no vertex has in S′ ⊆

S has an out-degree larger than 2, this implies that
∑

i∈V ′ max(0, 2−d+
i,S′) < 3

holds for this subgraph S′.

The following lemma describes a simple algorithm, a variation of which
appears in [12].

Lemma 6.4. Let G(V,E) be a directed graph, and assign an integer bi to each
vertex i. There exists a polynomial time algorithm checking the existence of a
non-empty subgraph G′(V ′, E′) such that for each i ∈ V ′ there holds d+

i,G′ ≥ bi.
Moreover, the algorithm provides the largest of these subgraphs when the answer
is positive.

Proof. The idea of the algorithm is to remove vertices having a too small out-
degree as long as such vertices can be found. More formally:

Let t = 0, G0(V0, E0) = G(V,E)
while ∃ i ∈ Vt such d+

i,G′ < bi do

Take Gt+1 = Gt without i and its incident edges
t = t + 1

end do G∗ = Gt.

Executing this algorithm clearly takes a polynomial time, which can be as
large as O(|E|) if the initial graph is connected. Moreover, if G∗ is not empty
at the termination of the algorithm, each of its vertices i satisfies d+

i,G′ ≥ bi.
Conversely, suppose that there is a subgraph G′ of G for each vertex of which
there holds d+

i,G′ ≥ bi, and let us show inductively that G′ is a subgraph of G∗
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obtained at the end of the algorithm. Obviously, G′ is a subgraph of the initial
graph G0 = G. Therefore, d+

i,G0
≥ d+

i,G′ ≥ bi holds for each i ∈ V ′. So if a
vertex is removed by the algorithm, it does not belong to V ′. G′ is thus also
a subgraph of G1. Repeating this argument for each iteration, we see that no
vertex of G′ is ever removed by the algorithm.

We can now use this algorithm to check the persistence of the graph by
checking the existence of a subgraph as described in Proposition 6.8.

Theorem 6.4 (Bang-Jensen and Jordán [12]). The persistence in ℜ2 of a

directed graph having 3 degrees of freedom can be checked in O(|V |
2
|E|).

Proof. It follows from Proposition 6.8 that the non-persistence of G is equiv-
alent to the existence of a subgraph G′(V ′, E′) for which

∑

i∈V ′ max(0, 2 −

d+
i,G′) ≤ 2 holds, that is, a subgraph in which all vertices have an out-degree

no smaller than 2, with the possible exception of either one vertex with an out-
degree 0 or two vertices with an out-degree 1. To check persistence, one needs
thus just to check first for each vertex i if there is a subgraph of G in which
each vertex has an out-degree at least 2 except possibly i, and then to check
for each pair of vertices i, j if there is a subgraph of G in which each vertex
has an out-degree at least 2 except possibly i and j who only need to have an
out-degree at least 1. Each of these tests can be done in polynomial time using
Lemma 6.4, with either bi = 0 and bk = 2 for every other k, or with bi = bj = 1
and again bk = 2 for every other k. Since at most |V | + 1

2 |V | (|V | − 1) tests

need to be done, the total execution time is bounded by O(|V |
2
|E|).

Remember that persistence and structural persistence are equivalent notions
when graphs are represented in ℜ2 (See Corollary 5.2). The algorithm provided
in Theorem 6.4 therefore also checks structural persistence. Note that the
complexity of the algorithm presented is probably not optimal. Moreover, its
efficiency can in practice be improved by first sequentially removing all vertices
with in-degree 0 using Proposition 6.3. Besides, the existence of a polynomial-
time algorithm to check persistence without assuming that the graph has three
degrees of freedom is an open question.
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6.4 History and literature

The results in Section 6.1 on acyclic graphs were presented in [63, 64] for two-
dimensional spaces and partly extended in [133, 133] for higher dimensions.
The construction of all two-dimensional minimally persistent graphs results in
Section 6.2 are appeared in [66, 68, 69] which contains also other set of opera-
tions, and detailed proof of the impossibility to build all minimally persistent
graph with certain type of operation sets. Some preliminary results had also
been obtained in [64, 133]. Finally, the persistence testing results of Section
6.3 for two-dimensional graphs with three degrees of freedom were obtained by
Bang-Jensen and Jordán [12].



Chapter 7

Further Research

Directions

This research has lead to many open questions and ideas for possible further
investigation, some of which have already been mentioned in the previous chap-
ters or in published papers. We present them in the rest of this chapter, together
with some tracks that could be followed to approach them and some partial
results when available. Section 7.1 is dedicated to further research directions
on shape maintenance in formation control. Section 7.2 contains more precise
open questions appearing in the context of persistence, and whose formulation
is mostly graph-theoretical.

7.1 Further research directions in formation

control

7.1.1 Convergence to equilibrium

This issue is related to the content of Sections 4.3, 5.1 and 5.2

Constraint consistence characterizes the fact that once a formation reaches
equilibrium, all constraints are satisfied. If the formation is also rigid, this im-
plies that the formation shape is the desired one. This description does not take
the issue of convergence to equilibrium into account. Progress in this direction
is made by defining in Chapter 5 structural constraint consistence and persis-
tence. These notions ensure that if a set of displacements in which some agents
have fixed displacements and others are free is invariant1, then it contains an

1Remember that a set S of system states is an invariant set if when the system state is in
S it remains in S for all further time.
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equilibrium. Even if that would not necessarily be sufficient to guarantee the
convergence to equilibrium, it would be desirable to have a stronger notion,
ensuring the fact that every invariant set’s closure2 contains an equilibrium.
If possible, this notion should be formulated in a unified way: One could for
example require every invariant set’s closure to contain an admissible displace-
ment, that is, a displacement for which all constraints are satisfied. This would
first imply that a formation can always get arbitrarily close to an admissible
displacement and thus to an equilibrium. Since an equilibrium displacement
constitutes a invariant set, it would also imply that all constraints are satisfied
at every equilibrium displacement. We do however not know if such notion
could be formalized without making strong assumptions on the agents’ inter-
nal control laws. As a related issue, one should also make sure that when a
formation converges to an equilibrium, this equilibrium is “close” to the ini-
tial conditions. Persistence, constraint consistence and rigidity are indeed local
notions. Persistence guarantees for example that the formation shape is the
desired one provided that all agents are at equilibrium, and that the formation
is in a certain neighborhood of a reference configuration. One should thus make
sure that the control laws do not drive the formation to an equilibrium lying
out of this neighborhood, for otherwise the formation shape might not be the
desired one, and some constraints might even not be satisfied. Note that this
issue could be related to global constraint consistence and persistence, that we
mention in Section 7.1.4.

For convenience, we use the infinitesimal displacement formalism as for ex-
ample in Sections 3.2 and 4.3. In the definition of constraint consistence, we re-
quire the admissibility of all equilibrium (infinitesimal) displacements. Stronger
notions could be obtained by requiring the admissibility of all (infinitesimal)
displacements in larger sets. We present here such a notion, and show that it
encapsulates both constraint consistence and structural constraint consistence.
How this notion relates to the invariant sets issue, and what we abusively call
its “physical meaning”, need however still to be determined.

Remember that the displacements considered for constraint consistence are
those where each agent is at equilibrium, that is, those for which no agent
could satisfy an additional constraint without breaking one that it already
satisfies, considering the other agents’ displacement as fixed. This idea can be
generalized to groups of agents.

2Considering the set’s closure is needed as one could have a formation converging to
equilibrium without ever reaching it. The formation’s trajectory would then be an invariant
set containing no equilibrium, but its closure would contain one.
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Definition 7.1. Let p be a representation of a directed graph G(V,E), and
consider a subset of vertices V1 ⊆ V . We say that the set V1 is at equilibrium
with a certain displacement δp if there is no δp′ such that

a) δp′j = δpj for every j ∈ V1,
b) The set of constraints corresponding to edges leaving vertices of
V1 that are satisfied by δp′ strictly contains the set of those satisfied
by δp.

Intuitively, a set of agents is at equilibrium if no concerted displacement of
the agents leads to the satisfaction of an additional constraint without breaking
one that they already satisfy, considering the displacement of the agents outside
the set as fixed. In particular, a set of one single agent is at equilibrium if and
only if the agent is at the equilibrium according to our usual definition (see
Section 4.3).

However, a set of agents at equilibrium is not necessarily at equilibrium
as a set. A collective decision could indeed possibly improve the situation
for everybody while no agent could improve its own situation by an isolated
decision. Conversely, if a set of agents is at equilibrium as a set, each agent is
not necessarily at equilibrium individually. It can indeed be that some agents
could improve their situation, but that by doing so they break other agent’s
constraint, so that the situation of the group is not improved. The notion of
set at equilibrium does thus not exactly correspond to the intuitive notion of
equilibrium. We say that a displacement is a set-wise equilibrium if there exists
a partition of the vertices V = V1 ∪ · · · ∪ Vc (Vi ∩ Vj = ∅ if i 6= j) such that
every set Vi is at equilibrium for this displacement.

Definition 7.2. A graph representation is set-wise constraint consistent if
every set-wise equilibrium displacement is admissible by the representation, i.e.,
is such that all linear constraints implied by the rigidity matrix are satisfied.

As an example of application of this definition, consider the representation
in Figure 7.1. Let us first assign δp1 and δp2 such that (p1−p2)

T (δp1−δp2) 6= 0,
that is, such that the distance between 1 and 2 varies. We have seen in Section
5.1 that it is then impossible for the three other agents to simultaneously satisfy
all their constraints. One can however choose δp3, δp4 and δp5 such that all
constraints are satisfied but one, say the one associated to (3, 4). Consider then
the partition V = {1}∪{2}∪{3, 4, 5}. The two single-vertex sets are obviously
at equilibrium as they have no constraints. The third set is also at equilibrium
as a set (although 3 is not at equilibrium as an agent) as it is impossible for
{3, 4, 5} to simultaneously satisfy all their constraints. So this displacement is
a set-wise equilibrium displacement, but is not admissible by the graph repre-
sentation, which is thus not set-wise constraint consistent.
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1

2

5

3

4

Figure 7.1: Example of three-dimensional representation that is constraint con-
sistent but not structurally constraint consistent nor set-wise constraint con-
sistent.

To further analyze set-wise constraint consistence, we look at some rele-
vant classes of set-wise equilibrium displacements. Obviously, every admissible
displacement is a set-wise equilibrium displacement, as if all constraints are
satisfied, all sets of any partition of the vertices are at equilibrium. Moreover,
any (normal) equilibrium displacement is also a set-wise equilibrium displace-
ment. Indeed, if every vertex is at equilibrium, then the set of vertices V can
be decomposed in |V | single-vertex sets which are each at equilibrium as sets.

Proposition 7.1. Every set-wise constraint consistent representation is con-
straint consistent.

Proof. A graph representation is constraint consistent if every equilibrium dis-
placement is admissible. The result follows thus directly from the fact that
every equilibrium displacement is also a set-wise equilibrium displacement.

We now show that set-wise constraint consistence also implies structural
constraint consistence.

Lemma 7.1. Let p be a representation of a graph G(V,E) in ℜD, and V =
V1 ∪ V2 a partition of the vertex set. For every δpV2

∈ ℜD|V2|, there is a
δpV1

∈ ℜD|V1| such that V1 is at equilibrium as a set for the displacement
obtained by aggregating δpV1

and δpV2
.

Proof. Let us fix a δpV2
and take an initial arbitrary δpV1

. We call E1 be the
set of edges leaving vertices of V1, whether they arrive in V1 or in V2. We
suppose that the vertices are labelled in such a way that the displacement
obtained by aggregating δpV1

and δpV2
is [δpT

V1
, δpT

V2
]T . If there is a δp′V1

such

that [δpT
V1

, δp′TV2
]T satisfies all constraints corresponding to edges of E1 and at
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least an additional one, take this δp′V1
as new δpV1

. Repeating this procedure,
we obtain after at most |E1| iterations a δpV1

satisfying a maximal subset of
constraints of E1, so that V1 is at equilibrium as a set with [δpT

V1
, δpT

V2
]T .

Proposition 7.2. Every set-wise constraint consistent representation is struc-
turally constraint consistent

Proof. By Proposition 7.1 and the definition of structural constraint consis-
tence, it suffices to prove that a constraint consistent but not structurally con-
straint consistent representation is not set-wise constraint consistent either. Let
p be such a representation. Since it is not structurally constraint consistent,
there exists a set V2 and a partial equilibrium δpV2

(that is, displacements for
every completion of which the vertices of V2 are at equilibrium) that cannot be
completed into an equilibrium displacement. In particular, it cannot be com-
pleted into an admissible displacement. Observe now that the completion of
δpV2

by the δpV1
provided by Lemma 7.1 is a set-wise equilibrium displacement.

V1 is indeed at equilibrium as a set by Lemma 7.1, and every other vertex is at
equilibrium as a single-vertex set because δpV2

is a partial equilibrium. There is
thus a set-wise equilibrium displacement that is not admissible by p, preventing
it from being set-wise constraint consistent.

Studying this notion of set-wise constraint consistence could thus be promis-
ing. Among the many open questions, one can wonder if this notion is a generic
one, i.e., one that almost only depends on the graph. Also, since persistence and
structural persistence are equivalent notions in ℜ2, maybe set-wise persistence
(i.e. set-wise constraint consistence and rigidity) is equivalent to persistence
in ℜ2. However, one would also need to understand the meaning and the rele-
vance of the set-wise equilibrium displacements in terms of autonomous agent
systems. Besides, it uses the idea of satisfying a maximal subset of constraints,
which is partly arbitrary (see Section 7.1.2). Finally, it excludes representations
that are structurally persistent, such as the one obtained from the represen-
tation in Figure 7.1 by connecting 1 to 2. Proving that this representation is
not set-wise constraint consistent can be done using the same displacement as
above for the representation in Figure 7.1.

7.1.2 Different equilibrium criterion for the agents

How much relies on Assumption 4.2 as compared to Assumption 4.1? This
issue is related to the content of Sections 4.1 and 4.3.

Our characterization of persistence relies on Assumption 4.2, stating that
an agent is at equilibrium if and only if it satisfies a maximal set of constraints.
As explained in Section 4.1, this assumption is reasonable but partly arbitrary.
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We therefore briefly analyze now how our results would be extended or mod-
ified if a different assumption was used. We first consider the results that are
valid for any reasonable assumption, that is, any assumption particularizing
Assumption 4.1. The latter states that an agent is at equilibrium when it satis-
fies all its constraints, and not at equilibrium if it does not but could satisfy all
its constraints. We then propose such an assumption based on the least-square
satisfaction of the linear system of constraints. Before starting, remember that
modifying or replacing Assumption 4.1 implies a different definition of equilib-
rium, and therefore of constraint consistence. It has thus no effect on rigidity.
Moreover, we see below that it has no effect either on the constraint consistence
and persistence of acyclic graphs and of graphs where the maximal out-degree
is D. As a consequence, the issue of convergence to equilibrium presented in
Section 7.1.1 is relevant independently of the assumption used, as it concerns
among others such graphs with maximal out-degree D (see Figure 5.1).

Generic assumptions

Let us take a representation p of a directed graph G(V,E), and an (infinitesimal)
displacement δp. Remember that if a vertex i is connected by directed edges to
vertices j1, . . . , jd+

i
, the corresponding agent faces the following linear system:











(pi − pj1)
T

(pi − pj2)
T

...
(pi − pj

d
+
i

)T











δpi =











(pi − pj1)
T δpj1

(pi − pj2)
T δpj2

...
(pi − pj

d
+
i

)T δpj
d
+
i











. (7.1)

Assumption 4.1 states that an agent satisfying all its constraints is at equilib-
rium, and that an agent that does not satisfy all its constraints but can move
to a position where it would satisfy all of them (considering all other agents
as fixed) is not at equilibrium. We thus say that if the system (7.1) for i is
satisfied by δp, then i is at equilibrium. On the other hand, if δp does not
satisfy the system while it admits a solution δp′i (considering every other δpj as
fixed), then i is not at equilibrium. This does of course not fully define the set
of equilibrium displacements, as it does not treat the case of systems admitting
no solution. We however show that some results hold for any definition of equi-
librium satisfying these properties. Note that a third part of Assumption 4.1
states that, considering its δpj as fixed for every neighbor j of i, there always
exists a δpi such that i is at equilibrium.

Suppose now that we fix a definition of equilibrium, without explicitly spec-
ifying it. We use the same formal definition of (infinitesimal) constraint con-
sistence and persistence as in Section 4.3. For a representation p of a graph
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G, an equilibrium (infinitesimal) displacement is an (infinitesimal) displace-
ment for which all vertices are at equilibrium, and the set of all equilibrium
displacements is denoted by Equil∗G,p. A representation is (infinitesimally) con-
straint consistent if every equilibrium displacement is admissible by the rep-
resentation and the graph, that is if such displacement satisfies all constraints
(Equil∗G,p ⊆ KerRG,p). A representation is (infinitesimally) persistent if every
equilibrium displacement is Euclidean (Equil∗G,p ⊆ Eup). Note that these no-
tions are not necessarily generic notions for graphs, which leads us to a first
open question.

Open question 1. Does any definition of equilibrium consistent with As-
sumption 4.1 lead to notions of persistence and constraint consistence that are
generic notions for graphs?

Obviously, every admissible displacement is an equilibrium displacement,
so that the inclusion KerRG,p ⊆ Equil∗G,p holds. Indeed, if all constraints
are satisfied, the system (7.1) associated to each vertex is also satisfied. The
following decomposition of persistence is thus still valid as its proof solely relies
on this inclusion.

Theorem 7.1. For any definition of equilibrium consistent with Assumption
4.1, a representation is persistent if and only if it is rigid and constraint con-
sistent.

Observe now that if p is not constraint consistent, there exists an equilibrium
displacement δp for which at least one constraint is not satisfied, and thus for
which the system (7.1) of at least one vertex is not satisfied. Since this vertex
is at equilibrium this implies that this system admits no solution (considering
other agents as fixed). Graph representations for which the system (7.1) always
admits a solution are thus always constraint consistent. Consider for example a
non-degenerate representation of a graph containing no vertex with out-degree
larger than D. The system (7.1) of each vertex i contains d+

i ≤ D linearly
independent equations involving the same D−dimensional variable δpi, and
admits thus always a solution. This together with Theorem 7.1 proves the next
proposition.

Proposition 7.3. For any definition of equilibrium consistent with Assumption
4.1, any non-degenerate representation of a graph whose largest out-degree is
bounded by D is constraint consistent. Such a representation is thus persistent
if and only if it is rigid.

To avoid any possible ambiguity, we do not omit the term “generic” in this
section. We thus say that a graph is generically constraint consistent (respec-
tively generically persistent) if almost all its representations are constraint con-
sistent (respectively persistent). Since constraint consistence and persistence
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have not been proved to be generic, we also say that a graph is generically not
constraint consistent (respectively not persistent) if almost none of its represen-
tations are constraint consistent (respectively persistent). This double phrasing
is necessary as there could exist some graphs that are neither generically con-
straint consistent nor generically not constraint consistent. The result above
can now be restated for graphs.

Proposition 7.4. For any definition of equilibrium consistent with Assumption
4.1, any graph whose largest out-degree is bounded by D is generically constraint
consistent. Such a graph is thus generically persistent if it is generically rigid
and generically not persistent otherwise.

Similarly as in Section 4.6, one can use this proposition to prove that a
graph whose largest out-degree is not larger than D is minimally persistent if
and only if it is minimally rigid. This condition is however only proved valid
for graphs with bounded out-degree, as there could exist persistent graphs with
larger out-degrees, and to which the removal of any edge would result in a loss
of persistence. Proving that a directed graph is minimally persistent if and only
if it is minimally rigid and contains no vertex with an out-degree larger than
D is equivalent to providing a positive answer to the following open question.

Open question 2. For any definition of equilibrium consistent with Assump-
tion 4.1, does every generically persistent graph contain a bounded3 minimally
rigid subgraph on all its vertices?

A sufficient condition for a positive answer to this question would be that
any generically persistent graph contains at least one generically persistent
strict min D-subgraph on all its vertices.

The representations of acyclic graphs are another class of representations for
which persistence does not depend on the particular definition of equilibrium.
The proof of this relies on the following lemma.

Lemma 7.2. Let G′(V ′, E′) be a directed graph obtained from a graph G(V,E)
by adding a vertex with no incoming edge and left by at least min(D, |V |) edges.
For any definition of equilibrium consistent with Assumption 4.1, G′ is gener-
ically persistent if and only if G is generically persistent, and generically not
persistent if and only if G is generically not persistent.

Proof. (sketch). Let p′ be a non-degenerate generic representation of G′ and p
its restriction to G. We prove that p′ is persistent if and only if p is persistent,
and our result for graphs can then easily be deduced.

Suppose first that p is not persistent, i.e. there exists an equilibrium dis-
placement δp that is not Euclidean. Call n + 1 the vertex that was added to G

3Remember that a graph is bounded if its largest out-degree is not greater than D.
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to obtain G′. Since no edge arrives at n+1, its displacement does not influence
the fact that the other vertices are at equilibrium. Moreover, it follows from
Assumption 4.1 that if all other agent’s displacements are fixed, there exists
a δpn+1 for which n + 1 would be at equilibrium. So δp′ = [δpT , δpT

n+1]
T is

an equilibrium displacement for p′ and G′. This displacement is clearly not
Euclidean as δp is not Euclidean, which implies that p′ is not persistent.

Conversely, suppose that p is persistent. It follows from Corollary 6.1 that
p′ is rigid, so that we just need to prove its constraint consistence. Let δp′

be a displacement of p′ and δp its restriction to p. Clearly, δp is also an
equilibrium displacement. The persistence of p implies that it is Euclidean.
One can prove that all constraints corresponding to edges leaving n + 1 are
then compatible, i.e., that the system (7.1) for n + 1 admits a solution. Since
n + 1 is at equilibrium, all constraints in this system are thus satisfied, so
that δp′ is admissible. The representation p′ is thus constraint consistent and
persistent.

Using this lemma and the fact that for any graph G(V,E), no graph obtained
from G by adding a vertex and connecting it to the vertices of G by less than
min(D, |V |) is rigid, we obtain by induction the following result.

Proposition 7.5. For any definition of equilibrium consistent with Assumption
4.1, an acyclic graph is generically persistent if every vertex i has an out-degree
at least min(D, i − 1) (where it is assumed that the vertices are labelled such
that every edge leaves a vertex with a label larger than the vertex at which it
arrives), and generically not persistent else.

We believe that for any notion of equilibrium, a persistent graph should
contain at most fD = 1

2D(D +1) degrees of freedom. Intuitively, if it has more
degrees of freedom, the set of equilibrium displacement has a larger dimension
that the set of Euclidean displacement. For this argument to hold as a formal
proof, one would need to prove that there exist non-trivial equilibrium displace-
ments even when one linear constraint is added on each vertex displacement for
each degree of freedom that it has in the graph. Besides, Theorem 4.6 should
also hold for any reasonable definition of equilibrium. It states that every ver-
tex with a positive number of degrees of freedom can be reached by a directed
path from any other vertex in the graph, unless the latter vertex belongs to a
closed subgraph on less than D vertices. By an argument similar to the one
in Theorem 4.6, this would be proved if one could provide a positive answer to
the following open question.

Open question 3. For any definition of equilibrium consistent with Assump-
tion 4.1, does every persistent graph contain a strict min D-subgraph on all its
vertices?
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Note that a positive answer to this question would also provide a positive
answer to the Open Question 2. Finally, one could try to prove that this prop-
erty holds for any rigid directed graph having at most fD degrees of freedom
(which is the case in ℜ2), which would be equivalent to providing a positive
answer to the following question.

Open question 4. Does the following hold? Let G be a rigid directed graph
with at most fD degrees of freedom. If the maximal out-degree is larger than
D, then there is an edge leaving a vertex with an out-degree larger than D and
whose removal results in a rigid graph.

We have thus seen that two important classes of persistent graphs remain
persistent independently of the particular condition of equilibrium used, as long
as it is consistent with Assumption 4.1. We believe that this issue should be
further investigated and that more results could be obtained independently
of the assumptions used. These could include the potential results that we
mention in our open questions, but also other results, for example on structural
persistence.

Least-square solution of constraints system

Instead of requiring an agent to satisfy a maximal subsystem of (7.1), we re-
quire here its displacement to be a least-square solution of that system, which
seems to be another natural behavior. A vertex i is thus at equilibrium for a
displacement δp if and only if the following system of D equations holds:











(pi − pj1)
T

(pi − pj2)
T

...
(pi − pj
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+
i

)T


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





T 



















(pi − pj1)
T

(pi − pj2)
T

...
(pi − pj
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
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






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i










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

= 0,

(7.2)
Note that one could have normalized the lines before. Besides, the system (7.2)
is equivalent to the system (7.1) when the latter admits a solution. For the
sake of simplicity, let us restrict our attention to non-degenerate representa-
tions, that are representations for which (7.1) always admits a solution when
it contains no more than D equations. For each i, let then

Ni =











(pi − pj1)
T

(pi − pj2)
T

...
(pi − pj

d
+
i

)T











T

if d+
i > D

and the identity matrix of order d+
i if d+

i ≤ D. Let then NG,p be the diag-
onal matrix whose blocks are N1, . . . , N|V |. Supposing that the lines of the
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rigidity matrix are properly ordered (i.e., that the first d+
1 lines correspond to

edges leaving 1, that the next d+
2 lines correspond to edges leaving 2, etc.),

one can verify that δp is an equilibrium displacement for p and G if and
only if NG,pRG,pδp = 0. As a result, p is constraint consistent if and only
if KerNG,pRG,p = KerRG,p, and persistent if and only if KerNG,pRG,p = Eup.
Observe now that NG,pRG,p contains D |V | lines minus the number of degrees of
freedom of the graphs. So if a graph representation is persistent, the graph con-
tains at most fD degrees of freedom for otherwise the dimension of KerNG,pRG,p

would be larger than fD, the maximal dimension of Eup. Besides, remember
that since the definition of equilibrium is consistent with Assumption 4.1, all
results obtained above with generic assumptions can be applied.

We believe that the study of persistence and constraint consistence based on
this particular least-square condition for equilibrium should be pushed further,
and that the differences between these notions and those based on Assumption
4.2 should also be investigated. In particular, we would like to mention the two
following open questions.

Open question 5. Is the notion of persistence obtained by using the least-
square definition of equilibrium a generic notion for graphs?

Open question 6. Is every rigid graph with less than fD degrees of freedom
persistent if we use the least-square definition of equilibrium?

7.1.3 Non-rigid constraint consistent formations

This issues is partly related to the content of Sections 4.2 and 4.3.

The major part of this thesis has until here been devoted to persistence, and
not to constraint consistence. In particular, we derived results on constraint
consistence only when they were of immediate relevance to persistence or were
providing a useful intuition. For example, Theorem 4.3 was proved for con-
straint consistence and then particularized to persistence as its proof only uses
constraint consistence ideas, but Theorem 5.1 was not proved for structural
constraint consistence as the ideas behind its proof use properties of Euclidean
displacements and require thus the rigidity of the graph.

Our reason for doing so is that, in the absence of rigidity, constraint consis-
tence as defined in Section 4.2 is of little use alone when analyzing the properties
of autonomous agent system. It characterizes indeed the ability of a formation
to satisfy all its distance constraints, provided that the agents are initially suf-
ficiently close from a reference position in which all constraints are satisfied.
In terms of definition, this is translated into the fact that only a neighborhood
of representations is considered in Definition 4.2, and to the first-order only
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analysis in Section 4.3. When the graph is not rigid, the local character of
these definitions can be a problem, because large deformations may occur even
when all constraints are satisfied. Consider a two-dimensional formation whose
corresponding graph is represented in Figure 7.2(a). This graph is clearly con-
straint consistent by Corollary 4.2, which means here that for any sufficiently
small displacement of 2 and 3, agent 1 can find a position where its two con-
straints are satisfied. But, since 2 and 3 have no constraints, they can move to
any position they want, and could on the long term get separated by a large
distance, so that there would be no position at which 1 would satisfy its con-
straints. So, although the graph is constraint consistent, the satisfaction of all
constraints is not guaranteed if large continuous displacements are admissible.
This problem would however not happen if 2 was connected by a directed edge
to 3, making the graph rigid. In that case, 2 would indeed always remain at a
distance of 3 for which 1 can satisfy its two constraints.

It makes however sense to analyze the ability of formation to satisfy all its
distance constraints, even if these constraints are not sufficient for maintaining
the formation shape. First, one can imagine that an agent has to remain at
constant distance from another in a formation, but that its relative position
does not need to remain constant. An agent could for example need to be sur-
rounded by protecting agents, whose positions need to remain constant with
respect to the other protecting agents but not necessarily with respect to the
rest of the formation. Second, suppose that two persistent formations need to
be merged into a persistent meta-formation. This can be done by the addition
of several directed edges linking the two formations (see [70, 71] for example).
When some edges have been added but not all yet, the set of all agents consti-
tutes a flexible formation containing two rigid sub-formations, corresponding
to the two initial formations to be merged. At this intermediate stage, it is
important to guarantee that all constraints can be satisfied, for otherwise the
shape of the sub-formations could not be preserved. The same issue appears
when performing different operations with one or several persistent formations.
Note that in all those cases, one should also make sure that collisions between
agents are avoided.

We therefore introduce a new notion, analogous to constraint consistence,
but that takes the possibility of large continuous4 deformations into account.

4One could also look at large possibly discontinuous deformations, and obtain a notion of
global constraint consistence, analogous to global rigidity. We think here that the continuity
of the agent displacements should be taken into account.
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Figure 7.2: Example of a constraint consistent but not continuously constraint
consistent representation (a). Agent 1 can indeed not satisfy its two constraints
if the other agent move too far away one from each other. This problem cannot
happen to the representation (b), which is continuously constraint consistent.

Definition 7.3. Let p : V → ℜD be a representation of a graph G(V,E). The
representation p is continuously constraint consistent if for every p̃ : V ×ℜ+ →
ℜD : (i, t) → p̃i(t) Lipschitz continuous with respect to t and such that

a) p̃(0) = p,
b) p̃(t) is an equilibrium representation (with respect to the distance
set induced by p and G) for every t ≥ 0,

p̃(t) is a realization of the distance set induced by p for every t, i.e. all con-
straints are satisfied for every t.

Intuitively, a representation is continuously constraint consistent if all con-
straints remain satisfied during any (Lipschitz) continuous deformation during
which all agents are trying to satisfy all their constraints. The representation
in Figure 7.2(a) is for example not continuously constraint consistent as 1 can-
not satisfy its two constraints if the other agents get too far away from each
other. The representation in Figure 7.2(b) on the other hand is continuously
constraint consistent as, for any position of 1, the other agents can satisfy their
constraints.

We believe that the study of continuous constraint consistence would be
very interesting, not only for its practical relevance, but also because it has
some surprising properties. In particular, it is not a generic notion as we
show below, although there are some graphs that are generically continuously
constraint consistent or generically not continuously constraint consistent. We
now detail some first results obtained on continuous constraint consistence.
Due again to the possible ambiguity that could arise, we do not omit the word
“generically” in the rest of this section. Remember that a graph is generically
P when the property P holds for almost all its representations, and generically
not P when it holds for almost none of them.
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Proposition 7.6. Continuous constraint consistence is not a generic notion
for graphs: there exist graphs for which the set of continuously constraint con-
sistent representations and the set of not continuously constraint consistent
representations both have positive measures.

Proof. To prove this result, it suffices to exhibit a graph having a positive
measure set of continuously constraint consistent representations, and a positive
measure set of non continuously constraint consistent representations. Figure
7.3 shows two representations of such a graph. Observe that if the distances
separating 4 from 2 and 3 are large as compared to those separating 1 from 2 and
3 as in Figure 7.3(a), the representation is continuously constraint consistent.
Indeed, agent 4 is able to satisfy its two constraints for any displacement of 1,
2 and 3, as represented in Figure 7.3(b). On the other hand if the distances
separating 4 from 2 and 3 are small as compared to those separating 1 from
2 and 3 as in Figure 7.3(c), the agents 2 and 3 can move to positions where
it becomes impossible for 4 to satisfy its constraints, as represented in Figure
7.3(d). Such representation is thus not continuously constraint consistent.

There are however graphs that are generically continuously constraint con-
sistent or generically not continuously constraint consistent, i.e. that almost
all their representations are or are not continuously constraint consistent. Ob-
viously, continuous constraint consistence implies constraint consistence (We
do not present a formal proof here as it would require proving the existence
of a continuous path from p to any sufficiently close equilibrium representa-
tion). So, every generically non constraint consistent graph is generically not
continuously constraint consistent, because almost none of its representations
are continuously constraint consistent. We now prove that persistence implies
continuous constraint consistence, and thus that every generically persistent
graph is generically continuously constraint consistent.

Proposition 7.7. Every persistent representation is continuously constraint
consistent.

Proof. (sketch). Consider a persistent representation p of a graph G, and a
Lipschitz continuous displacement p̃ with a constant L. Since p is persistent,
there is an ǫ > 0 such that any equilibrium representation (with respect to p
and G) in the bowl B(p, ǫ) is congruent to p. Besides, the Lipschitz continuity
of p̃ implies that p̃ ∈ B(p, ǫ) for every t ∈ [0, ǫ/L]. So for every t ∈ [0, ǫ/L),
p̃(t) is congruent to p. Let now p′ = p̃(ǫ/2L). Since p′ can be obtained from p
by a translation and rotation, for the same ǫ > 0 as above, every equilibrium
representation (with respect to p and G) in the bowl B(p′, ǫ) is congruent to
p. As a result, p̃(t) is congruent to p for every t ∈ [ǫ/2L, 3ǫ/2L). Repeating
this argument shows that p̃(t) is congruent to p for every t ≥ 0, and thus also a
realization of the distance set induced by p for every t ≥ 0. As a consequence,
p is continuously constraint consistent.
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Figure 7.3: Example of graph admitting positive measure sets of continuously
constraint consistent representations (a) and not continuously constraint con-
sistent representations (c). Agents 2 and 3 can always satisfy their single con-
straints. In (a), the agent 4 can also always satisfy its two constraints, as shown
in (b). This is not true for the representation (c), as shown in (d).
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Note that some authors define rigidity with respect to continuous displace-
ment, analogously to continuous constraint consistence. The notion obtained
in that way is exactly equivalent to the rigidity defined in Section 3.1 [129].
The next corollary follows from the Proposition above and from Theorem 4.1.

Corollary 7.1. All rigid graphs are either generically constraint consistent or
generically not constraint consistent.

Finally, let us mention that a graph in which no vertex has an out-degree
larger than 1 is always continuously constraint consistent. Besides, any one-
dimensional constraint consistent formation is continuously constraint consis-
tent. This follows from the fact that rigidity is equivalent to connectivity in
one-dimensional space, and thus that all connected components of a constraint
consistent graph are persistent.

7.1.4 Global persistence

Persistence, constraint consistence and rigidity are local notions. They can be
used to characterize the properties of a formation under the condition that the
agent initial positions are in a neighborhood of some reference configuration
in which all constraints are satisfied. As mentioned in Section 3.1, there ex-
ists a notion of global rigidity. A graph representation is globally rigid if all
realizations of its induced distance set are congruent. We could make extend
persistence and constraint consistence in the same way. A representation p of
a graph G would be globally constraint consistent if every representation that
is at equilibrium for the distance set induced by p and G is a realization of this
distance set. A representation p of a graph G would be globally persistent if
every representation at equilibrium for the distance set induced by p and G is
congruent to p.

Intuitively these notions would be similar to constraint consistence and
persistence, but allowing any (possibly remote) initial position for the agents.
We believe that it would be interesting to investigate the properties of these
notions and their exact meaning in terms of multi-agent formations. Note that
global constraint consistence should not be mixed with continuous constraint
consistence introduced in Section 7.1.3.

7.1.5 Stability and condition number of rigidity matrix

We have seen in Section 4.4 that persistence is a generic notion: all represen-
tations of a persistent graph are persistent, except those lying in some zero-
measure set. But one can wonder if practical control problems arise for repre-
sentations out of this set but close to it. Consider for example the representation
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Figure 7.4: Example of persistent representation close to the set of non-rigid
representations (a), which may cause stability problems. A variation in the
positions of 2 and 3 can cause a proportionally large displacement of 4, as
shown in (b).

in Figure 7.4(a). If the positions of 2 and 3 were the same, it would not be rigid,
and therefore not persistent. Here, 2 and 3 have different positions so that the
representation is persistent, but their positions are close to each other. Observe
that a small variation of their positions, whether real or perceived by 4, may
cause a very large variation of the position of 4. Mathematically, remember
that the zero-measure set contains (but is not limited to) all the non-rigid rep-
resentations of the graphs. The non-rigid representations are those for which
the rank of the rigidity matrix is smaller than it is for other representations,
due to the singularity of some sub-matrices. Since the determinant depends
continuously on the matrix, this implies that it takes small values in the neigh-
borhood of such representations, and that the corresponding matrices are thus
ill-conditioned.

This topic has to the best of our knowledge not been formally studied yet
for autonomous agent formations, but interesting information can be found
in Laura Krick’s thesis [79]. Results can also be obtained for undirected rigid
graphs when the force transmission approach is used (see Section 3.2 and [124]).
It can be shown that if a rigid representation is close to the set of non-rigid
representations, the rigidity matrix becomes ill-conditioned, so that the appli-
cation of small external forces can cause proportionally large internal forces.

7.1.6 Use of other geometric measures

We have analyzed the formation shape maintenance by means of unilateral dis-
tance constraints. One could however imagine mixing unilateral and bilateral
distance constraints, as a formation can contain some agents with a limited
visibility cone and some others with unlimited vision. This could be modelled
by a graph containing both undirected5 and directed edges. Moreover, inter-

5Remember that undirected edges are not equivalent to two edges having opposite di-
rections, as the first models a bilateral distance constraints, for the satisfaction of which
the agent can collaborate, while the second models two unilateral constraints on the same
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agent distances are not the only geometrically relevant quantities that can be
used. One can for example measure and constrain the angle between the per-
ceived positions of two neighbors as in [45], the angle between the neighbor’s
perceived position and the agent velocity vector. It would be interesting to
see if our persistence theory can directly be extended to those other types of
constraints.

One could also take the physical extensions of the agents into account. Note
that the position and orientation of an agent with some physical extension can
be described by a single point in a higher-dimensional space. The position and
orientation of a two-dimensional body can for example be represented by a
point in a three-dimensional space.

7.1.7 Relaxed constraints and shape maintenance

The idea behind rigidity and persistence is to maintain exactly a formation
shape by constraining sufficiently many inter-agent distances to prescribed val-
ues. Some applications may only require the formation shape to be approxi-
mately maintained or to be kept in some acceptable set. Suppose for example
that two agents need to be within communication range and need to avoid col-
lisions. The distance separating them does not need to be constant, but should
remain in some interval.

A tool to keep a formation shape into a certain set is to use a partly flexible
formation, as already mentioned in Section 7.1.3. Another one could be to
constrain some inter-agent distance to intervals instead of unique values. One
should then generalize the notion of rigidity, persistence and constraint con-
sistence to take this new type of constraints into account. Such generalization
could bee related to the notion of tensegrity presented in Section 3.6.

7.1.8 Unilateral and bilateral distance constraints

Persistence characterizes the efficacy of a structure of unilateral distance con-
straints to maintain a formation shape. If the constraints are bilateral instead
of unilateral, that is, if the agents can collaborate in order to maintain the dis-
tance between them constant, then the graph of constraints is undirected, and
rigidity theory can be applied as such (Assuming that control law make sure
that all constraints are eventually satisfied, which is maybe not such a triv-
ial assumption). One may however imagine hybrid formations in which some
evolved agents are able to collaborate, while other can only handle unilateral
constraints. Such formations would be modelled by graphs containing both
directed and undirected edges. Rigidity would not be enough to characterize

distance.
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their shape maintenance ability, but persistence could not be applied as it does
not consider undirected edges. Remember indeed that an undirected edge is not
equivalent to two directed edges with opposite directions. Some hybrid theory
considering both unilateral and bilateral constraints would thus be needed.

7.2 Open questions in graph theory

7.2.1 Testing rigidity in three and higher dimensions

Open question 7. How to characterize graphs that are rigid in a three or
higher-dimensional space? (Section 3.2)

Laman’s theorem (Theorem 3.2) provides a necessary and sufficient condi-
tion to check if a graph is rigid in two-dimensional space. No equivalent char-
acterization of rigid graphs is known for higher dimensions, and Theorem 3.1
only provides a necessary condition (Figure 3.9 shows a counterexample to its
sufficiency). Another necessary condition for rigidity in ℜ3 is 3-connectivity.
In ℜ2, it is automatically satisfied by any graph satisfying the condition of
Laman. It has however recently been shown that 3-connectivity of a subgraph
satisfying the necessary condition extending Laman’s theorem (and even 4- and
5-connectivity) is not sufficient to determine rigidity [96]. Besides, several suf-
ficient conditions are known, see [124] for example, or [130] for a survey.

In practice one can however easily determine whether a given structure is
rigid or not, as once positions are given to vertices, rigidity can be determined by
computing the rank of the rigidity matrix. Moreover, since the (infinitesimal)
rigidity of one representation implies the rigidity of the graph [6, 7], a simple
method to determine rigidity is then to take a random representation of the
graph, and to compute the rigidity matrix rank. If the rank shows that the
representation is rigid, then the graph is rigid. If it does not, then either the
graph is not rigid, or the graph is rigid and the randomly chosen representation
lies in the zero-measure set its non-rigid representation. The method can thus
produce a certificate of generic rigidity for a graph, but not of the absence
of generic rigidity, as it could produce a false negative with a probability 0.
Another solution is to compute the maximal rank of the matrix parameterized
by the vertices positions. This can indeed be done by checking the emptiness
of several semi-algebraic sets, which can be done using Tarski’s method [122]
or more recent ones. The computational cost of such methods is however very
high. In any case, these methods provide ways to check the rigidity of a graph,
but they do not provide a characterization on which a further theory can be
built, as Laman’s theorem does.
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7.2.2 Adding an edge to a persistent graph

Open question 8. Given a pair of vertices in a persistent graph, is there a
simple criterion to determine whether the connection of this pair of vertices
leads to a persistent graph? Does this criterion lead to a polynomial time algo-
rithm? (Sections 4.6 and 4.4)

We have seen in Figures 4.5 and 4.8 that the addition of an edge to a persis-
tent graph may result in a non-persistent graph, although this is obviously not
always the case. In general, no non-trivial criterion to determine if the connec-
tion of a given ordered pair of vertices preserve the persistence is known. Such
a criterion would however be useful to characterize maximally persistent graphs
(see Open Question 10 in Section 7.2.4), and also to provide a polynomial-time
criterion to check persistence (see Open Question 9 in Section 7.2.3). A weaker
question would be to analyze this problem for two-dimensional space, for graphs
with three degrees of freedom. In that case indeed, persistence is equivalent for
a graph to the absence of a particular type of subgraph, as detailed in Section
6.3. A polynomial-time algorithm follows then from Theorem 6.4, but there
exists maybe a simpler criterion that the one behind this algorithm.

Let us finally mention the following partial result:

Proposition 7.8. Let G(V,E) be a persistent graph and i ∈ V be a vertex
whose out-degree is smaller than D. The graph G′ obtained by adding to G a
directed edge leaving i is persistent.

Proof. Call j the vertex at which arrives the edge added to G to obtain G′.
Let Σ(G) and Σ(G′) be the set of all strict min D-subgraph of G and G′ on all
their vertices. Since the out-degree of i is no greater than D in both G and G′,
one can verify that each graph of Σ(G′) can be obtained by adding the edge
(i, j) to some graph of Σ(G′). Since, by Theorem 4.5, all graphs in Σ(G) are
rigid, all graphs in Σ(G′) are also rigid, which by Theorem 4.5 implies that G′

is persistent.

7.2.3 Polynomial-time algorithm

Open question 9. Is there a polynomial-time algorithm to check if a graph is
persistent? (Sections 4.4 and 6.3)

The criterion provided in Theorem 4.5 to check the persistence of a graph
leads to an algorithm requiring checking the rigidity of a potentially exponen-
tially growing number of subgraphs. Besides, checking rigidity may already
be a problem in three dimensions. Polynomial-time algorithms exist however
for acyclic graphs (Theorem 6.1), for minimally rigid graphs (Theorem 4.7),
and for graphs with three degrees of freedom in ℜ2 (Theorem 6.4). A related
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question is to know whether the complexity of this algorithm (O(|V |
2
|E|)) is

optimal.

This problem is equivalent to the existence of a polynomial-time algorithm
deciding if the addition of an edge to a persistent graph lead to a persistent
graph (see Section 7.2.2). Solving the latter problem with a polynomial-time
algorithm to check persistence is indeed trivial. Suppose now that we can
efficiently check if the addition of an edge preserves persistence, and let G(V,E)
be the graph of which we want to check the persistence. It suffices to check
first the rigidity (and thus persistence) of one of its strict minD-subgraph
on all its vertices S. We can then add, one by one, all edges of G \ S, and
check at each step if their addition preserve persistence. If all these additions
preserve persistence, G is persistent, otherwise it is not. It follows indeed from
Corollaries 4.2 and 4.3 that G is persistent if and only if S is rigid (and thus
persistent) and every graph S′ such that S ⊆ S′ ⊆ G is persistent. This method
requires only O(|E|) tests of persistence keeping by addition of an edge. It is
important to note that, even if the order in which the additions are made has
no importance, they should be added one after each other. The persistence of
all graphs obtained by adding one single edge of G \ S to S does indeed not
imply the persistence of G obtained by adding all edges of G \ S to S.

7.2.4 Maximal persistence

Open question 10. Are there non-trivial maximally persistent graphs, and
how to characterize them? (Sections 4.6 and 6.2.3)

Unlike rigidity and many other graph notions, persistence is not preserved
by edge addition. Adding an edge to a persistent graph can indeed lead to a
non-persistent graph (see Figures 4.5 and 4.8). We say that a graph is max-
imally persistent if it is persistent and if the addition of any one or several
edges would render it non-persistent. This definition can be restricted or not
to graphs without double-edges. Note that by “non-trivial maximally persis-
tent graphs”, we exclude complete graph to which it is impossible to add one
edge, independently of the persistence issue.

If double edges are allowed, the existence of non-trivial maximally persis-
tent graphs can be established. If the number n of vertices is sufficiently large
(larger than 3 in ℜ2), the graph K∗

n in which every pair of vertices is connected
by two edges with opposite directions is not persistent, due to a too important
redundance of the different constraints. This graph contains as subgraphs all
graphs on n vertices, and thus all persistent graphs on n vertices. At least one
of them is thus maximally persistent, for otherwise one could always increase
the number of edges of a persistent graph while keeping it persistent, and even-
tually re-obtain K∗

n.
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The issue of maximal persistence is related to the problem of keeping per-
sistence by addition of an edge, presented in Section 7.2.2. Using an argument
similar to the one used in Section 7.2.3 we now prove that if no single edge can
be added to a persistent graph without losing persistence, then it is maximally
persistent. In other words, there are no graphs from which one cannot obtain
a persistent graph by adding one but one could obtain a persistent graph by
adding several edges.

Proposition 7.9. Let G be a persistent graph. If the addition of any single
edge to G lead to a graph that is not persistent, then G is maximally persistent.

Proof. Consider such a G and suppose, to obtain a contradiction, that there
exists a persistent graph G′ obtained from G by adding k > 1 edges. It follows
from Proposition 7.8 that all vertices of G and thus of G′ have an out-degree
at least D. Therefore, G can be obtained from G′ by removing edges leaving
vertices with an out-degree larger than D, which by a repeated application of
Corollary 4.3 implies that every graph G′′ such that G ⊆ G′′ ⊆ G′ is persistent.
In particular, there is one persistent graph that can be obtained by adding one
edge to G, contradicting our hypothesis.

Note that a similar argument proves that, if Gm and GM are two persistent
graphs on the same vertices and with the same degrees of freedom, and if
Gm ⊆ GM , then every graph G with Gm ⊆ G ⊆ GM is persistent. The result
does however not hold if the graphs do not have the same degrees of freedom.

7.2.5 Redundant persistence and robustness

Open question 11. Which persistent graphs remain persistent after deletion
of any one edge? or any k edges? Can something be said about the probability
of remaining persistent after deletion of k randomly selected edges?

A redundantly rigid graph is a rigid graph that remains rigid by deletion
of any one edge (see [46, 73] for example). A similar notion could be defined
for persistent graphs, and extended to the removal of a larger number of edges.
More generally, one could characterize the robustness of a persistent graph
with respect to the loss of edges by computing its probability of remaining
persistent after deletion of a certain number of randomly selected edges or
vertices. Different probabilities could also be assigned to the edges, making
for example sure that the edge between a first follower and a leader is never
deleted. Observe that minimally persistent graphs would have the lowest degree
of robustness, as the deletion of any one of their edges always lead to a loss of
persistence.
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7.2.6 Complexity of building 2D minimally

persistent graphs

Open question 12. How many vertex addition, edge splitting and/or edge re-
versal operations are needed to build a given minimally persistent graph? (Sec-
tion 6.2)

Theorem 6.3 proves that this construction can be done in at most O(|V |
2
)

operations, but does not prove that this bound is optimal. The quadratic char-
acter comes from the cycle-reversal operation. Actually, if an edge belongs to
a cycle that is reversed, it does not belong to any other cycle that has been
or will be reversed. The sum over all cycles being reversed of their number
of edges is thus at most |V |. But the cycle reversal operation also involves
the reversal of some edges out of the cycles, and these edges may be used for
several cycle reversals. Figure 7.5 shows a graph for which the method of The-
orem 6.3 may require O(n2) edge reversals. This does however not prove that
a quadratic number of operations is needed, as one could build this graph in
O(n) operations using a different sequence of vertex addition and edge splitting
operations. Besides, our method for reversing cycles is not necessarily optimal.

A related issue is the one of determining the sequence of operations. The-
orem 6.3 proves the existence of a sequence of operations building the graph,
but does not explicitly provide them. It indeed relies on the undirected Hen-
neberg sequence that build the corresponding minimally rigid graph. To the
best of the our knowledge, no simple way of explicitly finding these operations
is available.

7.2.7 Directions assignment

Open question 13. Is it possible to assign directions to the edges of any rigid
graph in such a way that the graph obtained is persistent? (Section 6.2.3)

Proposition 6.6 provides an affirmative answer to this question for two-
dimensional minimally rigid graphs. Bang-Jensen and Jordán obtain the same
results for graphs with 2n− 2 edges [12]. Affirmative answers (in ℜ2) have also
been provided in [52] for other particular classes of graphs, such as complete
graphs and wheel-graphs.

It is known however that the directed graph obtained cannot always be
made acyclic. Consider indeed a two-dimensional minimally rigid graph where
all vertices have a degree at least 3, as for instance the complete bipartite graph
K3,3. It follows from Theorem 4.7 that assigning directions to the edges of this
graph leads to a persistent graph if and only if no vertex obtains an out-degree
larger than 2. As a result, all vertices must get an in-degree at least 1, and the
graph contains thus necessarily a cycle.
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Figure 7.5: Class of minimally persistent graphs (in ℜ2) whose construction
using the method of Theorem 6.3 may require O(n2) edge reversals (a). Vertex
addition (b) and edge splitting (c) operations are sufficient to build the graph
represented in (d). That graph contains then O(n) disconnected cycles, whose
distance to the degree of freedom grows linearly. O(n) cycle reversals are thus
needed, and they each require on average O(n) edge reversals. Note though that
a different sequence of vertex addition and edge-splitting operations directly
leads to the graph (d).



Chapter 8

Conclusions

In the first part of this thesis, we have proposed a notion of persistence, general-
izing the notion of rigidity to directed graphs. This notion seeks to characterize
the ability of a structure of unilateral distance constraints to maintain a forma-
tion shape. It is based on an analysis of the formations at equilibrium. We have
further analyzed the issue of convergence to this equilibrium, and introduced
the notion of structural persistence. We have then focussed on some particular
classes of subgraphs, for which stronger results can be obtained.

Unlike rigidity which has a physical meaning, the notions that we have in-
troduced are solely motivated by control and algorithmic issues. It would be
interesting to know if there exist physical or mechanical systems to which they
can be applied. The inherent asymmetry in the relation between vertices in
directed graphs and the possible presence of cycles make us however think that
such systems would be hard to conceive.

Writing this thesis was an opportunity to summarize, re-think, and repro-
cess the core of the research on persistence undertaken during the last three
years. The proofs of many of the results appearing in this text have been simpli-
fied, and the writing has been an occasion to clearly redefine what persistence,
constraint consistence and structural persistence are, and how they relate to
each other.

We have clearly identified the main hypothesis on which persistence and
constraint consistence relies, namely Assumption 4.2 that an agent is at equi-
librium when it satisfies a maximal set of constraints. Looking back in time,
we think that the importance of this assumption had not sufficiently been em-
phasized. It would therefore be relevant to analyze to which extent our result
would be affected if we only use a weaker or a different hypothesis. We show
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some prospective results on this in Section 7.1.2.

Reformulating the notions also made clear that structural persistence is
really about the possibility of converging to equilibrium, as it rules out the
presence of a certain class of invariant sets containing no equilibrium points.
This pins down the fact that a further analysis should be made to guarantee the
convergence to an equilibrium. It is not totally clear if such analysis could be
done as independently of the control laws as we want to. Ideally, we would like
it to lead to a result such as “If the graph has that property, the shape can be
maintained provided that the control laws used satisfy some basic assumptions.
If the graph does not have that property, its shape cannot be guaranteed to be
maintained, independently of the control law”.

Finally, the reader will have noticed that persistence of a graph is not intro-
duced at once, but trough different notion such as persistence of representation
and infinitesimal persistence. This undirect definition was to be expected due
to the close relation between persistence and rigidity. Although graph rigidity
is a rather intuitive notion, its definition is indeed not aesthetical. It requires
the definition of either infinitesimal rigidify or rigidity of a representation, the
second being more intuitive, but the second allowing a simpler analysis. One
could naturally think that a simpler definition should be found, bypassing the
graph representations. Remember however that some properties similar to
rigidity and persistence are not generic notion. We have seen for example in
Section 7.1.3 that some graphs have positive measure sets of continuous con-
straint consistent representations and of non continuous constraint consistent
representations. Tensegrity that we have briefly described in Section 3.6 is not
a generic notion either. The fact that rigidity does only depend on the graph
is thus a nontrivial result.
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Chapter 9

Introduction

Consensus issues in multi-agent systems have attracted a lot of interest in the
last years [5, 18, 49, 75, 76, 100, 103, 111, 112, 116, 117, 125]. In such multi-agent
systems, every agent holds a value. Starting from some initial value, the agents
communicate with each other, and tend to modify their values so that the dif-
ference with their neighbors decrease. These communications often take the
form of agents averaging other agents values to update theirs. Such a system
may reach or converge to consensus, that is, a situation where all agents hold
the same value. The nature of the values on which consensus is sought, the
way averages are performed and the communications that take place are part
of each particular system definition.

Many properties of these systems depend on their communication topol-
ogy, which is usually represented by a sequence of graphs. Vertices abstracting
agents i and j are connected by a directed edge (j, i) in a graph Gt if the value
of j is available to i at time t. Almost all sufficient conditions for convergence
of consensus systems require for example some form of connectivity of the se-
quence of graphs (Gt)t≥0.

We would like to distinguish between two of the possible approaches to an-
alyze a system with a varying communication topology. A first approach is
to prove results that are valid for any time-varying topology satisfying some
basic assumptions. It corresponds thus to consider a random or exogenously
given topology evolution. A second approach is to consider that the topology
does not depend on time but on the system state, which evolves with time. Two
robots or animals can for instance influence each other only when they are suf-
ficiently close to each other, so that their communication abilities depend on
their positions and not on time. But systems with state-dependent communica-
tions topologies are much more complex to analyze, so that the first approach
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is usually preferred in the literature. In this part of the thesis we will show
that the classical results so obtained, although powerful, fail to explain central
properties of a simple sorts of multi-agent systems. We will then analyze these
systems taking explicitly the topology dependence into account, which will al-
low us to explain some phenomena that could otherwise not be understood.

In the rest of the introduction, we first present in Section 9.1 examples
of systems in which consensus plays a central role. We then give in Section
9.2 convergence results for multi-agent systems, representative of those usually
found in the literature. In Section 9.3, we expose phenomena appearing for
some multi-agent systems that these results fail to explain because they do
not take the dependence of the communication topology on the system state
into account. Finally, we outline in Section 9.4 the rest of the second part of
this thesis, in which we obtain stronger result for some particular multi-agent
systems by explicitly using the topology dependence.

9.1 Examples of systems involving consensus

Before presenting examples of systems in which consensus plays a role, we
would like to make a distinction between the design of consensus algorithms
and the analysis of consensus seeking system models. In what we call a con-
sensus algorithm, a communication protocol and a way of averaging neighbors’
values are designed to ensure that all agents eventually reach consensus, pos-
sibly under some assumptions on the initial values. One may also require the
value reached at consensus to be the exact average of all agents’ initial values,
a situation which is referred to as average consensus. These algorithms are
usually relevant in the design of decentralized control laws. On the other hand,
in a model of consensus seeking system the way agents interact with each other
is supposed to model some real or imaginary behavior, and one asks whether
the system eventually converges to an equilibrium and to a consensus. Such
models naturally appear in the study of biological and social systems presenting
self-organizing properties.

There is of course a close relationship between consensus algorithms and
models, and they are often inspired from each other. The major difference is
not a mathematical one. It lies in what someone studying those systems is
allowed to do. In the design of a consensus algorithm, it is perfectly acceptable
to modify the agent behavior in any way if it allows reaching a consensus in a
better way, and if it is consistent with some possible physical or computational
constraints of the system. In the analysis of a consensus model, the behavior
of the agents is given and cannot be altered. Moreover it should be intuitively
consistent with the behavior expected from the modelled agents, whether par-
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ticles, human beings or animals. As a simple example, when modelling the
way human opinions interact with each other, one should not expect a human
being to compute the sum of two integers modulo 5 even though he/she would
be capable of doing so. Such computations would however be totally accept-
able in a consensus algorithm if they increase the capacity to reach a consensus.

In addition to the distinction between model and algorithm, we believe that
three of the important characteristics of the consensus model are the nature of
the value on which consensus is sought, the way the averages are computed, and
the way the interaction topology is decided. We specify these characteristics
for each of the systems presented below, and summarize them in Section 9.1.9.

9.1.1 Consensus in a wired sensor network

Type of system: algorithm for average consensus
Nature of value: real number or vector
Average: weighted linear average
Interaction: fixed topology

Consider a network of n sensors, each of them sensing a value xi, and
suppose that the average x̄ = 1

n

∑n
i=1 xi needs to be computed. This could for

example be the case of a set of decentralized sensors-controllers whose input
variable should be the average temperature or pressure in a certain chemical
process. But it can also be useful to minimize the measurement error risk,
especially in the case of low-quality measurements. Suppose indeed that all
sensors sense the same value y plus some (zero-mean) noise ǫi. The average
sensed value

x̄ =
1

n

n
∑

i=1

(y + ǫi) = y +

n
∑

i=1

ǫi

n

is clearly a better measurement of y than any individual xi, as its variance is
much smaller than any individual measurement. Similarly, distributed sensors
or robots may also need to compute an average reference value for calibration
purpose or to synchronize their clock-time.

For robustness purpose or in order to avoid a possibly costly central con-
troller, it might be desirable to compute these averages in a totally decentralized
way. If the sensors are connected by wires allowing them to send their values
to some other sensors, this can be done by repeated local averaging. Suppose
for example that every sensor i is connected to the sensors i−2 ,i−1, i+1 and
i + 2 (with an appropriate convention to avoid border effects). If all sensors
update their value synchronously by

xi(t + 1) =
1

5
(xi−2(t) + xi−1(t) + xi(t) + xi+1(t) + xi+2(t)) ,
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then they all converge (exponentially) to x̄, the average of the initial values.
The convergence follows indeed for example from Theorem 9.2 in Section 9.2,
and one can verify that the average of all xi is preserved at each iteration.

There exist of course other communication graphs for which the system
converges to the average value. Optimal sets of graphs allowing convergence
in finite time have for example been provided by Delvenne et al. [36]. One can
also impose quantization of the exchanged information to represent the cost and
limitation of digital communications, as in [49,76]. Finally, the general issue of
consensus has been extended to variables lying in space that are topologically
different from ℜd, see for example [116,117] and the references therein.

9.1.2 Gossip algorithm for wireless sensor networks

Type of system: algorithm for average consensus
Nature of value: real number or vector
Average: pairwise average
Interaction: randomized (possibly restricted)

Some sensor networks rely on wireless connections, and communicate thus
intermittently. This is especially the case when the sensors are embedded in
moving agents who can communicate only when they are sufficiently close to
each other. Provided that the communications are sufficiently frequent, it is
however possible for such sensors to compute the average of the values they
sense in a decentralized way, even if agents are never able to communicate
all simultaneously. A simple way of achieving this is to use a so-called gossip
algorithm based on pairwise interaction [22, 23]. When two agents i, j with
values xi and xj interact, they both take as new value the average 1

2 (xi + xj).
One can verify that this operation preserves the global average. Moreover, all
agent values converge to a common consensus equal to the average of the initial
values, provided that the agents cannot be divided into small groups between
which only a finite number of interactions occurs. This can be proved using for
example Theorem 9.3 presented in Section 9.2.

9.1.3 Rendezvous problem for multi-agent formation with

limited visibility

Type of system: algorithm for consensus
Nature of value: position, real vector
Average: usual average with nonlinearities to maintain connectivity
Interaction: distance dependent (geometric graph)
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Consider a group of n autonomous agents with limited visibility. Typically,
two agents can sense each other if they are distant by less than a certain radius
R. The rendezvous problem consists in designing control laws for the agents
allowing them to all gather in one single position. These control laws are ex-
pected to be the same for all agents and invariant under (at least) translations.
It is usually further assumed that an agent cannot discriminate other agents,
and must treat all of them in the same way. In variations of this problem, all
agent eventually form a pre-specified shape by implicitly agreeing on a common
reference position.

When the visibility radius R is finite, this problem can in general not be
solved by deterministic control laws. Consider indeed a system of two agents
initially separated by a distance larger than R, so that none of them can see
any other agent. Deterministic control laws identical for all agents would dic-
tate them exactly the same actions, so that the distance between them would
remain constant, and they would never reach a common position.

The visibility relation is often modelled by a graph in which two agents are
connected if and only if they can see each other. Different methods solve the
rendezvous problem under the condition that this graph is initially connected
[4, 27, 28, 32, 87–89, 120], depending on the assumed capacities and limitations
of the agents. Lin et al. [87–89] proposes for example a simple law where each
agent moves to a point in the interior of its neighbors positions’ convex hull,
in such a way that the distance to the neighbors remains smaller than R. This
is a particular sort of consensus algorithm in which a common value is reached
by averaging neighbors values. They prove that the visibility graph remains
connected and that all agents eventually converge to a common position.

9.1.4 Deffuant’s model of opinion dynamics

Type of system: model
Nature of value: real number or vector
Average: usual average
Interaction: randomized with distance dependent constraint

In this model introduced by Deffuant et al. [35], each agent i is a human
being that has an opinion on some issue, represented by a real number xi ∈ ℜ.
Pairs of agents meet randomly, and influence each other provided that their
opinions are not too different. So, if the opinions xi, xj of two agents that
meet do not differ by more than a pre-specified constant R they both take the
average 1

2 (xi +xj) as new opinion, otherwise they keep their previous opinions.
This model is also often referred to as the Deffuant-Weisbuch model.
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It can be proved, using for example Theorem 9.4 in Section 9.2, that for any
sequence of meetings every agent opinion converges to a limiting value. These
limiting values are generally not the same for all agents, and when they are
different they are distant by at least R. It is experimentally observed that the
distance between the limiting values are usually close to 2R. [35, 128].

9.1.5 Krause’s model of opinion dynamics

Type of system: model
Nature of value: real number or vector
Average: usual average
Interaction: distance dependent

This model of opinion dynamics was introduced by Krause [77, 78], and is
also sometimes referred to as the Hegselmann-Krause model following an article
by these two authors [60]. It presents many similarities with Deffuant’s model,
but its updates are deterministic and synchronized. Each agent i represents
again a human being having an opinion represented by a real number. An
agent finds another one sensible if their opinions differ by less than a certain
constant R, and all agents update synchronously their opinions by computing
the average opinions of the agents that they find sensible. More formally, for
every i

xi(t + 1) =
1

|Ni(t)|

∑

j∈Ni(t)

xj(t), (9.1)

where Nj(t) = {j : |xi(t) − xj(t)| ≤ R}. An example of this system evolution is
shown in Figure 9.1. It has been proved [90] that all agent opinions converge to
limiting values, and that when two different limiting values are not equal, they
differ by at least R. This can also be seen as a consequence of Theorem 9.4
in Section 9.2. Experimental results show however that the distances between
limiting opinions are closer to 2R than to R. The analysis of this model is the
object of Chapter 11.

9.1.6 Vicsek’s swarming model

Type of system: model
Nature of value: direction, angle
Average: direction average by vectorial sum
Interaction: distance dependent, with distances depending on

value history

Vicsek’s model was introduced in [127] to represent to behavior of flocks.
It considers agents having a position xi in the plane and a velocity vi of fixed
and common norm ||vi|| = v ∈ ℜ+. These agents all have a same visibility
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Figure 9.1: Evolution with time t of 1000 agent opinions initially randomly
located on an interval of length 10, according to Krause model (9.1) with R =
1. The agent opinions converge to different clusters. Note that the distance
between those clusters are significantly larger than the vision range 1.



144 CHAPTER 9. INTRODUCTION

radius R, and are said to be neighbors if they can see each other. Formally,
i and j are neighbors at time t if ||xi(t) − xj(t)|| ≤ R. The agents update
synchronously their positions and velocities. Each agent i takes as new position
xi(t + 1) = xi(t) + vi(t), and as new velocity the normalized sum of all its
neighbors velocities:

wi(t) =
∑

j∈Ni(t)

vi(t) vi(t + 1) =
wi(t)

||wi(t)||
, (9.2)

where Ni(t) is the set of neighbors of i at time t, which always includes i itself.
Note that an additional rule has to be specified if wi = 0. Vicsek et al. also
add some random noise on the agent heading. They observe experimentally
phase transitions in the limiting behavior of the system when the agent lie on
a torus, depending on the level of noise and the density of agents. When the
noise is important relatively to the density, agents tend to evolve randomly, in
an uncorrelated way. For lower noise, strong correlations appear, and groups
of agent moving in the same direction can be observed. For ever lower noise,
all agent eventually move in a common direction.

This model has attracted a considerable attention after Jadbabaie et al.
provided sufficient conditions for convergence to consensus for a linearized ver-
sion [75]. These conditions are however generally not checkable in practice. In
the linearized version, all velocities are vi = (v cos θi, v sin θi), and the agents
update their angles θi by averaging their neighbors’ angles

θi(t + 1) =
1

|Ni(t)|

∑

j∈Ni(t)

θj(t).

This linearization introduces strong distortions. The linear average of 0 and 2π
which represent the same angle is indeed π which is the exactly opposite angle.
Jadbabaie et al. proved that the linearized system converges to consensus
if there exists an infinite sequence of contiguous non-empty time-intervals of
bounded length across each of which all agents are “linked together”, that is, the
union of all interaction graphs on the interval is a connected graph. This result
was actually a particular case of earlier results by Tsitsiklis [125]. Using the
symmetry of the neighborhood relation, it was proved later that for any initial
condition, agents eventually gather in one or several groups (containing possibly
one single agent), in which the distances between agents remain bounded and in
which all agent directions tend to a common value (see for example [65,86,100]).
This latter result does however not hold for the initial non-linear model. There
exist indeed initial conditions for which the system does not converge [118], as
the one in Figure 9.2. This exemplifies the importance of the difference between
averaging real numbers and averaging elements over manifolds such as a torus.
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Figure 9.2: Example provided by Savkin [118] of cyclic behavior for Vicsek’s
nonlinear model. The six agents are initially located on the vertices of a regular
hexagon whose edge length is between 1.5R. Each agent i thus a neighbor
of i − 1 and i + 1, as represented in (a). Agents 1, 3 and 5 have velocities
exactly opposite to those of 2, 4 and 6. If the norm of these velocities is
sufficiently small, the neighborhood graph remains unchanged at the next time
step. Moreover, each agent’s new velocity obtained by equation (9.2) is exactly
opposite to its previous one (b), as vi−1 + vi + vi+1 = vi − 2vi = −vi. At the
next time step, all agents return thus to their initial state (a).

9.1.7 Kuramoto-Sakaguchi oscillators

Type of system: model
Nature of value: frequency, angular velocity
Average: attraction on integral over time of value
Interaction: all to all, strength depending on difference between

the integrals over time of values

The Kuramoto-Sakaguchi model was introduced in [115] to describe syn-
chronization in systems of coupled oscillators, such as swarms of flashing fire-
flies or groups of pacemaker cells in the heart [81]. Each oscillator or agent has
a phase θi(t), and a fixed natural frequency ωi. The evolution of the phase is
described by

θ̇i(t) =
K

n

n
∑

j=1

sin (θj(t) − θi(t) − α) ,

with |α| ≤ π
2 , and where K > 0 is the coupling strength. Observe that the

system is invariant by addition of 2kπ to any θi. The model extends the for-
mer Kuramoto model, where α = 0. For sufficiently large values of K, a
phenomenon called partial entrainment can be observed. It consists in the
emergence of group of oscillators having bounded phase difference. The depen-
dence of this phenomenon on the coupling strength K is sometimes complex.
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For some configurations, increasing K may indeed result in the loss of partial
entrainment. For more information ont he Kuramot-Sakaguchi model, we refer
the reader to [34,81,113].

9.1.8 Aeyels-De Smet clustering model

Type of system: model
Nature of value: real (velocity)
Average: attraction on integral over time of value
Interaction: all to all, strength depending on difference between

the integrals over time of values

The clustering model was introduced by Aeyels and De Smet [1,2,34]. It is
similar to the Kuramoto-Sakaguchi model, but is defined on real values, with
saturating interactions. As a result, it is more tractable, and allows for a more
extended theoretical analysis. Each agent has a real value xi(t) and a natural
velocity bi. The evolution of the values is described by

ẋi(t) = bi +
K

n

N
∑

j=1,j 6=i

f (xj(t) − xi(t)) , (9.3)

where f is odd, nondecreasing, and saturated, i.e., there exist D ≥ 0 and F ≥ 0
such that x ≥ D ⇒ f(x) = F . Observe that the interactions between agents
with significantly different velocities become constant after a certain time, un-
like in the case of Kuramoto-Sakaguchi model where agent interactions keep
varying due due the periodicity of the values.

This system produces clusters in both velocities ẋi and positions xi: The
agents get partitioned in groups. In each group, all agent velocities converge
to a same value, and the distance between any two agents remain bounded.
The distance between agents in different groups grows unbounded, and their
limiting velocities are different.

To be more precise, let b̄S = 1
|S|

∑

i∈S bi be the average value of b on any set

S ⊆ {1, . . . , n} of agents, where |S| denotes the cardinality of the set. For any
initial condition, there exists a partition of the agents {1, . . . , n} = N1∪· · ·∪NM

(Na ∩ Nb = varnothing if a 6= b) such that

• For every a, and every i ∈ Na, there holds limt→∞ ẋi = va,
with va = b̄Na

+ KF
n (
∑

k>a |Nk| −
∑

k<a |Nk|).

• For every a, and every i, j ∈ Na, the difference between xi and xj is
bounded: there exists a Ba,ij such that |xi(t) − xj(t)| < Ba,ij for all t.
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• For every a 6= c and every i ∈ Na, j ∈ Nc, limt→∞ |xi(t) − xj(t)| = ∞
and there is a time after which xi > xj if a > c.

Moreover, if bi < bj , then there is a time after which xi < xj . It suffices indeed
to see that as long as xj ≤ xi, there holds ẋj − ẋi ≥ bj − bi.

Observe that the limiting velocities of the agents do not depend on the
initial values, but only on the natural velocities bi and on the composition of the
groups. More surprisingly, it can be proved that the decomposition in groups is
uniquely determined by the set of bi and the value of the coupling parameter K.
And, the asymptotic inter-agent distances in a group are independent of the
initial conditions, provided that the considered agents have different natural
velocities. The structure of clusters can moreover be determined using the
following result.

Theorem 9.1 ( [34]). Let {bi} be a set of n natural velocities. The system 9.3
exhibits a clustering behavior with with sets N1, . . . , Nm if and only if the two
following conditions are satisfied:

• For all k = 1, . . . m − 1, there holds b̄Nk+1
− b̄Nk

> KF
n (|Nk+1| + |Nk|).

• For all k = 1, . . . m−1 and N∗ ⊆ Nk, there holds b̄N∗−b̄Nk\N∗ ≤ KF
n |Nk|.

Note that the necessity of this condition can be obtained by computing the
limiting average velocity in each group and ensuring that the velocity in Nk+1

is larger than the velocity in Nk, and that for any partition of the group Nk in
two subgroups, the average velocities in the two subgroups are identical. It has
been proved that for any set of bi and coupling parameter K, there is a unique
partition N1 ∪ · · · ∪ Nm satisfying the two conditions of Theorem 9.1. More-
over, the decomposition in groups follows a bifurcation scheme. For a large
coupling parameter K, there is only one group. When K decreases, the num-
ber of groups increases, each new decomposition being (generically) obtained
from the previous one by splitting one group into two subgroups. Using this,
the composition of the different groups can be computed based on on K and
on the natural velocities. Moreover, If all natural velocities are different, one
can then also compute the relative positions of the agents in each group, the
complexity of this last computation depending on the complexity of f .

Interestingly, in the experiments that we have conducted with random ini-
tial positions and natural velocities, the conditions of Theorem 9.1 were close
to be tied when a non-trivial clustering behavior is observed. We think that
this might be due to the small range of parameters leading to each particular
decomposition in groups. In other words, if the conditions were not close to be
tied, then some other conditions would not be satisfied, so that the considered
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decomposition would not be valid.

The asymptotic behavior of the clustering model is thus very well under-
stood, partly thanks to the fact that the system tends to “forget” its initial
condition. For more information on this model, on its extensions and on its
applications, we refer the reader to [1, 2, 34].

9.1.9 Summary

The main characteristics of the systems presented above are summarized in the
following table.

System Type Value Average Interaction

Wired
sensors

algo. real weighted linear fixed

Gossip algo. real pairwise average randomized, possi-
bly restricted

Rendezvous algo. real linear, nonlinear-
ities to maintain
connectivity

value dependent

Deffuant model real linear randomized, value
constrained

Krause model real linear value dependent

Vicsek model angle direction average
by vectorial sum

dependent on value
history

Jad. et al.
linearized
Vicsek

model real linear dependent on value
history

Kuramoto-
Sakaguchi

model angle attraction on inte-
gral of value

all to all, strength
dependent on dif-
ference between in-
tegrals of values

Aeyels
- De Smet
clustering

model real attraction on inte-
gral of value

all to all, strength
dependent on dif-
ference between in-
tegrals of values



9.2. REPRESENTATIVE CONVERGENCE RESULTS 149

9.2 Representative convergence results

We now focus on systems where the agent values are real numbers, and where
weighted averages are used. For such systems, we show some simple convergence
results, first in discrete time and then in continuous time. Our goal is not to
review the abundant literature on the domain (see [103] or [112] for surveys),
but to show the type of convergence results that can be obtained for such
systems.

9.2.1 Discrete-time consensus systems

We consider n agents, each of them having a real value xi(t), i ∈ {1, . . . , n}. At
each time step, every agent updates its value by taking a convex combination
of other agents’ values. The evolution of the agent values can thus be described
by

xi(t + 1) =
n
∑

j=1

aij(t)xj(t).

where all aij(t) are nonnegative, and
∑n

j=1 aij(t) = 1 holds for any i and t.
Note the possible time-dependence of aij . This iteration can be rewritten in
the more compact form

x(t + 1) = Atx(t), (9.4)

where [At]ij = aij(t) and [x(t)]i = xi(t). Every At is thus a stochastic matrix.
Remember that a matrix A is stochastic if all its elements are nonnegative, and
if A1 = 1 holds, where 1 is a vector of ℜn of which every entry is 1. Observe
also that maxi xi(t + 1) ≤ maxi xi(t) and mini xi(t + 1) ≥ mini xi(t) holds for
all t.

Almost all sufficient conditions for the convergence of (9.4) available in the
literature do actually not depend on the particular values aij(t) but only on
the fact that they are positive or zero. It is therefore convenient to associate
to every stochastic matrix At a directed graph Gt(V,Et) on n vertices, where
j is connected to i by a directed edge (i, j) if aij(t) > 0. In view of (9.4),
(i, j) ∈ Et means that the value xi(t + 1) is influenced by the value xj(t).
Self-loops are thus to be considered, and mean that the agent’s new value is
influenced by its previous value. Considering a sequence (Gt), we say that j is
connected to i over an interval [t1, t2] if there exists a sequence of T vertices
j = vt1 , vt1+1, . . . , vt2 = i such that (vt, vt+1) ∈ Et holds for any t ∈ [t1, t2], i.e.,
if avt+1vt

(t) > 0 holds for every t ∈ [t1, t2 − 1]. In view of (9.4), the value of
xi(t2) is influenced by the value of xj(t1) if and only if j is connected to i over
[t1, t2]. Example of graphs associated to stochastic matrices and of paths over
time intervals are provided in Figure 9.3.
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Figure 9.3: The graph G0, G1 and G2 are associated to the matrices A0, A1

and A2 respectively. Although 1 is connected to 3 by a directed path in neither
of the three graphs, there is a path between 1 and 3 over [0, 3], as [A0]12,
[A1]22 and [A2]23 are positive. There is however no path over [0, 3] between
2 and itself, nor between 3 and 2, although these paths would be present in
G0 ∪ G1 ∪ G2.

The convergence of x(t) solution of (9.4) for time-invariant At = A was
studied by De Groot in 1974 [33]. A sufficient convergence condition for the
time-varying case was then given in 1984 by Tsitsiklis [125]. A sufficent conver-
gence condition was independently re-obtained by Jadbabaie et al. in 2003 [75],
based on Wolfowitz’s Theorem [131] on convergence of inhomogeneous prod-
ucts of stochastic matrices. Further proofs and results were then obtained,
weakening or modifying these conditions [5, 25, 26, 86, 90, 100], or introducing
additional variations such as time delays. We present here simple examples of
such results, the proofs of which are largely inspired by those in [18].

Theorem 9.2. Let (At)t≥0 be a sequence of n × n stochastic matrices and
(Gt)t≥0 the associated sequence of graphs. For any initial condition x(0) ∈ ℜn,
there exists a x∗ ∈ ℜ such that the sequence x(t) solution of (9.4) converges
exponentially to x∗

1 provided that the following two conditions are satisfied.

a) All nonzero aij(t) are larger than a certain α > 0.
b) There exists a sequence of contiguous intervals of bounded length over each
of which at least one vertex (possibly different for each interval) is connected to
all others.

Proof. Let s be a vertex connected to all other vertices over the interval [0, t∗],
with t∗ ≤ B, and suppose first that mini xi(0) = 0 and that xs(0) = 1. Let then
i be a vertex to which s is by hypothesis connected over [0, t∗], i.e., there exists
a sequence of vertices s = v0, v1, . . . , vt∗ = i such that avt+1vt

(t) is positive for
every t ∈ [0, t∗ − 1], and thus no smaller than α by the hypothesis (a). Since
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all xi(t) are nonnegative, there holds

xv1
(1) =

n
∑

j=1

av1j(0)xs(0) ≥ av1s(0)xs(0) ≥ α1 = α (9.5)

By the same argument we obtain xv2
(2) ≥ αxv1

(1) ≥ α2, xv3
(3) ≥ α3, and

eventually xi(t
∗) = xvt∗

(t∗) ≥ αt∗ ≥ αB .

By two appropriate translations and scalings, this first result implies that
for a general x(0) there holds

xs(0) − mini xi(t
∗) ≤ (1 − αB) (xs(0) − mini xi(0)) ,

maxi xi(t
∗) − xs(0) ≤ (1 − αB) (maxi xi(0) − xs(0)) ,

and thus

max
i

xi(t
∗) − min

i
xi(t

∗) ≤ (1 − αB)
(

max
i

xi(0) − min
i

xi(0)
)

.

Since there always holds [mini xi(t+1),maxi xi(t+1)] ⊆ [mini xi(t),maxi xi(t)],
a repeated application of this result based on the hypothesis (b) implies the
convergence of all xi(t) to some x∗ ∈ ℜ.

The following corollary provides a slightly weaker result, but its conditions
are often simpler to check. It is proved by verifying that its three conditions
imply those of Theorem 9.2.

Corollary 9.1. Let (At)t≥0 be a sequence of n × n stochastic matrices and
(Gt)t≥0 the associate sequence of graphs. For any initial condition x(0) ∈ ℜn,
there exists a x∗ ∈ ℜ such that the sequence x(t) solution of (9.4) converges
exponentially to x∗

1 provided that the following three conditions are satisfied.

a) All nonzero aij(t) are larger than a certain α > 0.
b) All diagonal elements aii(t) are positive (and larger than α).

c) There exists a B such that for any t, the graph
⋃t+B

t′=t Gt′ contains a directed
spanning tree, i.e., one of its vertices is connected to all others by a directed
path.

Among the systems presented in Section 9.1, many have symmetric interac-
tion or communication topologies. In such systems, an agent cannot influence
another agent without being itself influenced by it, although not necessarily
with the same strength. The following result shows that in the case of sym-
metric interaction topologies, no upper bound on the interval across which all
agents communicate is required. It was proved by Li et al. [86] in a particular
case, and in a more general case in [18,65,90,100].



152 CHAPTER 9. INTRODUCTION

Theorem 9.3. Let (At)t≥0 be a sequence of n × n stochastic matrices and
(Gt)t≥0 the associated sequence of graphs. If every Gt is symmetric, then for
any initial condition x(0) ∈ ℜn, there exists a x∗ ∈ ℜ such that the sequence
x(t) solution of (9.4) converges to x∗

1 provided that the following three condi-
tions are satisfied.

a) All nonzero aij(t) are larger than a certain α > 0.
b) All diagonal elements aii(t) are positive (and larger than α).
c) The graph

⋂

t≥0

⋃

t′≥t Gt′ is connected. Equivalently, the graph
⋃

t′≥t Gt′ is
connected for each t.

Proof. We suppose first that maxi xi(0) = 1 and mini xi(0) = 0, and show
that there exists a time t∗ at which mini xi(t

∗) ≥ αn−1, while maxi xi(t
∗) ≤ 1

trivially holds. By appropriate translations and scaling, the repetition of this
argument implies the existence of an infinite sequence t1 < t2 < . . . such that

(max
i

xi(tk) − min
i

xi(tk)) ≤ (1 − αn−1)(max
i

xi(tk+1) − min
i

xi(tk+1))

holds for each tk. Since in addition there always holds [mini xi(t+1),maxi xi(t+
1)] ⊆ [mini xi(t),maxi xi(t)], this is sufficient to prove the convergence of all xi

to some x∗ ∈ ℜ.

Let M be an index for which xM (0) = maxi xi(0) = 1, and let S0 = {M}
be a set of indices. For any t ≥ 1, define St by adding to St−1 all indices i
for which there exists a j ∈ St−1 such that (i, j) ∈ Et−1, i.e., all i for which
the value of xi(t) is influenced by the value of xj(t − 1) for some j ∈ St−1.
The set St clearly increases with t. Let t∗ be the time at which it reaches its
largest size. St∗ contains all indices 1, . . . , n, for otherwise there would be a
group of vertices that are connected to none of those in St∗ for any time t′ ≥ t∗.
As a result

⋃

t′≥t∗ Gt′ would not be connected, contradicting our hypothesis (c).

We now prove by induction on t that for any t ≥ 0 there holds xi(t) ≥ α|St|−1

for all i ∈ St, where |St| is the number of elements in St. The property is clearly
true for S0 which contains only M , as xM (0) = 1. Suppose now that it holds
for some t. If St+1 = St, then for all i ∈ St+1, the value xi(t + 1) is a convex
combination of values xj(t) where j ∈ St, and is thus at least as large as
α|St|−1. If St+1 and St are different, then for every i ∈ St+1, xi(t + 1) is a
convex combination of different xj(t) ∈ [0, 1], with at least one j belonging to
St. Indeed, if i ∈ St+1 \St it is by construction connected to at least one j ∈ St

over [t, t + 1], and every i ∈ St is by the hypothesis (b) always connected to
itself over any interval. Since all (positive) coefficients aij(t) are by hypothesis
(a) lower-bounded by α, this together with the induction hypothesis implies
that xi(t) ≥ α|St|−1+1 ≥ α|St+1|−1 holds for all i ∈ St+1. As a result, we have
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xi(t
∗) ≥ αn−1 for all i, which is sufficient to prove our result as explained

above.

As compared to the conditions of Corollary 9.1, the main advantage of the
conditions of Theorem 9.3 is that the interval across which all agents need to
be influenced by a same agent does not need to be bounded. Although this
may seem a minor difference, it allows proving the convergence of the system
even in the absence of consensus, under the sole conditions (a) and (b). This
proof appears in [65,90].

Theorem 9.4. Let (At)t≥0 be a sequence of n × n stochastic matrices and
(Gt)t≥0 the associated sequence of graphs. If every Gt is symmetric, then for
any initial condition x(0) ∈ ℜn, the sequence x(t) solution of (9.4) converges
to a limit vector provided that the following two conditions are satisfied.

a) All nonzero aij(t) are larger than a certain α > 0.
b) All diagonal elements aii(t) > 0 are positive (and larger than α).

Moreover, if i and j belong to the same connected component of
⋂

t≥0

⋃

t′≥t Gt′ ,
their value converge to the same limit: limt→∞ xi(t) = limt→∞ xj(t).

Proof. Suppose that a system satisfies conditions (a) and (b). If G∗ = ∩t (∪t′≥tGt)
is connected, Theorem 9.3 applies. If not, consider one of its connected compo-
nent G∗

A(V ∗
A, E∗

A). There is a time t∗ after which no vertex in V ∗
A is connected

to any vertex of V \ V ∗
A in any Gt, t ≥ t∗. Otherwise, the finite number of

vertices implies indeed that there would be at least one edge connecting V ∗
A

to V \ V ∗
A in G∗ ∩t (∪t′≥tGt), contradicting the fact that G∗

A is a connected
component of G∗. This means that after that time t∗, the agents corresponding
to V ∗

A do not interact in any way with the other agents. They constitute thus
an isolated subsystem, to which Theorem 9.3 can be applied. It indeed trivially
satisfies conditions (a) and (b), and also satisfies (c) as one can verify that the
graph needing to be connected is actually G∗

A, which is connected by definition.
There exists thus a x∗

A ∈ ℜ such that limt→∞ xi(t) = x∗
A holds for any i ∈ VA.

Since this is valid for every connected component of G∗, and since every vertex
belongs to one connected component, it follows that every xi converges to a
limiting value, and that this value is the same for all i within a same connected
component of G∗.

This corollary cannot be extended in general to systems in which the com-
munication topology is not symmetric. There exist indeed simple examples
of systems that do not converge although they satisfy conditions (a) and (b)
of Corollary 9.1. Consider for example three agents 1, 2 and 3, with initially
x1(0), x2(0) < −1 and x3(0) > 1. By applying a sufficient number iterations

x1(t + 1) =
1

2
(x1(t) + x3(t)) , x2(t + 1) = x2(t), x3(t + 1) = x3(t),
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one drives the system into a state where x1(t), x3(t) > 1 and x2(t) < −1. By
a similar process, one can then obtain after a sufficiently large number of iter-
ations x1(t) > 1, x2(t), x3(t) < −1, and then x1(t), x2(t) > 1 and x3(t) < 1,
a condition opposite to the initial one. By repeating this process indefinitely,
one builds a sequence of interactions for which the system never converges.

Finally, note that all results presented in this section give conditions for
the convergence of the solution of (9.4) for any initial condition. The same
conditions imply thus each time the convergence of the inhomogeneous matrix
product AtAt−1 . . . A1. Moreover, when the convergence to a consensus is guar-
anteed, then the product AtAt−1 . . . A1 converges to a rank one matrix of the
form y∗1T , with y∗ ∈ ℜn.

9.2.2 Continuous-time consensus systems

The consensus issues can also be considered in continuous time. For n agents
having real values xi(t), typical systems have the form

ẋi(t) =

n
∑

j=1

aij(t) (xj(t) − xi(t)) , (9.6)

where all aij(t) are nonnegative. This can be rewritten under the more compact
form

ẋ(t) = A(t)x(t), (9.7)

where A(t) has zero rows sums, and nonnegative off-diagonal elements. In case
A(t) has zero column sums, observe that the average value x̄ of x is preserved
over time, as d

dt x̄ = d
dt1

T x = 1T A(t)x(t) = 0. The convergence of the system
9.7 has been the object of several studies. We present here without proof a
result from [99].

Theorem 9.5 (Moreau [99]). Consider the linear system (9.7), and assume
that the system matrix is bounded and piecewise continuous (with t), and has
zero row sums. The system converges exponentially, and there is a x∗ ∈ ℜ such
that limt→∞ xi(t) = x∗ holds for every i, provided that there is a k ∈ {1, . . . , n},
a threshold value δ > 0 and an interval length T > 0 such that for all t ∈ ℜ,
the digraph on n vertices obtained from

A∗
t =

∫ t+T

t

A(s)ds,

by connecting j to i by the directed edge (j, i) if [A∗
t ]ij ≥ δ, has the property

that all nodes may be reached from the node k.
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Unlike in the discrete time case, no result is known guaranteeing convergence
in the absence of consensus if the connectivity condition is not satisfied, even
if the interactions are symmetric. A reason for this is that the system may not
necessarily be separated into independent subsystems when this condition is
not satisfied.

9.3 State-dependent communication topology

The results in Section 9.3 guarantee convergence of systems and matrix prod-
ucts under very mild assumptions. One of their main limitations is that they
give conditions on the matrix sequence or evolution, but that they do not take
the way those matrices are built into account. By ignoring this information one
may indeed fail to see important characteristics in the behavior of the system.
Moreover, it may be difficult for such systems to check whether the sufficient
conditions on the matrices are satisfied since the sequence is not given a priori
but depends on the evolution of the system state.

To show the importance of this limitation, we consider in the second part
of this works two particularly simple systems involving state-depending com-
munication topologies. We show that the generic results of Section 9.2 only
allow proving the convergence of one of them, and fail to explain some peculiar
behavior. We then analyze these two systems using explicitly the dependence
of their communication topology on the system state, and show how stronger
results can be obtained.

The first system is Krause’s opinion dynamics model presented in Section
9.1.5, with R = 1. There are n agents and every agent i ∈ {1, . . . , n} has a real
value xi representing its opinion. Each agent updates its value according to

xi(t + 1) =

∑

j:|xi(t)−xj(t)|<1 xj(t)

|{j : |xi(t) − xj(t)| < 1}|
, (9.8)

where |{j : |xi(t) − xj(t)| < 1}| is the number of elements in the set {j : |xi(t)−
xj(t)| < 1}. Two agents i, j for which |xi(t) − xj(t)| < 1 are said to be neigh-
bors or connected. It follows from this definition that an agent is always its
own neighbor. So in this system, each agent updates its value by computing
the average values of its neighbors, the agents that are distant from it by less
than 1.

As second system, we consider a continuous time variation of Krause’s
model, in which the evolution of the agent values is described by

ẋi(t) =
∑

j:|xi(t)−xj(t)|<1

(xj(t) − xi(t)) . (9.9)
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Here, each agent is continuously attracted by the values of those agents that are
distant from it by less than 1. Note that the model (9.8) does not correspond to
a direct discretization of (9.9), as the influences between agents are normalized
by the number of neighbors in the former and not in the latter. In the sequel,
we refer to the agent value xi indistinctly as their positions, values or opinions.

Observe that the discrete-time system (9.8) can be rewritten x(t + 1) =
A(x(t))x(t), where [A(x(t))]ij = 1

|{j:|xi(t)−xj(t)|<1}| if i and j are neighbors, and

0 otherwise. These matrices A(x(t)) are stochastic, and their positive elements
are bounded from below by 1

n . Since the neighborhood relation is symmetric,
[A(x(t))]ij > 0 implies that [A(x(t))]ji > 0. The conditions of Theorem 9.4 are
thus satisfied and it follows that the system (9.8) always converges to a limiting
vector x∗ ∈ ℜn. Moreover, x∗

i 6= x∗
j can only hold if there is a time after which

[A(x)]ij is always zero, that is, a time after which i and j are never neighbors.
After this time, xi and xj must thus be separated by at least 1, and so are
then their limiting value x∗

i and x∗
j . The results in Section 9.2 implies therefore

that all opinions converge to clusters of opinions, that are separated from each
other by at least 1.

It has however been experimentally observed that opinions initially uni-
formly distributed on an interval tend to converge to clusters of opinions sep-
arated by a distance larger than (but close to) 2 as shown in Figure 9.4(a). A
similar phenomenon appears for the continuous-time model (9.9) as shown in
Fig.9.4(b). But no explanation of this phenomenon nor any nontrivial lower
bound on the inter-cluster distance have been provided so far. Moreover, for
the continuous-time model, the results in Section 9.2 do not even imply con-
vergence, as there is no continuous-time equivalent to Theorem 9.4.

Interestingly, inter-cluster distances significantly larger than 1 have also
been observed for the stochastic version of the discrete-time model by Def-
fuant et al., presented in Section 9.1.4 [35]. The behavior of this system - and
more particularly the final positions of the clusters - can also be studied by
approximating the evolution of the opinion density using a partial differential
equation [13, 14]. Besides, different systems involving discrete or continuous
time, opinions and agent density and opinions have also been proposed mod-
elling the same phenomenon [53,126]. For a survey, see for example [92].

In the next chapters we study the convergence properties of the models (9.9)
and (9.8). We introduce a particular notion of equilibrium stability, and prove
that an equilibrium is stable if and only if a certain nontrivial lower bound on
the distance between clusters holds. Although not proved yet, it is experimen-
tally observed and conform to the intuition that the probability of converging
to a stable equilibrium increases with the number of agents. To better un-
derstand the system behavior for large numbers of agents, we introduce and
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Figure 9.4: Evolution with time t of 1000 agent opinions initially randomly
located on an interval of length 10, according to the discrete-time model of
Krause (9.8) in (a) and to its continuous-time counterpart (9.9) in (b). In both
cases, all opinions converge to different clusters that are separated by distances
significantly larger than the vision range 1. Note that the time-scale of the two
systems are not comparable, as the typical velocity in (9.9) is proportional to
the number of agents.

study versions of the models allowing continuous opinion distributions. We give
partial convergence results for these, and provide lower bound on the distance
between clusters at the equilibrium under some continuity assumptions.

Our models for agent continuum are obtained by indexing the agents by a
real number instead of an integer. This allows for a more detailed formal anal-
ysis than with the earlier model, which are usually defined using agent density
functions. Nevertheless, our model for discrete time and agent continuum,
which we introduced in [19] is equivalent to the so-called “discrete-time density
based HK model” proposed independently in [92], using a density-based for-
malism. The latter system is similar to a continuous-time system [53] also using
the density formalism, and can finally be viewed as the limit when the number
of discrete opinions tends to infinity of the “interactive Markov chain model of
Lorenz” introduced in [91]. In that model, there is a continuous distribution of
agents, but the opinions are discrete.
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9.4 Outline of part II

The discrete time model (9.9) is more standard and has been studied more than
the continuous-time model (9.8). The analysis of the latter is however simpler
in several aspects, and several results can be re-used for the discrete-time case.
We therefore begin by studying the continuous-time model in Chapter 10 before
studying the discrete-time model in Chapter 11. In both chapters, we first con-
sider the model for discrete agents, for which we prove convergence properties
and give necessary and sufficient conditions for stability. We then introduce the
systems on a continuum of agents, for which we give partial convergence results,
and provide lower bounds on the distance between clusters at equilibrium. In
Chapter 11 we also explore more formally the relation between the discrete-
time systems (9.8) defined for discrete agents and for an agent continuum. The
main results obtained in these two chapters are summarized in Table 9.1. In
Chapter 12 we consider possible extensions of this analysis to systems in higher
dimensional spaces, and to distance-dependent influences. The second part of
this thesis is closed by the concluding remarks and open questions in Chapter
13.

The work presented in Chapters 10 and 11 is also available in [19,20]. The
order preservation results of Chapter 12 also appear in [62].
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agents {1, . . . , n} [0, 1]
ẋ = . . . Section 10.1

- Convergence to an
equilibrium
- Equilibrium stability ⇔
lower bound on
inter-cluster distances
- Conjecture that
convergence to stable
equilibrium for large n

Section 10.2
- Convergence to a set of
equilibrium
- Equilibrium stability ⇒
lower bound on
inter-cluster distances
- Convergence ⇒ lower
bound on inter-cluster
distances

x(t+1) = . . . Section 11.1
- Convergence in finite
time to an equilibrium
- Equilibrium stability ⇔
lower bound on
inter-cluster distances
- Conjecture that
convergence to stable
equilibrium for large n

Section 11.2
- Convergence to a set of
equilibrium
- Equilibrium stability ⇒
lower bound on
inter-cluster distances
- Convergence ⇒ lower
bound on inter-cluster
distances

Table 9.1: Summary of the main results obtained for each variation of
the model. The mentioned lower bound on each inter-cluster distance is
1+ min(WA,WB)

max(WA,WB) , where WA and WB are the weights of the two clusters consid-

ered, i.e. their number of agents.
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Chapter 10

Continuous-time Opinion

Dynamics

10.1 Finite number of discrete agents

Remember that the generic results of Section 9.2 do not prove the convergence
of the continuous-time system. We propose here a simple convergence proof
relying on the particular way in which the topology changes. Before doing so,
let us observe four properties of the system.

First, the order between the agent opinions is preserved: If xi(t) > xj(t)
holds for some time t, it holds for any further time. Since the opinions evolve
continuously with time, if an order inversion could happen we would necessarily
first have xi − xj < 1. Call then Ni(t) the set of agents connected to i and
not to j, Nj(t) the set of those connected to j and not to i, and Nij(t) the set
of those connected to both i and j. As long as xi(t) − xj(t) < 1, there holds
xk1

(t) > xk2
(t) > xk3

(t) for any k1 ∈ Ni(t), k2 ∈ Nij(t), k3 ∈ Nj(t). It follows
from (9.9) that

ẋi(t) ≥
∑

k∈Nij(t)

xk(t) − xi(t), and ẋj(t) ≤
∑

k∈Nij(t)

xk(t) − xj(t).

Therefore we have

ẋi(t) − ẋj(t) ≥ |Nij(t)| (xj(t) − xi(t)) ≥ − |Nij(t)| (xi(t) − xj(t)) ,

which implies that xi(t) − xj(t) cannot decrease faster than e−|Nij(t)|t when
it is smaller than 1, and is therefore always positive. Besides, if initially

161
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xi(0) = xj(0), then it follows from (9.9) that xi remains always equal to xj
1.

We assume therefore in the sequel that the agent opinions are initially sorted,
and that they remain so: i ≤ j ⇒ xi(t) ≤ xj(t).

Second, the opinion of the first agent is always non-decreasing, and the opin-
ion of the last one is always non-increasing. This follows directly from (9.9).

Third, if at some time the distance between two consecutive agent opinions
xi and xi+1 is larger than or equal to 1, it remains so forever. In such case,
the system can be decomposed into two independent subsystems containing the
agents 1, . . . , i and i + 1, . . . , n respectively.

Finally, the average opinion x̄ = 1
n

∑n
i=1 xi is preserved as

∑

i

ẋi =
∑

(i,j):|xi−xj |<1

(xj − xi) = 0.

Moreover, the variance
∑n

i=1 (xi − x̄)
2

=
(
∑n

i=1 x2
i

)

−n(x̄)2 of x is non-increasing.
We do not prove this last fact here as it is proved later for a more general sys-
tem and is not used in this section. We can now prove the convergence of the
system.

Theorem 10.1. Let x∗
i = limt→∞ xi(t). If x evolves according to (9.9), these

limits are well defined, and for any i, j we either have x∗
i = x∗

j or
∣

∣x∗
i − x∗

j

∣

∣ ≥ 1.

Proof. Since the opinions are assumed to be sorted, the opinion x1 is nonde-
creasing, and bounded by the initial opinion of xn. As a result, it converges
to a value x∗

1. Let p be the highest index for which xp converges to x∗
1, with

possibly p = 1. It follows from the order preservation that the opinion of any
agent between 1 and p also converges to x∗

1. We prove that unless p = n, there
is a time at which xp+1 − xp ≥ 1. This suffices to prove our result. After this
time, the system can indeed be separated into two independent subsystems
containing respectively the agents 1, . . . , p and p + 1, . . . , n. In the first one,
all opinions converge to x∗

1 by definition, and we know that the opinions in the
second one remain at a distance at least 1 from all opinions of the first one and
in particular from x∗

1. We can then re-apply recursively our argument to this
second system and the following ones. Since the number of agents is finite, this
establishes the statement of the theorem.

Suppose now to obtain a contradiction that xp+1−xp always remains smaller
than 1. Since xp+1 does not converge to x∗

1, it is infinitely often larger than
x∗

1 + 2δ for some δ > 0. Since it follows directly from the system definition

1For this reasoning to be formally correct, we should prove in addition that the differential
equation describing the evolution of one agent opinion admits a unique solution.
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(9.9) that all speeds are bounded by nxn(0) − nx1(0), this implies that it is
infinitely often larger than x∗

1 + δ, each time during a time interval larger than
or equal to ∆t = δ/(nxn(0)−nx1(0)). Consider now an ǫ < δ, and a time after
which all xi are distant from x∗

1 by less than ǫ for i = 1, . . . , p. During any of
the intervals in which xp ≥ x∗

1 + δ, there would hold

ẋp ≥ xp+1 − xp +

p−1
∑

i=1

(xi − xp) ≥ (δ − ǫ) − 2pǫ,

which is larger than 2ǫ/∆t if ǫ is chosen sufficiently small. Then xp would
increase by more than 2ǫ during this interval and becomes larger than x∗

1 + ǫ,
contradicting our assumption.

Note that the result above does not hold if the number of agents is infinite.
Consider for example that at t = 0 and for each p = 0, 1, 2, . . . , there are p
agents with opinion p/2. Then each agent i constantly increases its opinion xi

with ẋi = 1 and the system does therefore not converge.

We call clusters the limiting values to which opinions converge. We also
call cluster the set of agents whose opinions converge to a same value. It is
stated in Theorem 10.1 that the opinions converge to clusters separated by at
least one. However, the typical inter-cluster distances experimentally observed
are significantly larger than 1, as shown in Figure 9.4(b). On Figure 10.1 we
show the evolution with L of the cluster number and positions, for opinions
initially equidistantly distributed on an interval [−L/2, L/2]. One can see that
the number of clusters is approximately equal to L/2 and that they are sep-
arated by approximately a distance 2. Such incremental analysis appears in
the literature for various similar systems [13, 59, 91, 92]. Ben-Naim et al. also
distinguishes different classes of clusters (minor, central and major) [13].

We propose an explanation of this phenomenon based on a stability analysis
of the equilibria. The intuition behind our notion of stability can be under-
stood by considering the evolution of the system in Figure 10.2. The system
first converges to a “meta-stable” situation where two clusters are separated by
a distance slightly larger than one and do therefore not directly interact with
each other. Both clusters are however slowly attracted by some isolated agents
located between them, these isolated agents remain at the weighted average of
the cluster positions as they are attracted by both clusters. Finally, the dis-
tance between the clusters becomes smaller than one, so that they attract each
other and merge in a single cluster. Note that such phenomenon has already
been observed in the literature [91] for the discrete time system. The conver-
gence to the initial potential equilibrium containing two clusters is thus made
impossible by the presence of a few agents between the clusters. Moreover, the
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Figure 10.1: Location of the different clusters at equilibrium, as a function
of L, for 100L agents with opinions initially equidistantly located on [0, L].
Clusters are represented in terms of their distance from L/2, and the dashed
lines represent the endpoints 0 and L of the initial opinion distribution. We do
not represent clusters containing less than 10 agents.
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number of these isolated agents required to destabilize this equilibrium can be
arbitrarily small as compared to the number of agents in the clusters.

The abstract idea of “stability” is that a system should not be too much
affected by a small perturbation. There exist many instantiations of this gen-
eral definition, the suitability of which depend on the systems considered. A
usual notion of stability would be to check the robustness of the equilibria with
respect to small perturbations δxi of all the opinions. One can however easily
be convinced that every equilibrium would be stable except if two clusters are
separated by exactly 1. A notion of stochastic stability also exists, characteriz-
ing the robustness to small but repeated perturbations [82,98,108]. This notion
is relevant in many situations where the equilibrium is constantly perturbed.
In our case, we believe however that a constant perturbation would eventually
make all clusters merge, independently of their initial positions, so that every
nontrivial set of clusters would be unstable. Observe indeed that if a cluster’s
position changes due to a perturbation, there is no force driving it back to its
initial position. The perturbation would thus cause random displacements of
the clusters. As a consequence, there would be with a probability one a time
at which two adjacent clusters would be separated by a distance smaller than
one, resulting in a rapid merge, independently of their initial positions. By
repetitions of this phenomenon, all clusters would eventually merge. Notions
of stability of sets such as cyclic stability also exist in game theory [55]. Cyclic
stability characterizes the fact that once the system state is in the set, it never
leaves it anymore, and can reach any point of the set. This notion is thus
related to the notion of invariant set. Nevertheless, it is interesting to observe
that our system could be viewed from a game theory point of view, where each
agent would greedily minimize its cost function

Costi(x) =
1

2

∑

j

min
(

(xi − x − j)2, 1
)

(10.1)

in continuous time. The set of Nash equilibria of such a game would then
correspond to the set of equilibria of the system, that is, the set of collections
of clusters separated by at least one. Note that the discrete time system 9.8
can also be viewed as the effect of players greedily minimizing the same cost
function 10.1, acting synchronously in discrete time.

The particular notion of stability that we introduce in the sequel is based
on the introduction or the displacement at an arbitrary position of an agent of
small “weight”. It is thus a perturbation of large amplitude, but applied to a
small part of the system. If functions are used to represent the systems as in
Section 10.2, one could say that the perturbation may have a large ∞-norm,
but a small 1-norm, or that it has a large amplitude on a set of small measure.
It has the advantage of discriminating some unstable equilibria that are never
experimentally observed from the stable equilibria, and it is motivated by the
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Figure 10.2: Example of temporary “meta-stable” equilibrium. Initially, two
clusters are formed and do not interact with each other, but they both interact
with a small number of agents lying between them. As a result, the distance
separating them eventually becomes smaller than 1. The clusters then attract
each other directly and merge into one larger cluster.

often experimentally observed presence of perturbing agents between emerging
clusters as in Figure 10.2.

To formalize our notion of stable equilibrium we introduce a generalization
of the system (9.9) in which each agent i has a weight wi, and they evolves
according to

ẋi(t) =
∑

j:|xi(t)−xj(t)|<1

wj (xj(t) − xi(t)) . (10.2)

The convergence result of Theorem 10.1 and the four properties of the system
proved above can be generalized to this weighted case. We then call weight of
a cluster the sum of the weights of all agents in this cluster. If all the agents
of a cluster have exactly the same position or the same neighbors, the cluster
behaves as one agent with this particular weight. Let x̄ be a vector of agent
opinions at equilibrium. Suppose that one adds a new agent 0 of weight δ
and opinion initially set at x̃0, and let the system re-converge to a perturbed
equilibrium. One then removes the perturbing agent. The opinion vector x̄′ so
obtained still represents an equilibrium. We denote by ∆x̃0,δ =

∑

i wi |x̄i − x′
i|

the distance between the initial and perturbed equilibria. We say that x̄ is stable
if maxx0

∆x̃0,δ, the largest distance between initial and perturbed equilibria for



10.1. FINITE NUMBER OF DISCRETE AGENTS 167

a perturbing agent of weight δ can be made arbitrarily small by choosing a
sufficiently small δ. An equilibrium is thus unstable if some modification of
fixed size can be achieved by adding an agent of arbitrarily small weight. Note
that the same notion of stability could also be defined with respect to the
displacement of an already present agent of weight δ, possibly obtained by
splitting some agent into two parts.

Proposition 10.1. An equilibrium of the system (10.2) is stable if and only

if every two clusters A,B are distant by more than 1 + min(WA,WB)
max(WA,WB) or at least

2, where WA,WB are the respective weights of the clusters. Equivalently, it is
stable if and only if the weighted average of any two clusters is distant by at
least one from at least one of the clusters.

Proof. Suppose that an agent 0 with initial position x̃0 and weight δ is added
to an equilibrium. If its position is the same as one of the clusters, the system
remains at the equilibrium. If it is not, it can be connected to at most two
clusters as clusters are distant by at least 1 from each other. If it is connected
to no cluster, it trivially causes ∆x̃0,δ = 0. If it is connected to one cluster
A, the cluster and the agent get attracted one to each other and asymptoti-
cally converge to a single position. Since the average position is preserved, this
asymptotic position is WAxA+δx̃0

WA+δ , so that ∆x̃0,δ ≃ δ
WA

|x̃0 − xA| ≤
δ

WA
, tends

to 0 with δ.

We now consider the case where it is connected to two clusters A, B of
positions and weights xA, xB and WA,WB , assuming without loss of generality
that xB > xA and WB ≥ WA. Let x̄AB be the weighted average of the cluster
positions WAxA+wBxB

WA+WB
. As long as the perturbing agent is connected to both

clusters, there holds

ẋ0(t) = WA (xA(t) − x0(t))+Wb (xB(t) − x0(t)) = (WA+WB) (x̄AB(t) − x0(t)) ,

and x0 is thus attracted by x̄AB the weighted average of xA and xB . xA(t) and
xB(t) are respectively non-decreasing and non-increasing, so that as long as x0

remains in (xB(0)−1, xA(0)+1) ⊆ (xB(t)−1, xA(t)+1), it remains connected
to both of them. Suppose first that xB(0) − xA(0) < 1 + WA

WB
(remember that

WA ≤ WB), which implies that x̄AB(0) ∈ (xB(0) − 1, xA(0) + 1). xAB(t)
differs by at most O(δ/(WA + WB)) from the weighted average of xA, xB , x0,
which remains constant. If δ is sufficiently small, x̄AB remains thus forever in
(xB(0) − 1, xA(0) + 1). This implies that x0 remains also in this interval and
remains also connected to both A and B forever. It follows then from Theorem
10.1 and the fact that the average position is preserved implies that x0, xA, xB

converge to

wAxA(0) + wBxB(0) + δx̃0

wA + wB + δ
≃

WAxA + WBxB

WA + WB
.



168 CHAPTER 10. CONTINUOUS-TIME OPINION DYNAMICS

The initial equilibrium is thus unstable as for any δ, we have

∆x̃0,δ = WA |x̃0 − xA| + WB |x̃0 − xB | =
2WAWB

WA + WB
|xB − xA| .

To treat the case xB − xA = 1 + WA

WB
, it suffices to see that if 0 is initially

connected to the two clusters, there holds xB −xA < 1+ WA

WB
after any positive

time. Note that the equality is never observed if WA = WB , as the clusters
would then be separated by 2 it would be impossible for 0 to be connected
to both of them initially. The condition of the theorem is thus necessary for
stability.

Suppose now that xB(0) − xA(0) > 1 + WA

WB
, which implies that x̄AB(0) >

xA(0)+1. As long as A and B are disconnected from each other but connected
to 0, it follows from (10.2) that

ẋ0(t) = (WA + WB)(x̄AB(t) − x0(t)),
ẋA(t) = δ(x0 − xA) = O(δ),
ẋB(t) = δ(x0 − xB) = O(δ).

0 moves thus toward x̄AB with a speed that can be lower-bounded indepen-
dently of δ or x̃0, while xA, xB and therefore x̄AB move with a speed propor-
tional to δ. Since x̄AB(0) > xA(0) + 1, this implies that for a sufficiently small
δ, there is a time interval that can be upper-bounded independently of δ or x̃0

after which x0 becomes larger than xA +1 and is then not connected to A any-
more. In this process, it has influenced xA and xB by an amount proportional
to δ. As explained above, it then asymptotically merges with the cluster B,
modifying xB by again an amount proportional to δ, so that ∆x̃0,δ = O(δ).

This result characterizes the set of stable equilibria in terms of lower bounds
on the inter-cluster distances. It allows inter-cluster distances smaller than 2 in
a stable equilibrium when the clusters have different weight. This is consistent
with what can be experimentally observed for some opinion distributions as
shown in the example of Figure 10.3. It is however not guaranteed that the
system (9.9) always converges to a stable equilibrium. A trivial counterexam-
ple is indeed obtained by taking an unstable equilibrium as initial condition.
Experimentally tough, we observe that for a given distribution of opinions,
convergence almost always occur to a stable equilibrium when the number of
agents increases. We therefore make the following conjecture.
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Figure 10.3: Example of convergence to a stable equilibrium where the clusters
are separated by less than 2. The equilibrium is obtained by taking initially 201
equidistant opinions on [0, 2] and 50 equidistant opinions on [2, 3]. The clusters
contain respectively 241 and 50 agents and 1.2623 > 1.0415 = 1 + 10

241 . Note
that a logarithmic scale is used due to the presence of different time-scales.

Conjecture 10.1. If agents evolving according to (9.9) are initially randomly
distributed according to a particular continuous p.d.f.2, the probability that they
converge to an equilibrium that is stable tends to 1 when the number of agent
tends to infinity.

In addition to extensive numerical evidences (see e.g. Figure 10.4), this
conjecture is supported by the intuitive idea that if the number of agents is suf-
ficiently large, convergence to an unstable equilibrium is made impossible by
the presence of at least an agent connected to the two clusters. It is also sup-
ported by Proposition 10.2 obtained below for a system allowing a continuum
of agents.

10.2 System on a continuum of agents

To further analyze the properties of (9.9) and its behavior when the number
of agents increases, we now consider a modified version of the model, which
involves a continuum of agents. We use the interval I = [0, 1] to index the
agents, and suppose that the opinions are non-negative and bounded from
above by a certain L > 0. We denote by X the set of measurable functions
x : I → [0, L], attributing an opinion x(α) ∈ [0, L] to every agent in I. As an

2probability density function
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Figure 10.4: Example of an initial opinion distribution leading to an unstable
equilibrium (a): Agents are initially separated by a distance .05 between 0 and
1 and between 1.75 and 2.75, and by a a distance .25 between 1 and 1.75.
The clusters at equilibrium have equal weight and are separated by 1.5793.
Multiplying the number of agent by 5 leads to a system which converges to a
stable equilibrium (b).

example, a uniform distribution of opinions is given by x(α) = Lα. We use the
function x̃ : I × ℜ+ → [0, L] : (α, t) → x̃(α, t), to represent the evolution of all
agent opinions with time. The opinion of an agent α at time t is thus x̃(α, t).
To ease the reading, we define xt : I → [0, L] : α → xt(α) = x̃(α, t) to be the
restriction of x̃ to any particular time t. Supposing that it is measurable, every
xt belongs thus to X. We also define ẋt : I → ℜ : α → ẋt(α) = ∂

∂t x̃(α, t). So,
xt(α) and ẋt(α) represent respectively the opinion and the opinion changing
rate of the agent α at time t. We can now formally define the dynamics of the
opinions by

ẋt(α) =

∫

β:(α,β)∈Cxt

(xt(β) − xt(α)) dβ, (10.3)

where Cx ⊆ I2 is defined for any x ∈ X by

Cx := {(α, β) ∈ I2 : |x(α) − x(β)| < 1}.

In the sequel, we denote by χx the indicator functions of Cx. Note that in
this section, we do not treat the issues of the existence or uniqueness of the
solutions of (10.3), but only characterize the behavior of possible solutions.

It can easily be shown that if x0 takes a finite number of values, then a so-
lution to (10.3) is provided by the evolution of a discrete system (10.2), where
the weight of each agent is the measure of the set on which x takes the corre-
sponding value. Moreover, observe that as in the system for discrete agents,
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if xt(α) > xt(β) holds for some t, it holds for all further time. The proof is
similar to the one for discrete agents, replacing sums by integrals.

To analyze (10.3), it is convenient to introduce a few concepts. By analogy
with interaction graphs in the discrete system, we define for x ∈ X the adja-
cency operator Ax, which maps the set of bounded measurable functions on I
into itself, by

Axy(α) =

∫

β∈I

χx(α, β)y(β)dβ,

and the degree function dx(α) : I → ℜ+ representing the measure of the set of
agents to which it is connected by

dx(α) =

∫

β∈I

χx(α, β)dβ = Ax1,

where 1 : I → 1 represents the constant function taking 1 as value for any
α ∈ I. Multiplying a function by a degree function can be viewed as applying
the operator (defined on the same set of functions as Ax)

Dxy(α) = dx(α)y(α) =

∫

β∈I

ax(α, β)y(α)dβ.

Finally, we define the Laplacian operator Lx = Dx − Ax. It follows directly
from these definitions that Lx1 = 0, similarly to what is known for the Lapla-
cian matrix. In the sequel, we use the scalar product 〈x, y〉 =

∫

α∈I
x(α)y(α)dα.

We now introduce two lemmas to ease the manipulations of these operators.

Lemma 10.1. The operators defined above are symmetric with respect to the
scalar product: For any x ∈ X, and measurable functions y, z defined on I,
there hold 〈z,Axy〉 = 〈Axz, y〉, 〈z,Dxy〉 = 〈Dxz, y〉 and 〈z, Lxy〉 = 〈Lxz, y〉.

Proof. The result is trivial for Dx. For Ax, there holds

〈z,Axy〉 =
∫

α∈I
z(α)

(

∫

β∈I
χx(α, β)y(β)dβ

)

dα

=
∫

β∈I
y(β)

(∫

α∈I
χx(α, β)z(α)dα

)

dβ

= 〈Axz, y〉

where in the last equality we use the fact that χx(α, β) = χx(β, α). By linearity
the result also holds for Lx and any other linear combination of those operators.

Lemma 10.2. For any x ∈ X, and measurable functions y defined on I, there
hold

〈y, (Dx ± Ax)y〉 =
1

2

∫

(α,β)∈I2

χx(α, β) (y(α) ± y(β))
2
,

and as a result Lx = Dx − Ax is positive semi-definite.
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Proof. By definition of the operators, we have

〈y, (Dx ± Ax)y〉 =

∫

(α,β)∈I2

χx(α, β)y(α) (y(α) ± y(β)) .

The second member of this equality can be rewritten as

1
2

(

∫

(α,β)∈I2 χx(α, β)y(α) (y(α) ± y(β))
)

+ 1
2

(

∫

(β,α)∈I2 χx(β, α)y(β) (y(β) ± y(α))
)

.

The symmetry of χx implies then that

〈y, (Dx ± Ax)y〉 = 1
2

∫

(α,β)∈I2 χx(α, β)
(

y(α)2 ± 2y(α)y(β) + y(β)2
)

= 1
2

∫

(α,β)∈I2 χx(α, β) (y(α) ± y(β))
2
.

The constitutive equation (10.3) can be rewritten, more compactly, in the
form

ẋt = −Lxt
xt. (10.4)

The set of fixed points of this system is thus characterized by Lxx = 0. One
can easily see that this set contains the set F := {x ∈ X : x(α) 6= x(β) ⇒
|x(α) − x(β)| ≥ 1} of functions taking a discrete number of values, all different
by at least one. We prove later that F is exactly the set of solutions to Lxx = 0
and thus of fixed points of (10.4), up to a zero-measure correction. By fixed
points we mean here those for which ẋt = 0 holds everywhere except maybe on
a zero-measure set.

Using the operators that we have defined, it is immediate to see that the
system (10.4) preserves x̄t = 〈1, xt〉, the average value of xt. The symmetry of
Lx and the fact that Lx1 = 0 holds for all x ∈ X imply indeed

˙̄xt = 〈1, ẋt〉 = −〈1, Lxt
xt〉 = −〈Lxt

1, xt〉 = 0.

The system also never increases the variance of x, which can be expressed as
V ar(xt) = 〈xt, xt〉 − (x̄t)

2. Differentiating this relation indeed yields

˙V ar(xt) = 2 〈xt, ẋt〉 − 2 ˙̄xtx̄t = −2 〈xt, Lxt
xt〉 ,

which is non-positive since Lxt
is positive semi-definite. This also implies that

∫∞

t∗
|〈xt, ẋt〉| dt < ∞. We now show that the system variation speed decays to

0. The decay of the variance does indeed not imply that ẋt → 0 as ẋt = −Lxt
xt

could become arbitrary close to being perpendicular to xt.
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Theorem 10.2. For any initial condition x0 of the system (10.3), there holds

∫ ∞

0

||ẋt)||
2
2 dt =

∫ ∞

0

||Lxt
xt||

2
2 dt < ∞.

As a result, the system does not produce cycles other than fixed points, and the
variation speed decays to 0.

Proof. We consider the energy function V : X → ℜ+ defined by

V (x) =
1

2

∫

(α,β)∈I2

min
(

1, (x(α) − x(β))
2
)

dαdβ ≥ 0, (10.5)

and show that its derivative is bounded from above by −2 ||Lxx||
2
2 = −2 ||ẋ||

2
2.

Since min
(

1, (y(α) − y(β))
2
)

is not greater than neither 1 or (y(α) − y(β))
2
,

there holds for any y ∈ X

V (y) ≤
1

2

∫

(α,β)∈Cx

(y(α) − y(β))
2

+
1

2

∫

(α,β)∈I2\Cx

1 = 〈y, Lxy〉 +
1

2

∣

∣I2 \ Cx

∣

∣ ,

(10.6)
where Lemma 10.2 is used to obtain the last equability. For y = x, it fol-
lows from the definition of Cx that the above inequality is tied. In particular,
V (xt) = 〈xt, Lxt

xt〉 + 1
2

∣

∣I2 \ Cxt

∣

∣ and V (xs) ≤ 〈xs, Lxt
xs〉 + 1

2

∣

∣I2 \ Cxt

∣

∣ for
any s and t. Therefore, there holds

d
dtV (xt) ≤ d

ds |s=t 〈xs, Lxt
xs〉 + d

ds |s=t
1
2

∣

∣I2 \ Cxt

∣

∣

= d
ds |s=t 〈xs, Lxt

xs〉 ,
(10.7)

because for any two functions f, g : ℜ → ℜ, if f ≤ g and f(t) = g(t), then
d
dtf(t) ≤ d

dtg(t). Using ẋt = −Lxt
xt and the symmetry of Lxt

, (10.7) becomes

d

dt
V (xt) ≤ −2 〈Lxt

xt, Lxt
xt〉 = −2 ||Lxt

xt||
2
2 = −2 ||ẋt||

2
2 .

We do not use the dependence on x of Cx in the proof of Theorem 10.2, nor
when proving that the variance of x is decreasing. These results are therefore
valid for any system ẋt = −Ltxt, with Lt defined with respect to a time evolving
symmetric set Ct ⊆ I2. We now show that for the dependence of system (10.3),
Lxx is small only if x is close to F , the set of functions taking discrete values
separated by at least 1. We also show that F is exactly the set of fixed point
of the system. The intuition behind the proof of these results is the following:
Consider an agent α with one of the smallest opinions x(α). If the resulting
attraction it gets is small, its attraction by those with a larger opinions must be



174 CHAPTER 10. CONTINUOUS-TIME OPINION DYNAMICS

small, as almost no agent has an opinion smaller than it. Therefore, there must
be very few agents with an opinion significantly larger than x(α) that interact
with α, even if there might be many of them who have an opinion close to α. In
other words, possibly many agents have approximately the same opinion close
to x(α), and very few agents have an opinion in [x(α) + ǫ, x(α) + 1]. So, an
agent having an opinion close to x(α) + 1 + ǫ interacts with very few agents
having an opinion significantly smaller than its own. If its resulting attraction
is small, this means thus that its attraction by those agents having a larger
opinions is also small, and we can repeat the reasoning.

In order to provide a more formal proof, we need to introduce a measure
formalism. For a function x : I → [0, L] (i.e., a function x ∈ X), and a set
S ⊆ [0, L] we let µx(S) be the Lebesgue measure of {α : x(α) ∈ S}. By
convention, we let µ(S) = 0 if S ∈ ℜ \ [0, L]. For a given measure µ, we define
on [0, L] the function L̂µ by

L̂µ (y) =

∫ y+1

z=y−1

(y − z)dµ.

For any α ∈ I, there holds (Lxx)(α) = L̂µx
(x(α)), so that −L̂µ (y) represents

the derivative of an agent with opinion y for an opinion function of measure µ.
In the sequel, we use |S| to denote the standard Lebesgue measure of a set S,
in order to avoid confusion with µ that we just defined.

It is convenient in the sequel to use a topology adapted for measure func-
tions. We say that x ≤µ ǫ if |{α : x(α) > ǫ}| ≤ ǫ. Similarly, x =µ 0 if
|{α : x(α) 6= 0}| = 0, and we call Bµ(x, ǫ) the set {y : |x − y| <µ ǫ}. This
allows us to define the corresponding notion of limit. We say that xt →µ y if
for all ǫ > 0, there is a t′ after which for all t > t′ there holds xt ∈ Bµ(y, ǫ).
We write xt →µ S for a set S if for any ǫ > 0, there is a t′ such that for all
t > t′, there is a y ∈ S for which xt ∈ Bµ(y, ǫ). Before proving our result, we
need the following lemma:

Lemma 10.3. For any real numbers ǫ > 0, M > 1 and integer N , there exist
∆1 > 0 and a sequence K1,K2, . . . KN such that
a) Ki > M for all i
b) The sequence (∆i) defined by ∆i+1 = 3Ki∆i + 1

Ki
satisfies ∆iKi < ǫ for all

i.

Proof. We prove this lemma by recurrence. It is obviously valid for N = 1. We
suppose now that it holds for N and prove that it then holds for N + 1. Take
a KN+1 > M . Using the recurrence hypothesis, take also a ∆1 and a sequence
K1, . . . ,KN such that for all i = 1, . . . N , there hold Ki∆i < ǫ

6KN+1
and Ki >

max
(

2KN+1

ǫ ,M
)

. The conditions on Ki are satisfied for i = 1, . . . , N + 1, and
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so are those on Ki∆i for i = 1, . . . , N . The result follows then from

KN+1∆N+1 = KN+1

(

3KN∆N +
1

KN

)

< KN+1

(

3
ǫ

6KN+1
+

ǫ

2KN+1

)

= ǫ.

Theorem 10.3. The distance between x ∈ X and the set F ⊂ X of functions
taking discrete values separated by at least 1 decays to 0 when Lxx →µ 0. In
other words, for all ǫ > 0, there is a δ > 0 such that |Lxx| <µ δ implies the
existence of a s ∈ F with |x− s| <µ ǫ. As a consequence, Lxx =µ 0 if and only
if x ∈ F .

Proof. To ease the reading of this proof, we introduce some new notations. For
a measure µ, we define on [0, L] the functions

L̂+
µ (y) =

∫

z∈(y,y+1)

(z − y)dµ ≥ 0, and L̂−
µ (y) =

∫

z∈(y−1,y)

(y − z)dµ ≥ 0,

so that L̂µ = L̂+
µ − L̂−

µ . Observe then that if |Lxx| <µ δ, then the set S ⊆ [0, L]

on which
∣

∣

∣
L̂+

µ (.) − L̂−
µ (.)

∣

∣

∣
> δ satisfies µx(S) < δ. As a consequence, for any

z ∈ [0, L], there is a y such for which L̂+
µ (y) < L̂−

µ (y) + δ and such that
µ ((y, z)) ≤ δ, unless of course µ(z, L] < δ or µ[0, z) < δ.

Let us now be given an ǫ > 0. Using Lemma 10.3, we take two sequences
K1, . . . ,K⌈L⌉ and ∆1, . . . ,∆⌈L⌉ such that for all i, Ki > (⌈L⌉ + 1)/ǫ and
∆i < Ki∆i < ǫ, and thus ∆i < ǫ2/(⌈L⌉ + 1). We also take δ smaller than
all ∆i/3. We prove by induction that if |Lxx| <µ δ, then there exist two in-
creasing sequences x1 ≤ · · · ≤ xN ≤ xn+1 = L+1 and −1 = y0 ≤ y1 ≤ · · · ≤ yN

with N ≤ ⌈L⌉ and µ ((yn, L]) < ǫ2/(⌈L⌉+1) such that the following conditions
hold (for all i for which they make sense)

(a) L̂+
µ (xi) < ∆i

(b) xi ≥ yi−1 + 1
(c) µ ([yi−1, xi)) ≤ ∆i − δ
(d) 0 ≤ yi − xi ≤ Ki∆i ≤ ǫ

This implies that µ is close to a discrete measure taking values separated by
at least 1. More precisely, each interval [xi, yi] has a length at most ǫ, and the
measure of [0, L]\

⋃

i[xi, yi] is by condition (c) at most
∑

i(∆i−δ)+µ ((yn, L]) ≤
∑

i(∆i) ≤ ǫ2. Moreover, Let s ∈ F be a function which for every α take as
value the closest xi to x(α). Since x takes value differing from all xi by more
than ǫ on a set of measure at most ǫ, there will hold |x − s| ≤µ ǫ. Finally, if
Lxx =µ 0, then |Lxx| <µ δ for all positive δ. As a consequence, the distance
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between x and F is smaller than any positive ǫ and is thus 0. Since F is closed,
it follows that x ∈ F .

We begin by initializing our induction. By hypothesis, there exists thus x1

such that µ ([0, x1]) ≤ δ and L̂+
µ (x1) ≤ L̂−

µ (x1)+δ. Since y1 = −1, this implies
that conditions (b) and (c) are satisfied for i = 1. Moreover,

L̂−
µ (x1) =

∫

z∈(x1−1,x1)

(x1 − z)dµ ≤

∫

z∈(x1−1,x1)

dµ ≤ µ((0, x1)),

which we know is no greater than δ ≤ ∆1 − δ, so that condition (a) is satisfied
as L̂+

µ (x1) ≤ L̂−
µ (x1) + δ.

We now assume that there exist x1, . . . , xi−1 and y0, . . . , yi−1 satisfying the
four conditions (a)-(d) and, xi satisfying conditions (a)-(c). We then construct
a yi such that condition (d) is satisfied for i and an xi+1 satisfying conditions
(a)-(c). By induction, this proves the result provided that one stops the con-
struction once a yi is obtained such that µ ((yi, L)) ≤ ǫ2/(⌈L⌉ + 1), and set
then xN = xi+1 = L + 1. Our construction guarantees indeed that a yi ≤ L
can be found for each xi ≤ L, and that a xi+1 can be found for each yi as long
as µ ((yi, L)) ≤ ǫ2/(⌈L⌉ + 1). Moreover, condition (b) together with yi ≥ xi

guarantee that the construction stops after at most ⌈L⌉ steps.

Suppose first that µ ([xi, xi + 1)) ≤ δ+ 1
Ki

, which means that very few agent
have opinions between xi and xi +1. The following construction is represented
in Figure 10.5(a). Let yi = xi so that condition (d) is trivially satisfied for i. By
hypothesis, we can take a xi+1 ≥ yi+1 such that L̂+

µ (xi+1) ≤ L̂−
µ (xi+1)+δ and

µ[yi + 1, xi+1) < δ. Condition (b) then trivially holds for i+1. By construction,
we also have

µ ([yi, xi+1)) = µ ([xi, xi + 1)) + µ ([yi + 1, xi+1)) ≤ δ +
1

Ki
+ δ ≤ ∆i+1 − δ.

where the last inequality comes form the recurrence ∆i+1 = 3Ki∆i + 1
Ki

such
as defined in Lemma 10.3, and the fact that 2δ < ∆i < Ki∆i for all i. As a
result, condition (c) holds for i + 1. To prove condition (a), observe that

L̂−
µ (xi+1) =

∫

z∈(xi+1−1,xi+1)

(xi+1−z)dµ ≤ µ ([xi+1 − 1, xi+1)) ≤ µ ([yi, xi+1)) .

where the last inequality follows from conditions (b) for i + 1. By condi-
tion (c) for i + 1, we have then L̂−

µ (xi+1) ≤ ∆i+1 − δ, and condition (a)
follows then from the fact that xi+1 has been chosen under the constraint that
L̂+

µ (xi+1) ≤ L̂−
µ (xi+1) + δ.
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·· +
1

Ki

xi = yi yi + 1 xi+1

d

(a)

·

d

xi+1yi + 1xi yi xi +Ki i

< 1

Ki
·

(b)

Figure 10.5: Representation of the iterative construction in the proof of The-
orem 10.3, for µ ([xi, xi + 1)) ≤ δ + 1

Ki
(a) and for µ ([xi, xi + 1)) > δ + 1

Ki

(b). Note that the density dµ is represented as continuous here for the sake of
clarity but is not assumed to be continuous nor even to exist in the theorem.
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We now treat the other case, in which µ ([xi, xi + 1)) > δ + 1
Ki

. Our con-
struction is represented in Figure 10.5(b). It follows from condition (a) that
µ ([xi + Ki∆i, xi + 1)) ≤ 1

Ki
holds, as otherwise we would have

L̂+
µ (xi) =

∫

z∈(xi,xi+1)
(z − xi)dµ

≥
∫

z∈(xi+Ki∆i,xi+1)
(z − xi)dµ

≥ Ki∆iµ ([xi + Ki∆i, xi + 1))
> ∆i.

Let us take a yi ≤ xi + Ki∆i such that µ ([yi, xi + Ki∆i)) ≤ δ and L̂+
µ (yi) ≤

L̂−
µ (yi) + δ. As a result, yi ≥ xi and condition (d) is satisfied for i. We select

then xi+1 ≥ yi +1 such that L̂+
µ (xi+1) ≤ L̂−

µ (xi+1)+ δ and µ ([yi + 1, xi+1)) <
δ, which implies that condition (b) holds for i + 1.

To prove the two remaining conditions (c) and (a) for i + 1, we need an
upper bound on µ ([xi + 1, yi + 1)). Observe first that

L̂+
µ (yi) =

∫

z∈[yi,yi+1)
(z − yi)dµ

≥
∫

z∈[xi+1,yi+1)
(z − yi)dµ

≥ (1 + xi − yi) µ ([xi + 1, yi + 1))
≥ 1

2µ ([xi + 1, yi + 1)) ,

(10.8)

where the last inequality comes from condition (d) and the fact that ǫ is assumed
to be smaller than 1

2 . We now give an upper bound on L̂+
µ (yi) ≤ L̂−

µ (yi)+δ. It
follows from conditions (b) and (d) for i that yi −1 ≥ xi −1 ≥ yi+1. Therefore,
there holds

L̂−
µ (yi) ≤

∫

[yi−1,xi)
(yi − z)dµ +

∫

[xi,yi)
(yi − z)dµ

≤ µ ([yi−1, xi)) + µ ([xi, yi)) (yi − xi)
≤ ∆i − δ + Ki∆i,

where the last inequality comes from conditions (c) and (d) for i, and from the
fact that µ ([xi, yi)) ≤ µ ([0, L]) = 1. Tying this with the lower bound (10.8)
leads to

µ ([xi + 1, yi + 1)) ≤ 2(Ki + 1)∆i. (10.9)

We can now use this bound to prove conditions (a) and (c) for i + 1. Observe
that µ ([yi, xi+1)) can be expressed as

µ ([yi, xi + Ki∆i))+µ ([xi + Ki∆i, xi + 1))+µ ([xi + 1, yi + 1))+µ ([yi + 1, xi+1)) .

yi has been chosen in such a way that µ ([yi, xi + Ki∆i)) ≤ δ, and xi+1 such
that µ ([yi + 1, xi+1)) ≤ δ. Moreover, µ ([xi + Ki∆i, xi + 1)) has been proved
to be no greater then 1

Ki
. It follows then from (10.9) that

µ ([yi, xi+1)) ≤ 2δ +
1

Ki
+ 2(Ki + 1)∆i ≤ 3Ki∆i +

1

Ki
− δ,
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where we have used the facts that 3δ ≤ ∆i and Ki ≥ 3. Condition (c) for
i + 1 follows then from the definition of the sequence (∆i) in Lemma 10.3:
∆i+1 = 3Ki∆i + 1

Ki
. To prove condition (a), there remains to see that

L̂−
µ (xi+1) =

∫

z∈(xi+1−1,xi+1)

(xi+1 − z)dµ ≤ µ ((xi+1 − 1, xi+1)) ,

holds, which by conditions (b) and (c) for i + 1 implies

L̂−
µ (xi+1) ≤ µ ([yi, xi+1)) ≤ ∆i − δ,

completing the proof of Theorem 10.3.

The following theorem summarizes our results on convergence:

Theorem 10.4. Let x̃ be a function solution of (10.3), and F := {x ∈ X :
x(α) 6= x(β) ⇒ |x(α) − x(β)| ≥ 1} be the set of functions of X taking discrete
values separated by at least 1. Then ẋt =µ 0 if and only if xt ∈ F . Moreover,
ẋt →µ 0 and xt →µ F . As a result all limiting points of µxt

are discrete
measures taking values separated by at least 1.

Proof. If xt ∈ F , then it is trivial that ẋt =µ 0. It is proved in Theorem 10.3
that this condition is also necessary.
It follows from Theorem 10.2 that ||ẋt||2 → 0. This implies that ẋt →µ 0,
as if |ẋt| > ǫ on a set of measure larger than ǫ, then ||ẋt||2 ≥ ǫ3/2. Since
ẋt = −Lxt

xt, it follows then from Theorem 10.3 that xt →µ F .
Finally, let M be the set of limiting points of µxt

, which existence follows from
the semi-compactness of the set of measures. Since xt →µ F , and since the
measure of any function in F is a discrete one taking value separated by at
least one, M contains only such measure.

Motivated by this theorem, we make the following conjecture:

Conjecture 10.2. Let x̃ be a function solution of (10.3). Then there is a
function x∗ ∈ F such that xt →µ x∗.

We call clusters the discrete values taken on a positive measure set by a
function x ∈ F : c is a cluster of x if µxc > 0. We now attempt to charac-
terize the stability of the set F of fixed points, and show that a condition on
the inter-cluster distance similar to the one of Proposition 10.1 is necessary for
stability. We say that s ∈ F is stable if for any ǫ > 0, there is a δ > 0 such
that for any x0 satisfying |x0 − s| ≤µ δ, there holds |xt − s| ≤µ ǫ for all time if
x evolves according to (10.3).
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Proposition 10.2. Let s ∈ F be a fixed point of (10.3), and a, b two values
taken by s with µs(a), µs(b) > 0. If s is stable, then there holds

|b − a| ≥ 1 +
min (µs(a), µs(b))

max (µs(a), µs(b))
. (10.10)

Proof. The proof of this Proposition is similar to its discrete counterpart Propo-
sition 10.1. Suppose s does not satisfy this condition for a < b. Then since
s ∈ F , there holds µs ((a, b)) = 0. Let Sa, Sb ⊂ I be sets on which s takes
respectively a and b as values, and such that the measure of Sa ∪ Sb is δ, and

the ratio of their measures is µs(a)
µs(b) . We take x0 = s on I \ (Sa ∪ Sb) and

x0 = µs(a)a+µs(b)b
µs(a)+µs(b) on Sa ∪Sb. Since x0 takes a finite number of discrete values,

a solution to (10.3) x̃ representing its evolution is obtained by considering the

corresponding discrete system. Moreover,
µx0

(a)

µx0
(b) = µs(a)

µs(b) . Explicit computa-

tions similar to those in Proposition 10.1 show then that eventually, xt tends to
µx0

(a)a+µx0
(b)b

µx0
(a)+µx0

(b) = µs(a)a+µs(b)b
µs(a)+µs(b) on the set Sab on which x0 takes a value either

a or b. Since this can be done for any δ > 0, s is unstable.

Unlike in the case of discrete agents, this condition is only necessary.However,
a stronger result can be obtained if we assume that µxt

(S) remains positive on
any subset of [infα∈I xt(α), supα∈I xt(α)] for all t, which is guaranteed if xt is
continuous for all t.

Proposition 10.3. Let s ∈ F be a fixed point of (10.3) such that two of its
values a and b (with µs(a), µs(b) > 0) do not satisfy the condition (10.10) that

|b − a| ≥ 1 + min(µs(a),µs(b))
max(µs(a),µs(b)) . Then, for every solution x̃ of (10.3) such that

xt →µ s, there is a finite t′ and an interval J ⊆ (a, b) of positive length such
that for all t ≥ t′, xt is discontinuous and µxt

(J) = 0.

Proof. Consider such a s, and let c be the weighted average µs(a)a+µs(b)b
µs(a)+µs(b) ,

assuming without loss of generality that a < b. Take a δ > 0 such that
[c − δ, c + δ] ⊆ (b − 1, a − 1). We show if x ∈ Bµ(s, ǫ) for a sufficiently small

ǫ > 0, then −L̂µx
(c − δ) > 0 and −L̂µx

(c + δ) < 0. So any agent having a
position c − δ has a positive derivative, and any agent having a position c + δ
has a negative one. As a consequence, if xt converges to s, there is a time after
which all agents having positions in J := [c − δ, c + δ] ⊆ [a, b] remain in this
interval forever. It follows then from the convergence to s that µxt

(J) = 0.
This implies that xt is not continuous on I.
Since |x − s| ≤µ ǫ, there hold

µx([a − ǫ, a + ǫ]) ≤ µs(a) + ǫ,

µx([b − ǫ, b + ǫ]) ≥ µs(b) − ǫ,

µx ((a − 1, b + 1) \ ([a − ǫ, a + ǫ] ∪ [b − ǫ, b + ǫ])) ≤ ǫ,
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where we have used the fact that all values taken by s are separated by at least
1. If ǫ is sufficiently small so that a + ǫ < c − δ < b − ǫ holds, this implies

∫

z∈[a−ǫ,a+ǫ]
(z − c + δ)dµ ≥ (a − ǫ − c + δ)(µs(a) + ǫ) ≤ 0,

∫

z∈[b−ǫ,b+ǫ]
(z − c + δ)dµ ≥ (b − ǫ − c + δ)(µs(b) − ǫ) ≥ 0,

∫

z∈(c−δ−1,c−δ+1)\([a−ǫ,a+ǫ]∪[b−ǫ,b+ǫ])
(z − c + δ)dµ ≥ −ǫ.

Therefore, since [a − ǫ, b + ǫ] ⊂ (c − δ − 1, c − δ + 1) ⊂⊂ (a − 1, b + 1), there
holds

L̂µx
(c − δ) ≥ (a − c + δ − ǫ)(µs(a) + ǫ) + (b − c + δ − ǫ)(µs(b) − ǫ) − ǫ

= (µs(a) + µs(b)) δ − O(ǫ),

which is positive if ǫ is sufficiently small. A symmetric argument can be applied
to prove that L̂µx

(c + δ) for sufficiently small ǫ.
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Chapter 11

Discrete-Time Opinion

Dynamics

11.1 Finite number of discrete agents

We now consider the discrete-time system (9.8) for n discrete agents. We first
present some properties of the system, and expose the main differences and
similarities with the continuous-time system (9.9). Some of these properties
have already been proved in the literature [60,78,90].

Unlike in the continuous-time model the strict inequalities between agents’
opinions are not preserved. As a simple example, consider two agents with
x1(0) = −1/4 and x2(0) = 1/4. We obtain after one iteration x1(1) = x2(1) =
0.

The order of agents is preserved, but the proof is different from the one for
the continuous system: Suppose that xi(t) ≥ xj(t), and call Ni(t) the set of
agents connected to i and not to j, Nj(t) the set of those connected to j and
not to i, and Nij(t) the set of those connected to both i and j. We assume here
that these sets are non-empty, but our argument can easily be adapted if some
of them are empty. For any k1 ∈ Ni(t), k2 ∈ Nij(t), k3 ∈ Nj(t), there holds
xk1

(t) ≥ xk2
(t) ≥ xk3

(t). Therefore, x̄Ni
≥ x̄Nij

≥ x̄Nj
, where x̄Ni

, x̄Nij
, x̄Nj

are the average of x(t) on the corresponding set. It follows from (9.8) that

xj(t + 1) =
|Nij | x̄Nij

+ |Nj | x̄Nj

|Nij | + |Nj |
≤

|Nij | x̄Nij
+ |Ni| x̄Ni

|Nij | + |Ni|
= xi(t + 1).

We therefore assume in the sequel that the agents are sorted: If i > j then
xi ≥ xj .

183



184 CHAPTER 11. DISCRETE-TIME OPINION DYNAMICS

For exactly the same reasons as in the continuous-time system, the first
opinion is nondecreasing and the last one is non-increasing. And, if at some
time the distance between two consecutive agent opinions xi and xi+1 is larger
than or equal to 1 it remains so for all further time, so that system can then
be decomposed into two independent subsystems containing the agents 1, . . . , i
and i + 1, . . . , n respectively.

A difference with the continuous-time system is that the average opinion is
not necessarily preserved, and that the variance may increase at some itera-
tions. Consider for example agents with initial opinions (0, 0.8, 1.2). After one
iteration, the opinions are (0.4, 2

3 , 1) so that the average opinion moves from 2
3

to 31
45 . An example where the variance increases is obtained by taking initial

opinions (−11,−11,−10.5,−10, 10, 10.5, 11, 11). The variance then increases
from 113.0625 to 113.1688. It has to be noted that examples of increasing vari-
ances are hard to find, and this increase is here a small one. One possible way
to bound the increase is to use the update matrix norm. To avoid confusion
with the adjacency operator, let us temporarily call M the n × n stochastic
matrix representing the iteration (9.8) at some time t, with x(t + 1) = Mx(t).
Since the variance of x(t) is unaffected by the addition of a constant value to

all xi(t), let us assume that
∑

xi(t) = 0. We have then V ar (x(t)) = ||x(t)||
2
2.

The variance of x(t + 1) on the other hand is

∣
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where we have use the fact that 1T M = 1T for any stochastic matrix M . The
proportional increase is thus bounded by

V ar (x(t + 1))

V ar (x(t))
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Note that since 1T M = 1T and
∣

∣

∣

∣I − 1
n11T
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∣
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∣
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= 1, there holds

∣
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∣M − 1
n11T

∣

∣

∣

∣

2
≤

||M ||2. Bounding the increase of the variance could thus be achieved by study-
ing the 2-norm of the matrix M , which is related to the adjacency matrix of
an interval graph. Such bound would however not take the nonlinearity of the
system into account, i.e. the fact that the update matrix depends on x(t).

We have seen in Section 9.3 that the convergence of (9.8) to a set of opinion
clusters separated by at least 1 is a consequence of Theorem 9.4. We now
provide a simpler convergence proof similar to the one of Theorem 10.1, and
taking advantage of the particular system dynamics, that is, of the way the
neighborhood topology depends on x.
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Theorem 11.1. Let x∗
i = limt→∞ xi(t). If x evolves according to (9.8), these

limits are well defined, and there is a t′ such that xi(t) = x∗
i holds for any i and

t′ ≥ t. For any i, j we either have x∗
i = x∗

j or
∣

∣x∗
i − x∗

j

∣

∣ ≥ 1. As a consequence,
there is a t′′ such that for any t ≥ t” and any i, j, there holds |xi(t) − xj(t)| ≥ 1
if x∗

i 6= xj∗ and |xi(t) − xj(t)| < 1 otherwise.

Proof. Since the opinions are assumed to be sorted, the opinion x1 is nonde-
creasing, and bounded by the initial opinion of xn. As a result, it converges
to a value x∗

1. Let p be the highest index for which xp converges to x∗
1. For

the same reasons as in the proof of Theorem 10.1, convergence is obtained by
proving that if p 6= n, there is a time at which xp+1−xp ≥ 1. Suppose to obtain
a contradiction that this is not the case, and take an ǫ and a time after which
all xi are distant from x∗

1 by less than ǫ for i = 1, . . . , p. Since xp+1 does not
converge to x∗

1, there is always a further time at which it is larger than x∗
1 + δ

for some δ > 0. For such time t∗, there holds

xp+1(t
∗ + 1) ≥

1

p + 1

(

p+1
∑

i=1

xi(t
∗)

)

≥
1

p + 1
((p + 1)x∗

1(t) + δ − pǫ) ,

which is larger than x∗
1 + ǫ is ǫ is chosen sufficiently small. This however con-

tradicts the fact that xp remains distant from x∗
1 by less than ǫ.

There is thus a time after which xp+1 ≥ xp + 1, which implies that the
agents p+1, . . . , n do not influence the agents 1, . . . , p. Since those have opinion
converging to x∗

1, they eventually become sufficiently close to each other to be
all connected to each other. When this happens, they all compute the same
average and reach the same opinion at the next time-step, and keep then this
opinion for all further time. They converge thus in finite time.

Although Theorem 11.1 only states that inter-cluster distances are no smaller
than 1, it has been observed in the literature that these distance are usually sig-
nificantly larger than 1 [78,91], similarly to what is observed for the continuous-
time system. This can for example be seen in Figure 9.4(b). This phenomenon
is further represented in Figure 11.1. As in the continuous-time system, this
can be attributed to the fact that clusters too close to each other are forced to
merge by the presence of isolated agents between them. We now show stabil-
ity results similar to Proposition 10.1. For this purpose, we again consider a
weighted variant of the system, in which each agent has a weight wi and evolves
according to

xi(t + 1) =

∑

j:|xi(t)−xj(t)|<1 wjxj(t)
∑

j:|xi(t)−xj(t)|<1 wj
. (11.1)

The convergence result of Theorem 11.1 and the other properties of the system
detailed at the beginning of this section are also valid for this weighted system.
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Figure 11.1: Location of the different clusters at equilibrium, as a function
of L, for 5000L agents with opinions initially equidistantly located on [0, L].
Clusters are represented in terms of their distance from L/2, and the dashed
lines represent the endpoints 0 and L of the initial opinion distribution.

We call again weight of a cluster the total weight of all the agents converging
to this cluster. We use the same notion of stability with respect to the addition
of an agent as in Section 10.1.

Proposition 11.1. An equilibrium is stable if and only if the distance between

any two clusters A and B is larger than 1 + min(WA,WB)
max(WA,WB) . In this expression,

WA and WB are the weights of the clusters.

Proof. Consider an equilibrium x̄ and an additional agent 0 of initial opinion x̃0

and weight δ. If this agent is disconnected from all clusters, it has no influence
and ∆x̃0,δ = 0. If it is connected to one cluster A of position xA and weight
WA, the system reaches a new equilibrium after one time step, where both the
additional agent and the cluster have an opinion (x̃0δ + xAWA)/(δ + WA). So
∆x̃0,δ ≤ δ |x̃0 − xA|. Suppose now that the perturbing agent 0 is connected
to two clusters A,B (it is never connected to more than two clusters). For a
sufficiently small δ, its position after one time step is approximately

x′
0 = xA +

xB − xA

1 + WA

WB

=
xA − xB

1 + WB

WA

+ xB, (11.2)

while the new positions of the clusters are (x̃0δ + xAWA)/(δ + WA) and (δ̃ +

xBWB)/(δ + WB). If |xA − xB | > 1 + min(WA,WB)
max(WA,WB) , it follows from (11.2) that

for small δ the agent is then connected to only one cluster and that equilibrium
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is thus reached at the next time step, with a ∆x̃0,δ proportional to δ. The
condition of this theorem is thus sufficient for stability of the equilibrium as
∆x̃0,δ is proportional to δ when it is satisfied.

If the condition is not satisfied, the agent is still connected to both clusters.
An explicit recursive computation shows that in the sequel its opinion remains
approximately at the weighted average of the two clusters (11.2), while these
get steadily closer one to each other. Note that their weighted average moves
at each iteration in the direction of the largest cluster by a distance bounded by
δ/(WA +WB). Once the distance separating the clusters becomes smaller than
or equal to 1, they merge in one central cluster of opinion x′

0. Thus, in this
case, the addition of a perturbing agent of arbitrary small weight δ connected
to both A and B results in the merging of the clusters. Let xAB be the position
of the new cluster, there holds

∆x̃0,δ = WA |xAB − xA| + WB |xAB − XB | ≥ min(WA,WB) |xB − xA| ,

independently of the weight δ of the agent.

A system does not necessarily always converge to a stable equilibrium, but
we make the following conjecture:

Conjecture 11.1. If agents evolving according to (9.8) are initially randomly
distributed according to a continuous p.d.f., the probability that they converge
to a stable equilibrium tends to 1 when the number of agent tends to infinity.

This conjecture is supported by the same intuitive reasons as Conjecture
10.1, and by extensive numerical experiments such as shown in Figure 11.2.
Moreover, it is consistent with similar results obtained in Section 11.2 on sys-
tem defined on an agent continuum, and results obtained in Section 11.3 linking
the systems defined on continuum with those on discrete agents.

To close this section, we show that the relative continuity in the cluster
positions observed in Figure 11.1 and the fact that the external clusters posi-
tions become constant with respect to the initial distribution edge when L is
sufficiently large can both be understood by analyzing the “information” prop-
agation.

During an iteration, an agent is only influenced by those opinions within
distance 1 of its own, and its opinion is modified by less than 1. So information
is propagated by at most a distance 2 at every iteration. In the case of an
initial uniform distribution on [0, L] for a large L, during the first iterations
the agents with initial opinions close to 0 behave as if opinions were initially
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Figure 11.2: Evolution with time of agent opinions initially approximating the
same opinion function: the density of opinions between on (2.5,3) is five time
as high as the density on (0,2.5). In (a), the 501 agents converge to an unstable
equilibrium: the clusters have respective weights 152 and 349, and are separated
by a distance 1.399 < 1 + 152

349 ≃ 1.436. In (b), the 5001 agents converge to a
stable equilibrium.

distributed uniformly on [0,+∞). Moreover, once a group of opinions is sepa-
rated from other opinions by more than 1, they are not influenced by them at
any subsequent iteration. Therefore, agents with initial opinions close to 0 and
getting separated from the other opinions after some finite time follow exactly
the same trajectories when the initial uniform distribution is on [0,+∞) or on
[0, L] for a sufficiently large L, and its final position would thus be constant
with respect to the initial distribution edge.

We performed simulations with an initial semi-infinite interval, i.e. opin-
ions equidistantly distributed between 0 and +∞. It appears that every agent
eventually gets disconnected from the semi-infinite set but remains connected
with some other agents. Each group behaves then independently of the rest
of the system and converges to a single cluster. As shown in Figure 11.3, the
distance between two consecutive clusters converges to approximately 2.2. The
same observation was made by Lorenz for his “interactive Markov chain model”
which approximates this system [91]. If it were proved, this asymptotic inter-
cluster distance would partially explain the precise evolution of the number of
clusters (as a function of L) shown in Figure 11.1.

Such semi-infinite simulation could not be performed in continuous-time. In
discrete time, one can verify that if initial opinions are equidistantly distributed,
an agent opinion xi does not vary during the ⌊xi(0)⌋ first time-steps. This
property allows us to simulate a semi-infinite distribution of opinions while
only performing a finite number of operations. Unfortunately, it cannot be
applied in continuous time.
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Figure 11.3: Evolution with time of the opinions for an initial semi-infinite
equidistant distribution of opinions (initially, there are 100 agents within each
unit of the x axis).

11.2 System on a continuum of agents

In order to analyze the behavior of (9.8) for large numbers of agents, we now
adapt it to allow a continuum of agents. We first adapt the results of Section
10.2 to the discrete-time case. We show then that in the discrete case it is
possible to analyze more formally the notion that the system on a continuum
is “the limit” of (9.8) for large number of agents, as we show in Section 11.3.
We use again the interval I = [0, 1] to index the agents and denote by xt(α)
the opinion at time t of the agent α ∈ I. The evolution of the opinions is then
described by

xt+1(α) =

∫

β:(α,β)∈Cxt
xt(β)dβ

∫

β:(α,β)∈Cxt
dβ

(11.3)

where Cx ⊆ I2 is defined for any x ∈ X by

Cx = {(α, β) ∈ I2 : |x(α) − x(β)| < 1},

as in Section 10.2. To fully define our iteration, we let xt+1(α) = xt(α) if
∫

β:(α,β)∈Cxt
dβ = 0. However, since the set of α for which this convention needs

to be used has zero measure, we do not consider them in the sequel. Note that
since this system is defined in discrete-time, there is no issue of existence nor
of uniqueness of its solutions. Besides, for the same reasons as for the system
(9.8), if xt(α) ≥ xt(β) holds for some t, it holds for any further time. And,
if xt(α) = xt(β) holds for some time, it also holds for any further time. As a
consequence, one can see that if x0 only takes a finite number of values, the
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system simulates a discrete system where agents initially have these values,
and where each agent weight is the measure of the set on which x0 takes the
corresponding values.

Using the operators formalism, (11.3) can be rewritten as

∆xt := xt+1 − xt = −d−1
xt

Lxt
xt (11.4)

Since dx is bounded by |I| = 1, this implies that ∆x = 0 if and only if Lxx =µ 0.
It follows then from Theorem 10.3 that the set of fixed points of this system is
the set F of functions taking discrete values separated by at least one, as for
the system (10.3). We now prove that ∆xt decays to 0.

Theorem 11.2. For any initial condition of the system (11.4) there holds

∞
∑

t=0

∫

(α,β)∈Cxt

(∆xt(α) + ∆xt(β))
2

< ∞.

As a result, the system does not produce cycles other than fixed points.

Proof. We consider the non-negative energy function defined in (10.5) as in the
proof of Theorem 10.5, and show that

V (xt+1) − V (xt) ≤ −〈∆xt, (Axt
+ Dxt

)∆xt〉 ,

which by Lemma 10.2 implies the desired result. For reasons explained in the
proof of Theorem 10.2, there holds V (xt) = 〈xt, Lxt

xt〉 + 1
2

∣

∣I2 \ Cxt

∣

∣, and for

all time s, V (xs) ≤ 〈xs, Lxt
xs〉+ 1

2

∣

∣I2 \ Cxt

∣

∣. Taking s = t+1, we obtain from
these two relations

V (xt+1)−V (xt) ≤ 〈xt+1, Lxt
xt+1〉−〈xt, Lxt

xt〉 = 2 〈∆xt, Lxt〉+〈∆xt, Lxt
∆xt〉 ,

where we have used the symmetry of Lxt
. It follows from (11.4) that Lxt

xt =
−Dx∆x, so that we have

V (xt+1) − V (xt) ≤ −2 〈∆xt,Dxt
xt〉 + 〈∆xt, Lxt

xt〉 = 〈∆xt, (Axt
+ Dxt

)∆xt〉 ,

since Lx = Dx − Ax.

Note again that the above proof does not use the dependence of the topology
Cx on x, and is therefore valid for any dependence. This is not the case though
for the next results.

Theorem 11.3. Let (xt) be a sequence of functions of X evolving according to
the model (10.3), and F be the set of functions taking discrete values separated
by at least 1. Then (xt+1−xt) →µ 0 and xt →µ F . As a result all limiting points
of µxt

are discrete measures taking values separated by at least 1. Moreover, x
is a fixed point of (10.3) if and only if x ∈ F .
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Proof. We begin by proving the convergence of ∆xt. Suppose that ∆xt =
(xt+1−xt) →µ 0 does not hold. Then there is an ǫ > 0 such that for arbitrarily
large t, there is a set of measure at least ǫ on which |∆xt| > ǫ. Consider such
a time t Let us suppose that there is then a set S ⊆ I of measure at least ǫ/2
on which ∆xt > ǫ. If this does not hold, a similar reasoning can be done on
a set on which ∆xt < −ǫ. For each i ∈ {1, . . . , 2⌈L⌉}, let Ai ⊂ I be the set
on which xt ∈ [(i − 1)/2, i/2]. For any i and for any α, β ∈ Ai, there holds
|xt(α) − xt(β)| < 1 and thus (α, β) ∈ Cxt

. Therefore, A2
i ⊆ Cxt

for all i.

Moreover, the sets Ai cover [0, 1], so that
∑2⌈L⌉

i=1 |Ai ∩ S| ≥ |S| ≥ ǫ/2. There is
thus at least a i∗ such that |Ai ∩ S| ≥ ǫ/(4⌈L⌉). We have then

∫

(α,β)∈Cxt
(∆xt(α) + ∆xt(β))

2
≥

∫

(α,β)∈(Ai∗∩S)2
(∆xt(α) + ∆xt(β))

2

≥ 4ǫ2|Ai∗ ∩ S|2

≥ ǫ4

4⌈L⌉2 .

So if ∆xt →µ 0 does not hold,
∫

(α,β)∈Cxt
(∆xt(α) + ∆xt(β))

2
does not decay

to 0, which contradicts Theorem 11.2.

For the same reasons as in Theorem 10.4, all limiting points of µxt
are

discrete measures taking values separated by at least 1. Finally, we know that
x is a fixed point of (11.3) if and only if Lxx =µ 0, which is equivalent to x ∈ F
as proved in Theorem 10.4.

Motivated by this theorem we now make the following conjecture:

Conjecture 11.2. Let (xt) be a sequence of functions of X evolving according
to the model (10.3). Then there is a function x∗ ∈ F such that xt →µ x∗.

As in the continuous-time case, F is the set of fixed points of the systems,
but some of these fixed points are unstable. We say that s ∈ F is stable if
for any ǫ > 0, there is a δ > 0 such that for any x0 ∈ Bµ(s, δ), there holds
xt ∈ Bµ(x, ǫ) for all time t if the sequence.

Proposition 11.2. Let s ∈ F be a fixed point of (11.3), and a, b two values

taken by s. If s is stable, then there holds |b − a| ≥ 1 + min(µs(a),µs(b))
max(µs(a),µs(b)) .

Proof. The proof can be adapted from the proof of Proposition 11.1 exactly as
the proof of Proposition 10.2 is adapted from the proof of Proposition 10.1.

To further analyze the properties of the opinion function sequences, we
introduce a notion of framed opinion function. We say that a function x ∈ X is
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framed if there exist M ≥ m > 0 such that for any interval J ⊆ [infα x, supα x],
there holds m |J | ≤ µx(J) ≤ M |J |. Intuitively, a function is framed if the set
of opinions taken is connected, and if the density of agents on any interval of
opinion is positively bounded from above and from below. As a consequence,
no value is taken by a set of positive measure. For example, any piecewise
differentiable x ∈ X with positive lower and upper bound on its derivative is
framed. We show in the rest of this section that if x0 is framed and if (xt)
converges, then it asymptotically converges to an equilibrium satisfying the
condition (10.10) on the minimal distance between opinions at the equilibrium,
provided that supα xt − infα xt remains always larger than 2. To conveniently
express this, we define on X the nonlinear update operator U which takes its
values in X by U(x) = x−d−1

x Lxx = d−1Axx, so that the recurrence (11.3) can
be rewritten xt+1 = U(xt). For a function x ∈ X, let now ux : [0, L] → [0, L]
be the function sending an opinion on its update opinion defined by

ux(a) =

∫

z∈(a−1,a+1)
zdµ

µx ((a − 1, a + 1))
.

As a consequence (U(x))(α) = ux (x(α)) and xt+1(α) = uxt
(xt(α)).

Proposition 11.3. Let x ∈ X be a framed function such that supα x− infα x >
2. Then U(x) is framed.

Proof. By hypothesis, there exists 0 < m < M such that for any [a, b] ⊆
[infα x, supα x] there holds m(b − a) ≤ µx([a, b]) ≤ M(b − a). Let δ = min{ 1

2 ,

supα x− infα x− 2, M
m }. We first prove the existence of M ′,m′ > 0 such that if

[a, b] ⊆ [infα x, supα x] and b−a < δ, then m′(b−a) ≤ ux(b)−ux(a) ≤ M ′(b−a).

Due to the value of δ, either a ≥ infα x + 1 or b ≤ supα x − 1. We consider
here the second case, but the first one can be treated exactly in the same way.
There holds therefore (a, b+1) ⊆ [infα x, supα x]. Let µ̄ab = µx ((b − 1, a + 1)),
µ̄a\b = µx ((a − 1, b − 1]) and µ̄b\a = µx ([a + 1, b + 1)). It follows then from
the framed character of x and the value of δ that

µ̄ab = µx ((b − 1, a + 1)) ≥ µx ((a, a + 1)) ≥ m,
0 ≤ µ̄a\b = µx ((a − 1, b − 1]) ≤ M(b − a) ≤ Mδ ≤ m
m(b − a) ≤ µ̄b\a = µx ([a + 1, b + 1)) ≤ M(b − a) ≤ Mδ ≤ m.

(11.5)

Let now x̄ab, x̄a\b, x̄b\a be the average value of x (weighted by µ) on respectively
(b−1, a+1), (a−1, b−1] and [a+1, b+1). In case µ̄a\b = 0, we let xa\b = b−1.
There holds x̄a\b ≤ x̄ab ≤ x̄b\a, and 1 ≤ 2−(b−a) ≤ x̄b\a−x̄a\b ≤ 2+(b−a) ≤ 3.
Moreover, by definition of ux, there holds

ux(a) =
µ̄abx̄ab + µ̄a\bx̄a\b

µ̄ab + µ̄a\b
= x̄ab −

µ̄a\b(x̄ab − x̄a\b)

µ̄ab + µ̄a\b
,
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and

ux(b) =
µ̄abx̄ab + µ̄b\ax̄b\a

µ̄ab + µ̄b\a
= x̄ab +

µ̄b\a(x̄b\a − x̄ab)

µ̄ab + µ̄b\a
.

Using the bounds (11.5), we have then

ux(b)− ux(a) ≤
µ̄b\a

µ̄ab
(x̄b\a − x̄ab) +

µ̄a\b

µ̄ab
(x̄ab − x̄a\b) ≤

M(b − a)

m
(x̄b\a − x̄a\b),

and thus ux(b)− ux(a) ≤ 3M
m (b− a), which proves our upper bound for M ′ :=

3M
m . For the lower bound, observe first that x̄b\a − x̄ab ≥ a + 1− x̄ab ≥

1
2

√

m
M ,

where the last inequality is obtained by considering the worst case in which
µx ([x̄ab, a + 1)) = M(a + 1 − x̄ab) and µx ((b − 1, x̄ab)) = mµx ((b − 1, x̄ab)).
Besides, since x̄a\b ≤ x̄ab, it follows from the bounds (11.5) that

ux(b) − ux(a) ≥
µ̄b\a

2µ̄ab
(x̄b\a − x̄ab) ≥

m

6M

1

2

√

m

M
(b − a),

where we have used the fact that µ̄ab ≤ M(a + 1 − b − 1) ≤ 3M . The lower

bound is thus proved for with m′ = m3/2

12M3/2

By finite unions and intersections of intervals, this result holds for all in-
tervals [a, b] ⊆ [infα x, supα x]. Consider now an interval [a′, b′] ∈ [infα U(x),
supα U(x)], and let a = inf{z ∈ [0, L] : ux(z) ∈ [a′, b′]} and b = sup{z ∈
[0, L] : ux(z) ∈ [a′, b′]}. As a consequence of the order preservation property,
ux ((a, b)) ⊆ [a′, b′], and [a′, b′] ⊆ [ux(a), ux(b)]. Since by hypothesis µx(a) =
µx(b) = 0, this implies that µU(x)([a

′, b′]) = µx([a, b]) ∈ [m(b − a),M(b − a)].

Using the bounds on ux(b)−ux(a)
b−a , we finally obtain

mm′(b′ − a′) ≤ µU(x)([a
′, b′]) ≤ MM ′(b′ − a′)

A consequence of this result and of Theorem 11.3 is that if x0 is framed, then
(xt) does not converge in finite time unless supα xt − infα xt becomes smaller
than or equal to 2. We can now show that a sequence of framed functions never
converges to an equilibrium that does not satisfy the condition (10.10).

Proposition 11.4. Let (xt) be a sequence of functions of X evolving according
to (11.3) such that x0 is framed and supα xt − infα xt > 2 for all t. If (xt)
converges, then it converge to a function s ∈ F such that

|b − a| ≥ 1 +
min (µs(a), µs(b))

max (µs(a), µs(b))
,

hold for any values a, b taken by s with µs(a), µs(b) > 0. In particular, if
µs(a) = µs(b), then |b − a| ≥ 2.
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Proof. It follows from Theorem 11.3 that s ∈ F , and from Proposition 11.3
that all xt are framed. Suppose now that s does not satisfy the condition of
the proposition for some a < b. Since b − a < 2, µs ((a, b)) = 0, as all discrete
values taken by s must differ by at least 1. We now show the existence of a
positive length interval J ⊆ (a, b) such that µxt+1

(J) ≥ µxt
(J) if xt ∈ Bµ(s, ǫ)

for a sufficiently small ǫ > 0. Since xt converge to s, there is thus a finite
time t∗ after which µxt

(J) is nondecreasing. But since this value converges to
µs(J) ≤ µs ((a, b)) = 0, there must hold µxt∗

(J) = 0. This however contradicts
the fact that xt is framed for all finite t.

Let c = µs(a)a+µs(b)b
µs(a)+µs(b) be the weighted average between a and b, and take

J := [c− δ, c + δ] for a positive δ such that c− δ + 1 > b and c + δ − 1 < a. For
any x ∈ Bµ(s, ǫ) for some ǫ > 0, there hold

µx([a − ǫ, a + ǫ]) ∈ [µs(a) − ǫ, µs(a) + ǫ],

µx([b − ǫ, b + ǫ]) ∈ [µs(b) − ǫ, µs(b) + ǫ],

µx ((a − 1, b + 1) \ ([a − ǫ, a + ǫ] ∪ [b − ǫ, b + ǫ])) ≤ ǫ,

where we have used the fact that all values taken by s are separated by at least
1. Suppose that ǫ is sufficiently small so that c−δ+1 > b+ǫ and c+δ−1 < a−ǫ,
which implies that for every y ∈ J , (a− ǫ, b + ǫ) ⊆ (y − 1, y + 1). For any such
y, a lower bound on ux(y) is obtained by considering the situation in which
µx(a − ǫ) = µs(a) + ǫ, µx(b − ǫ) = µs(b) − ǫ, and a set of measure at most ǫ
distant from y by at most 1. This leads to

ux(y) ≥ (µs(a)+ǫ)(a−ǫ)+(µs(b)−ǫ)(b−ǫ)+ǫ(y−1)
µs(a)+µs(b)+ǫ

= c − ǫ + ǫ (a−b+y−1−c+ǫ)
µs(a)+µs(b)+ǫ

≥ c − ǫ − 5ǫ
µs(a)+µs(b) ,

which for a sufficiently small ǫ is larger than c − δ. Similarly, we have

ux(y) ≤ (µs(a)−ǫ)(a+ǫ)+(µs(b)+ǫ)(b+ǫ)+ǫ(y+1)
µs(a)+µs(b)+ǫ

= c + ǫ + ǫ (b−a+y+1−c+ǫ)
µs(a)+µs(b)+ǫ

≤ c + ǫ + 5ǫ
µs(a)+µs(b) ,

which again for a sufficiently small ǫ is smaller than c + δ. Therefore, there
is an ǫ such that for any x ∈ Bµ(s, ǫ) and any y ∈ J , ux(y) ∈ J . This implies
then that µU(x)(J) ≥ µx(J), which proves our result.

The conditions under which a sequence of framed function maintain supα xt−
infα xt ≥ 2 need however still to be determined.
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11.3 Relations between systems on discrete

agents and on agent continuum

We now analyze to which extent the system (11.3) defined on an agent contin-
uum can be viewed as a limiting case of the system (9.8) defined for discrete
agents when the number of agents tends to infinity. A discrete system can be
simulated by a system involving a continuum of agents. To represent a vector
of discrete opinions x̂ ∈ ℜn, take n subsets I1, . . . , In of measure 1

n defining a
partition of I, and define a function x ∈ X taking a value x̂(i) on Ii for each
i. It follows then from (11.3) that all xt are constant on these sets, and their
value corresponds to the discrete opinions x̂t obtained by the discrete system
(9.8). This can be expressed using a function f : I → {1, . . . , n} assigning an
agent number to each α ∈ I. We have then xt(α) = x̂ (f(α)) for all t and
α ∈ I. Different weights can also be given to the discrete agents by varying the
measures of the sets Ii. To further analyze the link between discrete and con-
tinuous system, we need the following results on the continuity of the update
operator.

Proposition 11.5. Let x ∈ X be a framed function. Then the update operator
U is continuous at x with respect to the norm ||.||∞. In other words, for all
ǫ > 0 there is a δ such that ||y − x||∞ ≤ δ implies ||U(y) − U(x)||∞ ≤ ǫ.

Proof. Consider a framed function x ∈ X, and an arbitrary ǫ. Let δ smaller
than mǫ

25M , where m ≤ M are the bounds coming from the definition of framed
opinion functions applied to x. We show that if a function y ∈ X satisfies
||x − y||∞ < δ, then ||U(y) − U(x)||∞ = ||ux − uy|| < ǫ holds.
Take α ∈ I, and call Sx, Sy ⊆ I the set of agents connected to α according
to the topologies Cx and Cy defined by x and y respectively. We let Sxy =
Sx ∩ Sy, Sx\y = Sx \ Sxy and Sy\x = Sy \ Sxy. Since ||x − y||∞ < δ the values
|x(α) − x(β)| and |y(α) − y(β)| differ by at most 2δ. Therefore, there hold

[x(α) − 1 + 2δ, x(α) + 1 − 2δ] ⊆ x(Sxy) ⊆ [x(α) − 1 − 2δ, x(α) + 1 + 2δ],
x(Sx\y) ⊆ [x(α) − 1, x(α) − 1 + 2δ] ∪ [x(α) + 1 − 2δ, x(α) + 1],
x(Sy\x) ⊆ [x(α) − 1 − 2δ, x(α) − 1] ∪ [x(α) + 1, x(α) + 1 + 2δ].

Since x is framed we have then |Sxy| ≥ m(2 − 4δ) ≥ m and
∣

∣Sx\y

∣

∣ ,
∣

∣Sy\x

∣

∣ ≤
4Mδ, for some M ≥ m ≥ 0 independent of α. Let now x̄xy, x̄x\y be the average
value of x on Sxy and Sx\y respectively, and ȳxy, ȳy\x be the average value of
y on Sxy and Sy\x. Since ||x − y||∞ < δ, x̄xy and ȳxy differ by at most δ. It
follows from the definition of the model (11.3) that

ux(x(α)) = x̄xy +

∣

∣Sx\y

∣

∣

|Sxy| +
∣

∣Sx\y

∣

∣

(x̄x\y − x̄xy),
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and

uy(y(α)) = ȳxy +

∣

∣Sy\x

∣

∣

|Sxy| +
∣

∣Sy\x

∣

∣

(ȳy\x − ȳxy).

Since there trivially holds
∣

∣x̄x\y − x̄xy

∣

∣ ≤ 3 and
∣

∣ȳy\x − ȳxy

∣

∣ ≤ 3, we have then
the following bound

|uy(y(α)) − ux(x(α))| ≤ |x̄xy − ȳxy| + 3
|Sy\x|
|Sxy|

+ 3
|Sx\y|
|Sxy|

≤ δ + 6 4Mδ
m

≤ δ(1 + 24M
m ) ≤ ǫ.

where we have used the fact that |x̄xy − ȳxy| ≤ δ. Since this is true for any
α ∈ I, we have ||y − x||∞ ≤ ǫ.

Let U t : X → X be the composition of the update operator defined by
U t(x) = U

(

U t−1(x)
)

, so that U t(x0) = xt.

Corollary 11.1. Let x ∈ X be a framed function such that supα U t(x) −
infα U t(x) > 2 for every t ≥ 0. Then for any finite t, U t is continuous at x
with respect to the ||.||∞ norm.

Proof. Since x is framed and since for all t there holds supα U t(x)−infα U t(x) >
2, it follows from Proposition 11.3 that all U t(x) are framed. Proposition 11.5
implies then that U is continuous at all U t(x) so that their composition U t is
continuous.

This result allows us to prove that for any finite time, the system on an
agent continuum is the limit of the one defined for discrete agents when the
number of agents grows.

Theorem 11.4. Let x ∈ X be a framed function such that supα U t(x) −
infα U t(x) > 2 for every t ≥ 0. Then the sequence (U t(x)) is approximated with
an arbitrary accuracy until any finite time t∗ by a sequence (x̂t) of opinion vec-
tors evolving according to (9.8). In other words, for any t∗ and ǫ > 0, there is a
vector x0 ∈ [0, L]n and a function f : I → {1, . . . , n} taking constant values on
set of measures 1/n such that for all t ≤ t∗, there holds ||U t(x) − x̂t(f)||∞ ≤ ǫ,
where the sequence (xt) satisfies (9.8).

Proof. Let us be given a positive ǫ. Since all U t are continuous at x, it there
is a δ > 0 such that for any y ∈ X ∩ B∞(x, δ), ||U t(y) − U t(x)||∞ ≤ ǫ for all
t ≤ t∗. Since x is framed, it is possible to divide [0, L] in disjoint intervals
J1, J2, . . . , Jn for some finite n in such a way that µx(Ji) = 1/n and |Ji| ≤ δ for
each i. Define then f : I → {1, . . . , n} by f(α) = i if x(α) ∈ Ji, and x̂ ∈ [0, L]n

by taking a each value x̂i in the corresponding set Ji. For any α there holds
|x̂ (f(α)) − x(α)| < δ. This proves our result as it implies x̂(f) ∈ B∞(x, δ).
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This Theorem supports the intuition that for large values of n, the contin-
uous systems behaves approximatively as the discrete one for a certain number
of time-steps. In view of Proposition 11.2, this suggests that the discrete sys-
tem should always converge to a stable equilibrium (in the sense defined in
Section 11.1) when n is sufficiently large, as stated in Conjecture 11.1. For ex-
ample, Figure 11.2(a) and (b) show the evolution of respectively 501 and 5001
agent opinions initially approximating the same opinion function: x(α) = 5α
for α ∈ [0, 1

2 ] and x(α) = 2.5 + α for α ∈ [12 , 1]. In Figure 11.2(a), the system
converges to an unstable equilibrium. The respective weight of the clusters are
indeed 152 and 349. They are separated by a distance 1.399 while the stability
condition of Theorem 11.1 requires here a distance larger than 1+ 152

349 ≃ 1.436.
As shown in Figure 11.2(b), this unstable equilibrium disappears when the
number of agents increases. Indeed, some agents lying between the two tempo-
rary clusters cause them to merge. However the continuity argument above is
not rigorous, because the continuity of U t for all t does not imply the continuity
of U∞ := limt→∞ U t.

Theorem 11.4 provides also a new insight on Hegselmann’s conjecture [59].
This conjecture states that for every L > 0 there is a n′ such that for any
initial equidistant distribution of n > n′ discrete opinions, the system converge
to one single cluster. Although numerical evidences seems to contradict it, the
conjecture has not been proved or disproved yet. In view of Theorem 11.4,
a sufficient condition for the conjecture to hold is that for any linear initial
function x ∈ X, the sequence U tx converges to a function that is constant.

Finally, using the comparison between discrete and continuous systems, we
can obtain a new result about the discrete one. Consider a discrete distribution
x̂0 of n agents approximating a continuous distribution x0 as above. Until any
time step t, xt is approximated arbitrarily well by x̂t if n is sufficiently large,
but xt never reaches the equilibrium. For any t, there is thus a n above which
x̂t has not yet reached equilibrium. Therefore, by increasing the number n of
agents in a discrete system (in a way that approximates a continuous function
x0), the convergence time will increase to infinity, even though it is finite for
any particular finite n.
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Chapter 12

Extensions

12.1 Higher dimensions and distance

depending weights

A first natural extension of the model considered in Chapters 10 and 11 is
to consider multi-dimensional opinions, as often proposed in the literature for
various continuous opinion dynamics system (see [92] for a survey). The for-
mulation of Krause’s model and its continuous-time counterpart 9.9) remain
formally the same, but the distance used to define1 the neighborhood relation
has to be specified. We use here the usual Euclidean distance. In discrete time,
opinions are thus updated by

xi(t + 1) =

∑

j:||xi(t)−xj(t)||<1 xj(t)

|j : ||xi(t) − xj(t)|| < 1}|
,

and in continuous time their evolution is described by

ẋi(t) =
∑

j:|xi(t)−xj(t)|<1

(xj(t) − xi(t)) .

An example of two-dimensional opinions evolving according to Krause’s dis-
crete time model is presented in Figure 12.1.

Let us mention that simulating such multi-dimensional systems is much
more time-consuming than the one-dimensional ones. This is first due to the
curse of dimensionality, requiring the number of agents to grow as LD to reach
a constant discretization in D dimensions. Moreover, whereas a naive imple-
mentation of Krause’s model requires O(n) operations for each agent’s value

1The use of “pseudo distances” that do not satisfy the triangular inequality is also accept-
able.
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Figure 12.1: Representation of the evolution of a set of 1000 two-dimensional
initially random opinions according to Krause’s model (with the Euclidean
distance). The opinions converge to clusters which are separated by more than
1. At t = 12, two clusters and some isolated agents in the lower right part of
the figure are in a meta-stable situation. They eventually merge, as seen at
t = 20.
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update, the presence of an order in one dimension and its preservation at each
iteration allow the computation of all agent updates in O(n). This is however
not generalizable to higher dimensions. As a result, the number of operations
for one iteration grows for example as O(n4) for two-dimensional opinions, as
compared to linearly for one-dimensional opinions. This quartic number can
however be reduced in practice by the use of many heuristic methods, as partly
explored by Kushagra Nagaish during his internship at the UCL in 2007 [102].

One could also use spaces with different topologies such as the circle or the
torus. This could indeed be interesting as it avoids the effects caused by the
edges of the initial distribution. Preliminary simulations on the circle had re-
sults comparable to those on an interval, with a few notable differences. The
set of equilibria is indeed richer in the cyclic case. One can for example verify
that opinions equidistantly distributed on the whole circle are at equilibrium,
independently of the distance separating them. This does not contradict our
convergence results, as the latter assumes (and uses the fact) that the opinions
are real. This equidistant distribution equilibrium appears to have a nontrivial,
though small, attraction basin. By applying a perturbation of sufficiently small
amplitude, one does not change the interaction graph (unless the distance sep-
arating the opinions is exactly 1/m for some natural number m). The system
may then re-converge to an equidistant distribution. Such re-convergence has
been experimentally observed, but it is not known whether it always takes place
when the interaction graph is not affected by the perturbation. When larger
perturbations are applied, they appear to propagate on the whole domain, and
the system converges then to a set of clusters, which satisfy our stability con-
dition with a high probability. Note that all this discussion relies on numerical
experiments, and the observations remain thus to be formally proved. We do
however not treat the cyclic domain in the rest of this Chapter.

The second extension we consider is the introduction of distance-depending
weights, or more generally relative position-depending weights, on the agent
influence. Whereas in the initial model, the opinion of an agent j is taken
into account by i if |xi − xj | < 1 and not taken into account otherwise, one
can imagine a smoother way to weight the influences, giving for example more
importance to the agents close to i than to the others, or having a continuous
evolution of the importance with the distance. As suggested in [93], this can be
generically represented by a nonnegative influence function f : ℜ → ℜ+, whose
support 2 is supposed to be connected, to contain 0 and to have a positive
length. The update rule in discrete time then becomes

xi(t + 1) =

∑

j f (xj(t) − xi(t))xj(t)
∑

j f (xj(t) − xi(t))
, (12.1)

2The support of a non-negative function is the set on which it takes positive values.
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and the evolution in continuous time is described by

ẋi =
∑

j

(xj − xi) f (xj − xi) . (12.2)

The initial models correspond to the situation where f is the indicator func-
tion of the interval (−1, 1). Figure 12.2 shows examples of opinions initially
identically distributed but evolving according to different influence functions.
Note that when the support of f is not symmetric as in Figure 12.2(b), the
communication graph is directed, as an agent may be influenced by another
agent without necessarily influencing it. When f is not symmetric but has
symmetric support, the communication graph remains symmetric, but some
properties such as preservation of the average in continuous time are in general
lost.

We believe it worth to explore how our results can or cannot be generalized
to these more general situations. In addition to leading to more powerful results,
this could also allow distinguishing the real reasons behind some phenomena
from other conditions that happen to be equivalent in one dimension. Taking
an example from the first part of this thesis, when studying the deformation of
graph representations in one-dimension, a trivial necessary and sufficient condi-
tion for rigidity is connectivity. It is thus only by studying higher-dimensional
systems that one is led to introduce powerful tools such as rigidity matrices,
and Laman-type counting conditions.

We consider thus in Section 12.2 the convergence properties of these ex-
tended systems, and in Section 12.3 the stability of their equilibria. We finish
in Section 12.4 by giving necessary and sufficient conditions for the order of
one-dimensional opinions to be preserved.

Note that we do not consider here systems with heterogenous agents. In
such systems, different agents may have different interaction radius, leading
to interesting complex behaviors [93]. The communication graphs are then
inherently directed.
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Figure 12.2: Evolution with time of 41 opinions initially equidistantly dis-
tributed on [0, 8] according to the discrete-time model (12.1), for three differ-
ent influence functions also represented. The model (b) represents asymmetric
agent behaviors, as proposed in [60]. Unsurprisingly, opinions converge to clus-
ters with higher value than in the symmetric represented in (a). In (c), the
agents give a larger weight to those that are very close to them than to the
others. One can see that convergence is then slower than with the usual model.
Finally, (d) exhibits similar convergence properties as the other systems, al-
though the influence decays continuously to 0.
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12.2 Convergence

All experiments conducted on the two extended models presented above show
that the opinions converge to clusters sufficiently distant so that no interaction
takes place between them. Proving this convergence is however difficult in some
cases.

12.2.1 Generic results

In discrete time, convergence to clusters that do not interact is guaranteed
by the generic Theorem 9.4 as long as the interactions are symmetric, and
that there is a positive lower bound on all positive coefficients involved in the
average. These two conditions are clearly satisfied by the multi-dimensional
extension of Krause’s model, as the argument provided in Section 9.3 can di-
rectly be generalized. When distance depending functions are used as in (12.1),
all interactions are symmetric provided that the function support is symmetric
around 0, i.e., provided that f(x) > 0 if and only if f(−x) > 0. Observe now
that the coefficient given to xj in the computation of xi(t + 1) is

aij(t) =
f(xj − xi)

∑n
k=1 f(xk − xi)

.

There is thus a positive lower bound on all positive values that it can take pro-
vided that there exist positive upper and lower bound on the positive values of
f . The presence of an upper bound is a rather natural assumption. The lower
bound implies the presence of an influence threshold, so that the importance
given by an agent to another cannot decay to 0, forbidding for example depen-
dence inversely proportional to the squared distance. To summarize, Theorem
9.4 guarantees the convergence of systems with distance-depending influence
provided that the influence function has a symmetric support, and admits pos-
itive lower and upper bound on its positive values. This result is also valid if
distance-depending influence function are used for multidimensional opinions.
The convergence does however not necessarily happen in finite time, as all-to-
all communications do not necessarily imply that all agents compute the same
value, due to the possible different importance that they give to each other.

No generic convergence result is however known proving convergence of
continuous-time systems in the possible absence of consensus. As in the one-
dimensional case, there is thus no simple way to prove a priori the convergence
of the multidimensional and the distance-depending importance systems.

12.2.2 Results based on the topology dependence

In Theorems 11.1 and 10.1, we have proved the convergence of Krause’s model
and its continuous-time counterpart based on the systems’ particular dynamics
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and position-dependence interaction topology. The arguments can be general-
ized to systems with distance-depending influence, provided that the influence
function is such that the order of opinions is preserved, that it admits positive
lower and upper bound on its positive values and that its support is connected.

Upper and lower bounds are indeed needed to ensure that if the aij(xj −xi)
decays to 0, either the distance between xi and xj decays to 0, or i and j
become disconnected and do not interact anymore after a finite time. We hope
however to be soon able to extend the results to function admitting no positive
lower bound.

The order preservation is needed in the convergence proof to be able to
designate a first agent whose opinion can never decrease. We do however not
know if this is an essential condition for convergence or for this type of proof to
work, or if it just allows a simpler writing of a slightly more general argument.
The conditions under which the order of opinions is preserved are detailed in
Section 12.4.

Note that the symmetry of the influence function or of its support is not
required for our proof to be extended.

These proofs can however not immediately be generalized to multi-dimensional
opinions, as they appear to strongly rely on the existence of an order. Two key
arguments are indeed that the smallest opinion is nondecreasing and is there-
fore convergent, and that the system can be decomposed into two subsystems
when two consecutive opinions are separated by more than 1. It should how-
ever be explored if the smallest opinion can be replaced by the vertex of the
opinions convex hull for multi-dimensional systems, and if the separation idea
can be applied to separate a group of agents whose opinions are sufficiently far
from the convex hull of all other agent opinions.

To summarize, our convergence results based on the topology evolution
easily extend to one-dimensional systems with relative-position-depending in-
fluence provided that the influence function admits positive lower and upper
bound on its positive values, and that the order of opinions is preserved. This
is valid for both continuous and discrete-time systems. Moreover, the generic
Theorem 9.4 allows us to prove the convergence of multi-dimensional systems
in discrete time. This is also valid if relative-position dependent influence func-
tions are used, provided that they have symmetric support, and again admit
positive lower and upper bound on their positive values.

12.2.3 Agent continuum

Theorems 10.2 and 11.2 on the decay of ẋ and x(t + 1) − x(t) for agent con-
tinuum can both be generalized to multi-dimensional opinions and to distance-
depending influence functions, provided that the latter functions are symmetric
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and are decreasing with the distance. This is done by extending the operator
formalism for these new systems, and performing then the same formal com-
putations.

For multi-dimensional opinions, one just needs to use the scalar product
〈x, y〉 =

∫

α∈I
x(α)T y(α)dα instead of the usual one 〈x, y〉 =

∫

α∈I
x(α)y(α)dα.

Moreover, the energy functions used in both proofs should be

V (x) =
1

2

∫

(α,β)∈I2

min
(

1, ||x(α) − x(β)||
2
)

.

Moreover, one can also prove that the variance is non-increasing in continuous
time, as there holds V ar(x) = 〈x, x〉 − ||x̄||

2
, which leads to

˙V ar(x) = 2 〈x, ẋ〉 − 2 ˙̄xT x̄ = −2 〈x,Lxx〉 ≤ 0

where the last inequality comes from the fact that Lx is positive semi-definite.
Note that it may be necessary to use a multi-dimensional set I to index the
agents. The dimension of this set does however not necessarily need to be
the same as the dimension of the opinions. One can consider for example opin-
ions forming a two-dimensional surface embedded in a three-dimensional space.

When distance depending influence functions are used, the same formalism
holds, but one needs to redefine the function χx : I × I → ℜ introduced
after equation (10.3) to model the interaction topology. In the initial model,
this function defined on pair of agent indices takes a value 1 if the agents are
neighbors influencing each other, and 0 else. When continuous evolution of the
interaction strength is considered, one can verify that it suffices to take the
function representing this evolution: χx : I × I → ℜ : (α, β) → χx(α, β) =
f (|x(α) − x(β)|). For the symmetry property of the different operators to
holds, f needs however to be symmetric. One can then for example prove the
non-increase of the opinion variance formally exactly in the same way as in
Section 10.2. As already observed, the initial model corresponds thus to the
case where f is the indicator function of the interval (−1, 1).

Finally, one should use in Theorem 10.2 and 11.2 the following general
energy function

V (x) =

∫

(α,β)∈I2

F (x(α) − x(β)) ≥ 0, (12.3)

where F (w) =
∫ w

v=0
f(v)vdv. One can again verify that this expression reduces

to (10.5) when the indicator function of (−1, 1) is used for f . For the reasoning
of the two theorems, f needs to be nondecreasing, so that for any v there holds
F (v) ≤ F (w) + 1

2 (v2 − w2)f(w). Using χx(α, β) = f (x(α) − x(β)) and (12.3)
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we can then indeed bound V (y) by

V (x) + 1
2

∫

(α,β)∈I2

(

(y(α) − y(β))
2
− (x(α) − x(β))

2
)

f (x(α) − x(β))

= 〈y, Lxy〉 − 〈x,Lxx〉 + V (x),

a relation extending (10.6) on which both theorems are based. Note that these
ideas can also be extended to multi-dimensional opinions with distance de-
pending influence, taking in the definition of the energy function a F such that
∇F (v) = vf(v), if such a F exists.

12.3 Equilibrium stability

Experiments conducted for the extended models also show that the clusters
to which the opinions converge are usually separated by distances significantly
larger than the interaction radius. We have proposed an explanation of this
phenomenon for the initial models based on a notion of equilibrium stability
with respect to the addition of an agent. We now consider the possible exten-
sion of this stability notion to systems with multi-dimensional opinions and/or
our notion of equilibrium stability. This analysis is exploratory, and several ap-
proximations are made. We believe that it leads to the correct characterization
of stable equilibrium up to some border and zero-measure set effects, but this
characterization and the related results should nevertheless not be considered as
proved. For the sake of simplicity, we only consider the continuous-time system.
We expect the discrete-time model to present similar equilibrium properties,
although some more complex phenomena could be caused by the discontinuity
of the opinion evolutions.

12.3.1 Generic analysis

Remember that an equilibrium is stable if its perturbation by addition of an ar-
bitrary small agent cannot cause a fixed size deformation after re-convergence.
The motivation behind this definition was that in the presence of sufficiently
many smoothly distributed agents, there will most likely be some agent playing
the perturbing role during the convergence process, preventing the system to
converge to an unstable equilibrium. Intuitively, the presence of these agents
comes from the fact that if the function describing the opinion distribution
is smooth, agent opinions are likely to be found everywhere on the interval
of opinions, including at the position where they could destroy the unstable
equilibrium. While this intuitive behavior can still be applied when distance-
depending influence functions are used, the multi-dimensional case presents
more difficulties. In a multi-dimensional space, connectivity and convexity are
not equivalent. The smoothness of the initial opinion function ensures the
connectivity of the set where opinions can be found, but not necessarily its
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Figure 12.3: Representation of a possible (generic) convergence to two clusters
in an unstable configuration. The presence of any agent in the critical zone
at the intersection between the two cluster’s influence disc would destroy this
possible equilibrium by making the cluster merge. If the zone in which the
opinions can be found in not convex however, there could never be any agent
in that critical zone, independently of the number of agent. Such phenomenon
cannot happen in one dimension, as the connectivity of the zone with opinions
implies its connectivity.

convexity. As a result, we may not a priori exclude systems converging to
equilibrium where two clusters are so close that the addition of any perturbing
agent in a certain zone would make them merge, because it might be that no
agent is to be found in that zone during the convergence process, even if the
number of agents if very large, as represented in Figure 12.3.

Let us (re-)define more formally the notion of equilibrium, let x̄ be a vector
of agent opinions at equilibrium. Suppose that one adds a new agent 0 of weight
δ and opinion initially set at x̃0, and let the system re-converge to a perturbed
equilibrium. One then removes the perturbing agent. The opinion vector x̄′

so obtained represents still an equilibrium. We denote by ∆x̃0,δ = wT |x̄ − x̄′|
the distance between the initial and perturbed equilibria. The equilibrium x̄ is
stable if maxx0

∆x̃0,δ, can be made arbitrarily small by choosing a sufficiently
small δ.

Since the perturbing agent 0 has an arbitrary small weight, its influence on
the other agents is also arbitrary small during any fixed time-interval. The in-
fluence that the other agents have on 0 is however approximately independent
of its weight δ. The perturbation of the equilibrium involves thus two distinct
phenomena with different time-scales. First the agent added moves alone while
all other agents are approximately fixed. The way it moves in this phase is as
a first order approximation independent of its weight. If it is not isolated and
does not converge to one cluster, it eventually converges to a position where it
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Figure 12.4: Example of temporary “meta-stable” equilibrium. Initially, two
clusters are formed and do not interact with each other, but they both interact
with a small number of agents lying between them. As a result, the distance
separating them eventually becomes smaller than 1. The clusters then attract
each other directly and merge into one larger cluster. This example is also
shown in Figure 10.2.

interacts with two or more clusters, whose attractions on it cancel each other.
A second phase takes then place on a much slower time-scale. The agent re-
mains at equilibrium3 as the result of different cancelling attractions, and it
slowly attracts the clusters. The strength of this attraction is of the order of δ,
but it takes place during an arbitrary large interval, so that large deformations
are eventually caused. An example of this second phase is shown in Figure 12.4.

To the exception of some border and zero-measure set effects, large vari-
ations of the equilibrium are guaranteed if the second phase begins. In that
phase indeed, the perturbing agent is at equilibrium and constantly attracts
some clusters while no other interaction takes place. Supposing that no large
variation occurs, this constant attraction would take place forever and therefore
eventually causes a large variation, contradicting our hypothesis. The stabil-
ity of the equilibrium depends thus only on the possibility for the perturbing
agent to reach in the first phase an equilibrium position or more generally an

3In general (for distance depending influence), the agent does not remain exactly at the
same position, but constantly adapts it due to the slow move of the clusters. Since this
adaptation takes place at a faster time-scale, we can suppose that the agent remains at an
equilibrium point which evolves at the same speed as the clusters.
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invariant set, from which it can apply a positive attraction on two or more
clusters. Note that this condition implicitly assumes that large variation of the
attractions by clusters cannot be caused by arbitrarily small variation of the
positions, a condition which may not always be verified.

To represent the first phase, we consider the evolution of a virtual agent
with weight 0. More formally, let x be a set of n D−dimensional opinions
at equilibrium for a continuous time system of opinion dynamics where the
influence depends on the relative position of the agents via an influence function
f : ℜD → ℜ+. We define the vector field

vx : ℜD → ℜD : y → vx(y) =

n
∑

j=1

f(xj − y)(xj − y).

Observe that the evolution of a virtual perturbing agent with weight 0 added
to the equilibrium x is described by ẏ = vx(y). According to our approximate
two-phases analysis, the equilibrium x is unstable if and only if there is a non-
trivial set invariant for the system ẏ = vx(y), and included in the interaction
zone of at least two clusters. In other words, a set from which the virtual agent
would never escape, and in which it would constantly be interacting with at
least two (same) clusters. The existence of a non-trivial invariant set is required
instead of a simple equilibrium point to avoid unstable equilibrium points to
which no trajectory converges but the one starting on it.

12.3.2 One-dimensional opinion stability

Let us consider an influence function f and one-dimensional opinions whose
evolution is described by (12.2). We scale the system so that the support of
f is [−1, 1]. In one dimension, the perturbing agent can at most interact with
two clusters as clusters are separated by at least 1, so that the stability con-
dition can be expressed with respect to the positions and weights of each pair
of clusters. Consider thus two clusters A, B of weight wA, wB and positions
xA ≤ xB . According the criterion derived above, two such clusters are in an
unstable configuration if there is a set S ⊆ [xB − 1, xA + 1] invariant for the
system ẏ = vx(y). One can verify that this is equivalent to the existence of two
points m < p in [xB − 1, xA + 1] such that vx(m) ≥ 0 and vx(p) ≤ 0, where
vx(y) is on [xB−1, xA+1] equal to wA(xA−y)f(xA−y)+wB(xB−y)f(xB−y).
Note that this implies the stability of any equilibrium in which all clusters are
separated by at least 2, independently of f .

As a first example, suppose that f is equal to 1 on all its support, corre-
sponding to our continuous-time model studied in Chapter 10. One can verify
that on [xB − 1, xA + 1], vx takes its smallest value −wA + wB(xB − xA − 1)
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on xA + 1 and its largest one wB − wA(xA − xB + 1) on xB − 1. Since
xB − 1 ≤ xA + 1, it is thus stable if and only if −wA + wB(xB − xA − 1) ≤ 0

and wB −wA(xA −xB +1) ≥ 0 hold, that is, if xB −xA ≥ 1+ min{wA,wB}
max{wA,wB} , the

condition obtained in Theorem 10.1.

Consider now that the influence decays linearly to 0 with the distance, that
is, f(z) = 1−|z|. For y ∈ [xB −1, xA +1], there holds vx = wA(xA −y)(1−y +
xA)+wB(xb−y)(1+xB −y). Observe that vx(xB −1) ≤ 0 and vx(xA +1) ≥ 0.
Since vx is a quadratic function of y, it cancels exactly once between xB−1 and
xA+1. It contains thus an equilibrium point, but this equilibrium is a repulsive
one, as ẏ is positive for values of y above it and negative for values below it, as
represented in Figure 12.5. Every configuration of clusters defining an equilib-
rium is thus stable, as it is impossible to find m, p ∈ [xB −1, xA +1] with m < p
and vx(m) ≥ 0 and vx(p) ≤ 0. Similarly, there is no unstable equilibrium for
any function f such that |z| f(z) is decreasing with |z|, as vx(y) is then in-
creasing with y on [xB −1, xA +1]. When such functions are used, the stability
condition does thus not forbid convergence to clusters that are separated by dis-
tances close to 1. Figure 12.6 shows the evolution of opinions according to the
12.2 with f(z) = 1−|z|. All inter-cluster distances are significantly larger than
1. This suggests that equilibrium stability is not the only reason explaining
the distance observed between clusters, and that other dynamical phenomena
are probably involved. The existence of such other phenomena could also be
deduced from the fact that in the usual model, the stability condition explains
why the distance between clusters of same size should be larger than 2, but not
why it is often close to 2.1 or 2.2.

Consider now an influence function taking the values f(z) = |z|
k

for some
k ≥ −1. If k ≥ 0, The importance given to an agent’s opinion grows thus with
the difference of opinion, while it decays if k ≤ 0. If k < −1, every equilibrium
is stable as |z| f(z) is then decreasing. For y ∈ [xB − 1, xA + 1], there holds
vx(y) = wB(y − xB)k − wA(y − xA)k, and vx is thus decreasing with y. So it
takes its smaller value at xB − 1 and its larger one at xA + 1. If both values
have the same sign, the equilibrium is clearly stable as the instability condi-
tion requires two points m, p ∈ [xB − 1, xA + 1] at which vx takes alternative
signs. On the other hand, if the values have different signs, there necessarily
hold vx(xB − 1) ≥ 0 and vx(xA + 1) ≤ 0. The interval [xB − 1, xA + 1] is thus
an invariant set for ẏ = vx(y), so that the equilibrium x is unstable. Simple
algebraic manipulations show then that the equilibrium is stable if and only

if there holds xB − xA ≥ 1 +
(

min{wA,wB}
max{wA,wB}

)
1

k+1

, generalizing Theorem 10.1.

Observe that the strength of the stability condition increases with k.

The stability analysis appears to be similar to the one presented for the



212 CHAPTER 12. EXTENSIONS

0 1 2 3 4 5
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

t

x

Figure 12.5: Representation of the stability of all equilibrium when the influence
function f(z) = 1 − |z| is used. Two clusters of 20 agents are formed at a
distance 1.5 from each other. The presence of isolated agent between them
does not prevent the convergence to these two clusters, as each of these agents
is attracted by one of the clusters, and none remains at equilibrium between
them. This could however have happened with a probability 0 if one of these
agent was exactly at the average of the clusters.

initial model, but the stability criterion varies with the influence functions.
Conditions for stability are for example more restrictive when |z| f(z) increases
strongly for z close to 1, that is, when the attraction of an agent on another
is very strong when they are at the limit of the interaction zone. For such
systems, it is indeed hard for the perturbing agent to escape from one cluster’s
attraction, so that it can easily remain connected to two clusters at equilibrium.
On the other extreme, all equilibrium are stable when |z| f(z) is decreasing.
Experiments with such functions show however distances between consecutive
clusters that are significantly larger than 1 although smaller than with the usual
model, suggesting that equilibrium stability is not the only reason explaining
the inter-cluster distances observed.

12.3.3 Multidimensional opinion stability

Our stability criterion formulated in terms of invariant sets can be applied to
multi-dimensional opinions, but it does not appear to lead to so such conditions
as in one dimension. In addition to the fact that an invariant set’s boundary
is not reduced anymore to two points, one has to take into account possible
interactions with more than two clusters. With two-dimensional opinions for
example, a perturbing agent can be connected to up to five clusters, and the
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Figure 12.6: Evolution of 201 opinions initially equidistantly distributed be-
tween 0 and 20, according the discrete time system (12.1) with f(z) = 1 − |z|.
All observed inter-cluster distances lie between 1.74 and 1.82. So although the
equilibrium condition imposes no lower bound on the inter-cluster distances
when this f is used, the observed distances are significantly larger than 1, even
if they are sometimes closer to 1 than to 2. Note that a small random per-
turbations was added to all initial opinion to avoid nongeneric artifacts that
happen with a probability 0 but can be observed when the system is totally
symmetric.
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Figure 12.7: The two clusters of equal weight in (a) are in an unstable configu-
ration as the intersection of their influence disk is an invariant set. The arrows
represent vx. The configuration (b) obtained from (a) by adding a cluster of
much higher weight is however stable. The contribution of this new cluster to
vx dominates indeed all other contributions, so that every agent in its influence
disk is attracted by it. As a result, there is no more invariant set included in the
influence disks of two or more clusters. The arrows represent the field vx. The
curvature of the third cluster disk of influence is exaggerated for presentation
purpose.

consequent interaction may be nontrivial even with the usual model without
influence function.

Consider for example an equilibrium consisting of two clusters of equal
weight W . Such equilibrium is stable if and only if the distance separating the
clusters is no smaller than 2. In that case indeed, there is no set and a fortiori
invariant set of points at distance smaller than 1 from both cluster. If the
distance is smaller than 2 on the other hand, one can verify that the intersection
of the disc centered on the clusters constitutes such an invariant set, as shown
in Figure 12.7(a). Suppose now that the clusters are separated by a distance
smaller than but close to 2, and that a third cluster is added, equidistant
to them, out of the invariant set, but at a distance smaller than 1 from all
points in it, as represented in Figure 12.7(b). If the weight of this cluster is
sufficiently larger than W , its contribution to the field vx is larger than all
other contributions in its disc of influence, which includes the former invariant
set. As a result, the system ẏ = vx(y) does not contain any invariant set that
cause instability, and any initially non-isolated perturbing agent converges to
one of the three clusters, depending on its initial condition. So the addition
of a large cluster to an unstable equilibrium stabilizes it, a phenomenon that
cannot happen in one dimension.
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12.3.4 Stability quantification

As a final remark, our stability study has so far be binary. An equilibrium is
either stable or unstable. One might however expect that two clusters separated
by a distance close to the stability limit might be “less unstable” than clusters
separated by a distance close to 1. Intuitively, if the distance is small, the zone
in which a perturbing agent can destroy the equilibrium is large, so that the
addition of such an agent at a random position leads to a large variation with
a high probability. On the other hand, if the distance is close to the stability
condition, the probability for a perturbing agent with random initial position to
be in the critical zone is smaller. The convergence to a highly unstable system
thus seems improbable as the probability that some agents are in a zone where
they prevent this convergence is high, while one may expect to see convergence
to slightly unstable equilibria having escaped destruction due to the small size
of their critical zones and a number of agent that is not too large. An example
of such convergence is shown in Figure 10.4(a). A possible formalization of this
stability quantification could be an interesting research opportunity.

12.4 Order preservation

Several proofs in Chapters 10 and 11 use the fact that the order of the opinions
is preserved. Whether this preservation is essential for the result to hold or just
allows a simpler writing still needs to be determined, and might depend on the
results It is in any way consistent with the intuition that agent opinions that
evolve unconstrained in a one-dimensional space according to the same rules
should not cross each other. But, systems with distance depending influence as
(12.1) do not necessarily preserve the opinion order, as shown in Figure 12.8.
We therefore provide in this section necessary and sufficient condition for the
order to be preserved.

Observe first that the continuous-time system (12.2) preserves the opinion
order for any influence function f . Suppose indeed that xi(0) is smaller than
xj(0). If at some time there holds xi(t) < xj(t), there exists by continuity a
time t∗ at which both opinions are equal. Since the evolution of the opinions
only depend on their value (under some uniqueness of solution assumption),
this implies that xi and xj remain then equal for all further time, contradicting
the fact that they cross each other. This continuity-based argument cannot
be applied in discrete time, but we have the following necessary and sufficient
condition for order-preservation.

Theorem 12.1. Let f : ℜ → ℜ+ be a function with connected support. The
iteration (12.1) preserves the order of opinions for any initial condition if and
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Figure 12.8: Evolution with time of 11 opinions initially equidistantly dis-
tributed on [0, 1] and following the model (12.1) with f(xi − xj) = 5 if
|xi − xj | < 1

10 , f(xi − xj) = 1 if 1
10 < |xi − xj | < 1 and 0 else. The order

of opinions is not preserved between t = 0 and t = 1.

only if
f(a + c)

f(a)
≥

f(b + c)

f(b)
(12.4)

holds for all a ≤ b, c ≥ 0 such that f(a), f(b), f(a + c), f(b + c) > 0.

Proof. For the sake of conciseness, we denote x(t) by x and x(t + 1) by x′. We
first prove the necessity of the condition by constructing for any f not satisfy-
ing it an example where the order is not preserved.

Consider a system with 2n+2 agents, where the agents 1 and 2 have opinions
x1 = a and x2 = b respectively, for some b > a. Suppose also that among the
remaining 2n agents, n have an opinion a + b and n others an opinion a + b + c
for some c > 0. We suppose that 1 and 2 are both influenced by all other
agents, that is, f(a), f(b), f(a+c), f(b+c) > 0. If n is sufficiently large, we can
neglect the agents x1 and x2 in the computation of x′

1 and x′
2, which according

to (12.1) are given by

x′
1 ≃ nf(b)(a+b)+nf(b+c)(a+b+c)

nf(b)+nf(b+c) = a + b + c
1+f(b)/f(b+c) ,

x′
2 ≃ nf(a)(a+b)+nf(a+c)(a+b+c)

nf(a)+nf(a+c) = a + b + c
1+f(a)/f(a+c) .

So if f(a)
f(a+c) > f(b)

f(b+c) , then x′
1 > x′

2 although x1 ≤ x2, and the order of opinions

is thus not preserved.
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To prove the sufficiency of the condition, we now consider system of n
agents among which we select two agents a, b such that xb ≥ xa (we may
possibly choose a = b). We suppose that f(xi − xa) > 0 and f(xi − xb) > 0 for
all agents i. Since the system (12.1) is invariant under translation we assume
that all xi are nonnegative, and we relabel the agents in such a way that
x1 ≤ x2 ≤ · · · ≤ xn. The updated values of a and b are

x′
a =

∑n
i=1 f(xi − xa)xi
∑n

i=1 f(xi − xa)
, and x′

b =

∑n
i=1 f(xi − xb)xi
∑n

i=1 f(xi − xb)
.

As a consequence, x′
b ≥ x′

a holds if

(

n
∑

i=1

f(xi − xb)xi

)(

n
∑

i=1

f(xi − xa)

)

≥

(

n
∑

i=1

f(xi − xa)xi

)(

n
∑

i=1

f(xi − xb)

)

holds. This can be rewritten as
`
P

n−1

i=1
f(xi − xb)xi

´ `
P

n−1

i=1
f(xi − xa)

´

+ f(xn − xb)xn

`
P

n−1

i=1
f(xi − xa)

´

+ f(xn − xa)
`
P

n−1

i=1
f(xi − xb)xi

´

+ f(xn − xb)f(xn − xa)xn

≥
`
P

n−1

i=1
f(xi − xa)xi

´ `
P

n−1

i=1
f(xi − xb)

´

+ f(xn − xa)xn

`
P

n−1

i=1
f(xi − xb)

´

+ f(xn − xb)
`
P

n−1

i=1
f(xi − xa)xi

´

+ f(xn − xa)f(xn − xb)xn.

For n = 1 (and thus a = b = 1), this relation reduces to f(0)2x1 ≥ f(0)2x1

and is trivially satisfied. Suppose now that it holds for n− 1, then it also holds
for n provided that

f(xn − xb)xn

(

∑n−1
i=1 f(xi − xa)

)

+f(xn − xa)
(

∑n−1
i=1 f(xi − xb)xi

)

≥ f(xn − xa)xn

(

∑n−1
i=1 f(xi − xb)

)

+f(xn − xb)
(

∑n−1
i=1 f(xi − xa)xi

)

.

(12.5)
holds. Reorganizing the terms of (12.5) and dividing them by f(xn−xa)f(xn−
xb)xn > 0 yields

n−1
∑

i=1

(

f(xi − xa)

f(xn − xa)
−

f(xi − xb)

f(xn − xb)

)

≥

n−1
∑

i=1

xi

xn

(

f(xi − xa)

f(xn − xa)
−

f(xi − xb)

f(xi − xn)

)

.

Since all xi are nonnegative and no greater than xn, it is sufficient for this

relation to hold that f(xi−xa)
f(xn−xa) ≥ f(xi−xb)

f(xn−xb)
holds for all i. Since xa ≤ xb, the

latter is always true if f is such that f(a+c)
f(a) ≥ f(b+c)

f(b) holds for any b ≥ a and

c ≥ 0 for which f(a), f(b), f(a + c), f(b + c) > 0. It suffices indeed to take
a = xi − xb, b = xi − xa and c = xn − xi.

Suppose now that there is some i for which f(xi − xa) > 0 and/or f(xi −
xb) > 0 does not hold. Let Ja be the set of agents i such that f(xi − xa) > 0,



218 CHAPTER 12. EXTENSIONS

a b b+ ca+ c

log f

a b b+ ca+ c

log f

(a) (b)

Figure 12.9: Illustration of the condition of Theorem 12.1. The function whose
logarithm is presented in (a) preserves the order of opinion, as for any a ≤ b
and c ≥ 0, there holds log f(a + c) − log f(a) ≥ log f(b + c) − log f(b). On
the other hand no piecewise constant function taking more than one value
as in (b) preserves the opinion order, as there exists a ≤ b and c ≥ 0 such
that log f(a + c) − log f(a) < log f(b + c) − log f(b) holds. In particular, f =
4χ[− 1

10
, 1
10

] + χ[1,1] used in Figure 12.8 does not preserve the order of opinions.

Jb the corresponding set for xb and I = Ja ∩ Jb. If I = ∅, then any value of Jb

is larger than all values of Ja as the support of f is connected, so that x′
b ≥ x′

a

trivially holds. If I = Ja ∪ Jb, we have seen that the condition (12.4) is for
x′

b ≥ x′
a to hold. Finally, observe that the presence of agents in Jb \ I or in

Ja \ I only increases x′
b or decreases x′

a, so that this condition is still sufficient
for x′

b ≥ x′
a to hold.

A similar proof shows that the same condition is necessary and sufficient
for the order of opinions to be preserved by the following iteration defined on
an agent continuum.

xt+1(α) =

∫

β∈I
xt(β)f (xt(β) − xt(α)) dβ

∫

β∈I
f (xt(β) − xt(α)) dβ

(12.6)

The condition of Theorem 12.1 can be re-expressed in term of log f , as
log f(a + c)− log f(a) ≥ log f(b + c)− log f(b). It thus means that the opinion
order is preserved if and only if the increase in the value of log f by performing
a step of fixed size c is non-increasing. This is represented on two examples in
Figure 12.9, one of them encapsulating the function used in Figure 12.8 where
we have seen that the opinion order was not preserved.

We now show that under some very weak and natural smoothness assump-
tions, the condition of Theorem 12.1 is equivalent to the concavity of log f .
This equivalence can easily be obtained if we assume that log f is differentiable
but, this would be a strong restriction, as some of the functions that we have
considered are not continuous on their support. It would for example not allow
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us to treat the functions used in Figures 12.8 and 12.2(c). Note that in the
sequel we always implicitly assume that the points at which log f is evaluated
belong to the support of f .

Proposition 12.1. If log f is concave, then it satisfies the condition (12.4) that
f(a+c)

f(a) ≥ f(b+c)
f(b) holds for all a ≤ b, c ≥ 0 such that f(a), f(b), f(a+c), f(b+c) >

0.
If the condition (12.4) is satisfied and if log f is continuous, then it is concave.

Proof. Suppose first that log f is concave. Then for b > a and c > 0, there hold

log f(a + c) ≥ b−a
b−a+c log f(a) + c

b−a+c log f(b + c),

log f(b) ≥ c
b−a+c log f(a) + b−a

b−a+c log f(b + c).

This implies that log f(a+c)− log f(a) ≥ log f(b+c)− log f(b) holds, or equiv-

alently that f(a+c)
f(a) ≥ f(b+c)

f(b) .

To prove the second part of this result, consider now an arbitrary function f
and let then x < y < z be arbitrary points of its support such that (y−x)/(z−x)
is rational. There exists two integers m,n such that

z − y

n
=

y − x

m
=: c > 0.

If f satisfies condition (12.4), then

log f(a + c) − log f(a) ≥ log f(b + c) − log f(b).

holds for any a < b in its support of f . So we have

log f(y) − log f(x) =
∑m

j=1 (log f (x + jc) − log f (x + (j − 1)c))

≥ m (log f (y + c) − log f (y)) ,

and

log f(z) − log f(y) =
∑n

j=1 (log f (y + jc) − log f (y + (j − 1)c))

≤ n (log f (y + c) − log f (y)) ,

which implies that

log f(y) ≥
n

n + m
log f(x) +

m

n + m
log f(z) =

z − y

z − x
log f(x) +

z − y

z − x
log f(z).

(12.7)
Since this holds for any x, y, z for which (y−x)/(z−x) is rational, the concavity
of log f follows from its continuity.
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log f(x0) + (x x0) (xM )

log f

(x0, log f(x0))

(yn, log f(yn))

I

(xM = y1, log f(xM ))

(y2, log f(y2))
M

Figure 12.10: Illustration of the construction in the proof of Proposition 12.2.
All log f(yi) must be below log f(x0) + (yi − x0)∆(xM ).

Functions that preserve the order of opinion but are not continuous have
not been proved yet not to exist, but the next proposition shows that they
would have so special properties that one should not expect to meet them in
any practical situation.

Proposition 12.2. Let f be a function satisfying the condition (12.4) that
f(a+c)

f(a) ≥ f(b+c)
f(b) holds for all a ≤ b, c ≥ 0 such that f(a), f(b), f(a+c), f(b+c) >

0. If f not continuous on its support’s interior, then it admits a positive lower
bound on no positive length interval, and is as a consequence discontinuous
everywhere on its support.

Proof. Let Sf be the support of f , and suppose that f is not continuous at
some x0 in the interior of Sf . We prove that this implies the unboundedness
of log f on all positive length intervals in Sf . In particular, log f is unbounded
on [x − ǫ, x + ǫ] ∩ Sf for any ǫ > 0 and x ∈ Sf , and therefore continuous at no
point of Sf . This implies that f is also continuous nowhere on Sf , and admits
a positive lower bound on no positive length interval.

Let ∆(x) = log f(x)−log f(x0)
x−x0

. The discontinuity of log f at x0 implies that
∆(x) is unbounded on any open interval containing x0. We suppose that it takes
arbitrary large positive values any such interval. If it is not the case, then it
necessarily takes arbitrary large negative values, and a similar argument can be
applied. Consider an arbitrary large M and a interval I ⊂ Sf of positive length
|I| with sup I < x0. The following construction is illustrated in Figure 12.10.

There is a xM ∈ (x0 − |I| , x0 + |I|) such that
∣

∣

∣

M+log f(x0)
sup I−x0

∣

∣

∣
< ∆(xM ). Consider

now the sequence of points defined by y0 = x0 and yi = yi−1 − |xM − x0|.
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Since all yi are smaller than or equal to x0, it follows from condition (12.4)

that f(yi−1)
f(yi)

≥ f(xM )
f(x0)

holds if xM > x0 and f(yi−1)
f(yi)

≥ f(x0)
f(xM ) holds if xM < x0.

In both cases, this implies that log f(yi−1)− log f(yi) ≥ |log f(xM ) − log f(x0)|
and thus that

log f(yi) ≤ log f(x0) − i |log f(xM ) − log f(x0)| = log f(x0) − (x0 − yi)∆(xM ).

Since |xM − x0| < |I|, there is a n such that yn ∈ I. For this yn, there holds

x0 − yn ≥ |x0 − sup I| ≥ M+log f(x0)
∆(xM ) . It follows then from the inequality above

that

log f(yn) ≤ log f(x0)−(x0−yn)∆(xM ) ≤ log f(x0)−|x0 − sup I|∆(xM ) < −M.

Therefore, log f takes arbitrary large negative values on any positive length
interval I with sup I < x0.

Consider now a x1 < x0. For any δ, log f takes arbitrary large negative

values on [x1, x1+δ], and therefore so does ∆1(x) := log f(x)−log f(x1)
x−x1

. It follows
then from a similar argument as above that log f admits no lower bound on any
positive length interval I with inf I > x1, and thus that it does not admit any
lower bound on any positive length interval contained in Sf since every such
interval contains at least a subinterval I with inf I > x1 or with sup I < x0.

Based on Propositions 12.1 and 12.1, we now have the following theorem,
showing the almost equivalence between preservation of the opinion order and
log-concavity.

Theorem 12.2. Let f : ℜ → ℜ+ be a function with connected support. If log f
is concave, then the iteration (12.1) preserves the order of opinions for any
initial condition. Conversely, if this iteration preserves the order of opinions
for any initial condition admits a positive lower bound on at least one positive-
length interval or is continuous at one point of its support, then log f is concave

From a purely theoretical point of view, one can still wonder if the con-
cavity of log f is in general necessary and sufficient for the order of opinions
to be preserved, or if there exists a function for which the order of opinions is
preserved but that is discontinuous at every point and admits a positive lower
bound on no positive-length interval. In view of Theorem 12.1, this leads to
the following open question.

Open question 14. Does there exists a function f : ℜ → ℜ+ with a connected
support, that admits a positive lower bound on no positive-length interval but

for which f(a+c)
f(a) ≥ f(b+c)

f(b) holds for all a ≤ b, c ≥ 0 such that f(a), f(b), f(a +

c), f(b + c) > 0.
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Finally, whereas log-concavity of is well defined in any dimension, the usual
notion of order only makes sense in one-dimensional spaces. Log-concave in-
fluence functions might however have a more generic property in which would
imply order-preservation for one-dimensional spaces.



Chapter 13

Conclusions

13.1 On our analysis of opinion models

We have analyzed two models of opinion dynamics with endogenously chang-
ing topologies, one defined in continuous time and the other in discrete time.
Our motivation was to study very simple systems with endogenously chang-
ing topologies taking explicitly into account the topology dynamics, which is
usually not done for such systems. We particulary focused on understanding
a phenomenon appearing in those systems that cannot be explained without
taking the topology dynamics into account: The distance between clusters at
equilibrium are usually significantly larger than 1, and typically close to 2.
Strangely, this phenomenon appears in different models, such as the one of
Deffuant. There could thus be a general reason for this, depending on some
assumptions satisfied by all these opinion dynamics models. Our analysis is
however limited to Krause’s model and its continuous-time counterpart, and
cannot be directly generalized to Deffuant’s model.

We have proposed an explanation of the observed distances between clusters
based on a notion of stability with respect to the addition of a perturbing agent.
We have shown that stability is equivalent to the presence of a lower bound
on the inter-cluster distances, which equals 2 when the clusters have identical
weights. We conjecture that when the number of agents is sufficiently large, the
system almost surely converges to a stable equilibrium. The intuition behind
this conjecture is that when the number of agents is large, if two clusters are
converging to an unstable configuration there is almost surely an agent in the
region where it prevents convergence to the unstable equilibrium. Moreover,
this conjecture and the intuition behind are experimentally confirmed.

It appears however that the stability of the equilibria cannot be the only

223
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reason for the observed distances between clusters. First, the value of the lower
bound equals its maximum 2 only when consecutive clusters have the same
weight. Experiments show that the clusters tend to have the same weight when
the initial distribution is uniform, but this has not been proved nor theoretically
analyzed. More importantly, the distances observed between the clusters are
close to 2.2, while the stability can only explain why it should be larger than
2. When considering extensions of the models in Section 12.3.2, we have seen a
system for which every equilibrium is stable, independently of the inter-cluster
distance. For this model, the distances experimentally observed were between
1.35 and 2.35. Finally, the destruction of meta-stable situation where clusters
are too close to each other is not always observed in practice, as the system
often converges directly to a stable equilibrium. It thus seems that the system
dynamics first rapidly drives almost all opinions to clusters, many of which are
already separated by at least 2. Then some agents that are not yet in the clus-
ters that have formed make some clusters merge when these are in an unstable
configuration. Our stability analysis explains this second part. Nevertheless, it
leads to the only nontrivial lower bound on the inter-cluster distances that has
been provided till now.

To avoid granularity problems linked with the presence or absence of an
agent in a particular region, we have introduced new opinion dynamics models
allowing for a continuum of agents. For such models we could prove that, under
some continuity assumptions, there is always a finite density of agents between
any two clusters during the convergence process. As a result, we could prove
that these systems never converge to an unstable equilibrium. For the discrete-
time system, we have also proved that the behavior of the system defined on
a continuum on any finite time-interval is indeed the limiting behavior of the
system for discrete agents when n → ∞. These two results support our conjec-
ture that the discrete system tends to converge to a stable equilibrium when
n → ∞. In continuous time, we were unfortunately not able to obtain such a
result comparing systems defined for discrete agents and continuum of agents.
Besides, the continuity assumptions preventing the system to converge to an
unstable equilibrium are stronger in continuous-time than in discrete-time.

The introduction of the system on agent continuum brings several interest-
ing open questions and problems. The most important of them is probably the
convergence of the system, for which we have only obtained partial results. We
were indeed only able to prove that the variation speed of the system decays to
0, and that so does its distance to the set of fixed points. Moreover, we did not
treat the issue of existence and uniqueness of a solution to the equation defining
the continuous-time system for an agent continuum. A main difficulty for those
system is precisely this absence of granularity, which was helpful to treat stabil-
ity issues. Sets of agents converging to different opinions may indeed never be
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totally disconnected due to the (possible) continuity of the opinion distribution.

These systems on agent continuum led us to a broader question. The con-
vergence of the discrete-time system on discrete agents can for example also be
obtained from results on convergence of inhomogeneous stochastic product, i.e.,
convergence of limt→∞ AtAt−1 . . . A1 where all matrices are stochastic. To the
best of our knowledge, no such result has been established for inhomogeneous
compositions of stochastic operators, a particular case of which would be the
convergence of our discrete-time system for agent continuum.

Finally, our analysis in this thesis was restricted to systems behaving au-
tonomously, in the absence of control actions. Due to their simplicity, it could
however be interesting to study control issues on these paradigm systems. One
could for example study the cost of obtaining or preventing consensus by mod-
ifying some connections between agents. Another possibility would be to influ-
ence the via a small set of “controllable” agents, the opinion evolution of which
would be described by

ẋi(t) = ui(t)
∑

j:|xi(t)−xj(t)|<1

(xj(t) − xi(t)) +,

where ui(t) is a control input.

13.2 On the mathematical multi-agent and

consensus issues

Consensus systems are nice mathematical objects that are interesting and chal-
lenging to study. Their understanding is still very limited today. The models
that we have considered in this thesis are among the simplest non trivial ones,
and their analysis is far from being complete. Predicting theoretically the num-
ber of clusters and their positions based on the initial distribution remains for
example generally open. Similarly, nothing is known on the convergence speed,
or on the robustness of the system evolution with respect to modification of
the initial conditions.

My personal belief is that we currently lack appropriate mathematical tools
and formalism to efficiently analyze them. One possible way to obtain such
tools could be to develop an approach based on a continuum of agents approx-
imating a discrete distribution, similarly as what is done in Sections 10.2 and
11.2. This step could be similar to the one made between Newton’s point-mass
mechanics and the tools of fluid and solid-mechanics. In such a framework, our
way of indexing the agents with a continuous variable would correspond to a
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Lagrangian approach, while the formulations based on agent densities would
be an Eulerian one. In a Lagrangian approach, the independent variable is
indeed the particle, while in an Eulerian approach it is the position in space. It
might also be that these multi-agent systems will be an opportunity to develop
a formalism with which one can efficiently analyze large but finite number of
discrete elements, a problem that is notoriously difficult in mathematics.

A more pessimistic, or more realistic, perspective is that these systems
present so many different and complex behaviors, that they perhaps cannot
be analyzed in a significantly nontrivial way with a general method. It would
not be so surprising if some systems similar to Krause’s model were Turing-
equivalent. The latter model is however not Turing equivalent as it always
converge to an equilibrium in finite time. Proving such equivalence, or the NP-
hardness of questions related to the consensus and multi-agent models could be
another promising, even though less application oriented, research direction.

13.3 On practical applications

The research in the domain of multi-agent systems can be separated in two
parts, the analysis of multi-agent models, and the design of multi-agent sys-
tems or decentralized controllers.

Many of the multi-agent and consensus seeking models attempt to represent
animal or human behaviors. One should obviously not consider that they have
the same accuracy as those describing better understood physical phenomena,
even if the rules proposed can be approximately observed under “laboratory
conditions” [94]. These models can however provide some insight on the repre-
sented behavior, as for example the flocking models and their further general-
ization. Moreover, for large number of agents, some simple models can provide
relatively efficient approximations of an average behavior, which in the absence
of anything else can be very useful. Some simple discrete opinion models are
for example used in marketing to understand the behavior of customers.

The design of systems reaching consensus, and more generally of decentral-
ized controllers, is motivated by important perspectives of applications. The
idea of accomplishing a task without having an identifiable entity that is “in
charge” is moreover an attractive one. This idea actually only corresponds
to the highest level of decentralization. Less decentralized system can involve
for example a central controller using several sensors that are already pre-
processing the information they send.

Decentralized techniques are already used or available for immediate use in
applications such as automatic calibration and clock synchronization of net-
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worked sensors. Communication and peer-to-peer networks are also managed
in a decentralized way, with different “players” negotiating to share the com-
munication load.

We believe however that many of the methods developed now are not ready
for practical application, and seem sometimes to concern “ideal laboratory con-
ditions” not necessarily based on realistic practical constraints. Besides, the
advantage of performing particular tasks with the presently available in a de-
centralized way as opposed to a centralized way is in our opinion not enough
measured. To exemplify this, we now use three classical decentralized problems
to raise different issues that we believe should more often be considered. They
concern the initial conditions, the final use of the value computed, and the
computational and communication capabilities of the agents.

When analyzing the rendezvous problem, one usually takes as initial condi-
tion a group of agents lying in the plane. Based on their capabilities and lim-
itations, an algorithm is then designed to have all agents gather at one point.
Some constraints appearing in possible practical applications may however ren-
der this approach less relevant. In real life, agents do not appear ex-nihilo in
the plane with the purpose of gathering at one point. One should thus con-
sider how the agents were evolving before beginning the rendezvous process,
and how they were told to start it. If some entity has to tell the agents to
start the process, it could as well specify a target point. Supposing that these
agents were initially evolving on their own, they should most likely indeed have
a navigation system allowing them to go to a specified position. Moreover, if
the agents have to gather after accomplishing a mission, it is not unreasonable
to suppose that the meeting point should not be any point produced by an
algorithm, but some specified point at which it is relevant to gather all agents.

One could however of course imagine situations where those algorithms
make sense as such. Consider for example agents that are required to ex-
plore some region or to accomplish a certain task on their own, and that only
have a local navigation system unable to treat global coordinates. At some
pre-specified time, or after receiving a message from some leading agents, they
would then start to apply a rendezvous process. But we are not presently aware
of any application were those conditions are met. Moreover, if such an applica-
tion exists, one could then also consider taking the future rendezvous process
into account in the first phase, making sure that the visibility graph remains
connected, and that the agents do not go into configurations where the ren-
dezvous process will be very slow. Finally, we could also imagine permanently
applying a rendezvous method during a formation displacement. Suppose for
example that all agents have a specified remote place where they should go and
a global coordinated system, but that this system is relatively inaccurate1. We
could then superpose a rendezvous process to the vehicle move to their remote

1This assumption a priori excludes vehicles moving in open air and using a GPS device.
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target, to maintain the cohesion of the group during the displacement. This
would probably lead to several practical issue needing to be solved.

To analyze the final use of the results, consider now a sensor network where
the average of the sensed values need to be computed as described in Section 9.1.
Since it is computed, we can suppose that this average value is either recorded
or used to take some control actions. Unless each sensor is also a decentralized
controller that takes actions based on the average value, this average value needs
thus to be eventually communicated to some external device(s), which we may
assume to have basic computational capabilities. One may then wonder what
would be the purpose of involving all agents in an iterative decentralized average
computation, while it could be done directly by those more evolved external
units. From a practical point of view, the sensors should just broadcast their
sensed values to these units, possibly together with some identification numbers.

Usual arguments in favor of such decentralized computations are the repar-
tition of the computational load, and the improved system robustness. Suppose
now for example that there are 1000 sensors, and that 100-dimensional vectors
are sensed. The external unit needs to perform about 100.000 operations and
store at most one Megabyte, which is much less than what a usual cell-phone
or MP3-player can do. Moreover, it is likely that the time needed for the whole
transmission and computation process would be smaller than the time needed
by a normal consensus algorithm to converge. Study of efficient low-energy
transmissions in large scale networks are for example available in [83,107]. Be-
sides, suppose that the computation is done in a decentralized way, and that
the communications topology is fixed and known by the external unit, which
we suppose again to have some basic computational capabilities. After n obser-
vations, it is often possible for the latter to compute the exact average or even
each sensor’s initial value by solving a system of linear equations. Considering
now the robustness argument, it is true that a decentralized average computa-
tion can still be performed when some agents are missing, while the centralized
computation cannot if the entity performing the computation is not function-
ing. But again, the external controlling or recording unit are those using the
computed value. So if they are not functioning, there seems to be little sense in
still computing the average in the network. In other words, although the robust-
ness of the computation is improved by the use of decentralized computations,
the improvement of the total robustness is in many case more questionable.

There may however be situations involving totally decentralized sensors
and controllers in which such decentralized computation is the best option for
robustness and load balance purpose. For these, there should be objective mea-
sure of robustness and efficiency showing that the performances are better than
with a global controller. As as semi-fictional example, think for example to a
swarm of nano-robots, some of them having sensors which might be not really
accurate, and who all need to know some global value. Since their number and
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position may vary with time, and since communication with devices different
from nano-robots may be costly, it could be relevant to perform some compu-
tations in a totally decentralized way. The decentralized average computation
can also be relevant if the sensed value needs to be used by many other agents
moving among the sensors, or by one agent whose presence time is small as
compared to the time needed for all agents to communicate their information.
As an example of the first situation, think for example to the satellite of the
GPS system who have to agree on a common time and to broadcast it to the
GPS devices.

Besides, when the information is used by an external unit, an intermediate
an maybe more efficient way for the sensors to transmit the values and compute
their average could be to pre-compute some averages during the transmission
process. When a sensor receives values from different other sensors, it com-
putes and broadcasts the averages of these values to some next agent, eventu-
ally reaching the external unit. This process would present some similarities
with the work of Delvenne et al. [36] on finite time consensus.

Our last point concerns the assumptions on agent capabilities. In many of
the designed algorithms the agents store one value that they update by com-
municating with one or several other agents. Much more efficient algorithms
could however be designed if the agents were able to keep more values in mem-
ory, such as previous time values, identifying number of some agents, values of
some neighbors, etc. The efficiency could also be improved by allowing more
elaborate mathematical operations and communication of more values.

If the values are digitally stored numbers that the agent update after re-
ceiving messages from other agents, the tacit assumption that only one number
can be stored does not appear to be realistic. It is indeed notorious that com-
munication of information, whether wired or wireless, requires non negligible
computational capabilities. There is thus no appearing reason for which the
agent could not have some additional memory registers. Moreover, the cost of
a communication is much higher than the cost involved by a mathematical op-
eration. It could be much more efficient to dedicate a small additional amount
memory and computational capabilities to the agent if it allows dramatic re-
duction in the number of communications.

The single-value assumption makes however much sense if the value and its
storage are materialized by the position of the agent. But an efficient algorithm
designed for practical applications should then also take into account some in-
herent constraints. Position modifications are for example not instantaneous,
and they may take an amount of time and energy proportional to their ampli-
tude. Collisions also need to be avoided. Finally, when algorithms for moving
agents use a fixed communication topology, agents should be able to identify
each other and to communicate even in the possible presence of obstacles. This
might pose problems, especially if the communication take for the form of dis-
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tance measurements. Moreover, the communication topology would also need
to be pre-specified.

To summarize the discussion above, I believe that both multi-agent models
and algorithms lead to rich and interesting mathematical problems, from the
study of which much can be learned. They also open huge perspectives of
applications for the future, but many of those are not ready for immediate
use. This implies by no mean that research should not be done on multi-
agent systems. On the contrary, the potential future applications and the
mathematical interest make them very relevant to study. But I believe that the
research in this domain should thus be focussed on better understanding the
behavior of those systems, and on building tools that could potentially be used
in the future. In this approach, exploratory studies bringing new insight on
some phenomena, and theoretical results on the behavior of classes of systems
or on the conditions under which a method provides the desired outcome may be
relevant, even when they cannot be immediately applied to practical situations.
Whenever possible, such results should characterize classes of systems as large
as possible, and rely on as few hypotheses as possible. In other words, when
no direct application is in view, new studies should not be dedicated to some
particular case of system but be as general as possible, unless the particular
case in question brings some new insight or present some unexplained features,
susceptible to open new perspectives. Particular practical applications would
of course be very relevant, provided that they are realistic applications solving
a problem that could not be solved as efficiently otherwise.
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Appendix A

Definitions related to Part I

Rigidity and Persistence of graph representations

A graph representation is a function p : V → ℜD : i → pi. The position of
a vertex i is its value by p. The distance between two representations is defined
by d(p, q) = maxi∈V ||pi − qi||.

A distance set associated to a graph is a set of desired distances dij = dji for
each edge (i, j) of the graph.

A distance set is realization of a distance associated to a graph is a rep-
resentation p of this graph such that ||pi − pj || = dij holds for each edge (i, j).
A distance set is realizable if it admits a realization. Moreover, each graph
representation induces a distance set of which it is a realization.

A Euclidean transformation is a bijection E : ℜD → ℜD : x → E(x)
such that ||x − y|| = ||E(x) − E(y)|| holds for any x, y ∈ ℜD. It is a combina-
tion of rotations, translations and reflections.

Two representations are congruent if one is the image of the other by a Eu-
clidean transformation.

A representation is an equilibrium representation for a distance set {dij}
associated to a graph if there is no vertex i and point p∗ ∈ ℜD such that the
following strict inclusion holds

{(i, j) ∈ E : ||pi − pj || = dij} ⊂ {(i, j) ∈ E : ||p∗ − pj || = dij}.

In other word, it is impossible to increase the set of satisfied constraints cor-
responding to edges leaving an agent by modifying the position of this vertex,
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all other positions remaining fixed.

A representation p of a graph G is constraint consistent if there is
a neighborhood of p in which every representation p′ at equilibrium for the
distance set induced by p and G is a realization of the same distance set.

A representation p of a graph G is rigid if there is a neighborhood of
p in which all realizations p′ of the distance set induced by p are congruent to
p.

A representation p of a graph G is persistent if there is a neighbor-
hood of p in which every representation p′ at equilibrium for the distance set
induced by p and G is congruent to p. A representation is persistent if and only
if it is rigid and constraint consistent.

Infinitesimal notions

An infinitesimal displacement δpi of a vertex is a vector or ℜD for which
the approximation δpT

i δpi = 0 is made. An infinitesimal displacement of a
graph or of a representation is a vector δp ∈ ℜDn obtained by juxtaposing the
infinitesimal displacements of all vertices: δpT =

(

δpT
1 , . . . , δpT

n

)

.

A partial infinitesimal displacement is a subset of vertices Vc ⊆ V to-
gether with an infinitesimal displacement δpi for each i ∈ Vc. We denote it by
δpVc

. For a partial displacement δpVc
, any displacement δp whose restriction

to Vc is δpVc
is called a completion of δpVc

.

The rigidity matrix RG,p ∈ ℜ|E|×Dn associated to G and p is obtained by
associating one line to each edge, and D columns to each edge. . Vertices of
the graphs correspond to D columns of the matrix, and each line of the latter
corresponds to an edge (i, j) in G and is equal to

(

. . . 0 (pi − pj)
T 0 . . . 0 (pj − pi)

T 0 . . .
)

,

the non-zero column being the (i−1)D+1st to the iDth and the (j−1)D+1st

to the jDth. Multiplying δp by the line corresponding to the edge (i, j) gives

(pi − pj)
T

(δpi − δpj).

An infinitesimal displacement δp is admissible for a representation p of a
graph G if δp ∈ KerRG,p, that is, if RG,pδp = 0.

An infinitesimal displacement δp is Euclidean if it is a combination of in-
finitesimal translations and rotations. More formally, an infinitesimal displace-
ment δp is Euclidean if there exists a time-continuous length-preserving trans-
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formation E : ℜD × ℜ+ → ℜD : (x, t) → E(x, t) such that δpi = K dE(x,t)
dt |pi,0

holds with the same K for all i ∈ V . We denote by Eup the set of Euclidean
infinitesimal displacements for a representation p. If the number of vertices is
larger than D, Eup has generically a dimension fD = 1

2D(D + 1). For every
representation p of any graph G, there holds Eup ⊆ RG,p.

An equilibrium infinitesimal displacement δp is an infinitesimal displace-
ment such that for each i, δpi satisfies a maximal set of equations of











(pi − pj1)
T

(pi − pj2)
T

...
(pi − pj

d
+
i

)T











δpi =











(pi − pj1)
T δpj1

(pi − pj2)
T δpj2

...
(pi − pj

d
+
i

)T δpj
d
+
i











,

considering p and all δpjk
as fixed, where j1, . . . , jd+

i
are the neighbors of i. Note

that each equation of this system is equivalent to (pi − pjk
)
T

(δpi − δpjk
) = 0.

We denote by EquilG,p the set of all equilibrium infinitesimal displacements
associated to a representation p of a graph G. For every representation p of
any graph G, there holds KerRG,p ⊆ EquilG,p.

A representation p of a graph G is infinitesimally constraint con-
sistent if all its equilibrium infinitesimal displacements are admissible, i.e., if
EquilG,p ⊆ KerRG,p.

A representation p of a graph G is infinitesimally rigid if all its ad-
missible infinitesimal displacements are Euclidean, i.e., if KerRG,p ⊆ Eup.

A representation p of a graph G is infinitesimally persistent if all its
equilibrium infinitesimal displacements are Euclidean, i.e., if EquilG,p ⊆ Eup.
A representation is infinitesimally persistent if and only if it is infinitesimally
rigid and infinitesimally constraint consistent.

A representation p of a graph G is structurally persistent (respectively
constraint consistent) if it is persistent (respectively constraint consistent)
and if every partial equilibrium can be completed to obtain an equilibrium
displacement, that is an displacement for which every vertex is at equilibrium.

Generic notions

Let P be a property defined for graph representations. A graph is generically
P if the set of its representations not having the property P has zero measure.
A graph is generically not P if the set of its representations having the prop-
erty P has zero measure. The property is a generic property if every graph
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is either generically P or generically not P .
For the sake of conciseness, we omit the word “generically” in the sequel, unless
when the context could allow ambiguities.

For a representation p of a graph G, we say that a set of edges is independent if
the corresponding lines in RG,p are linearly independent. It can be proved [6,7]
that the independence of edges is a generic notion. We call generic repre-
sentations those representations for which every generically independent set
of edges is independent.

A representation p of a directed graph G is non-degenerate if for any i and any
subset {j1, j2, . . . , jn′

i
} of at most D of the vertices to which it is connected by

directed edges, the collection of vectors
{

(pj1 − pi), (pj2 − pi), . . . , (pjn′
i
− pi)

}

spans a n′
i-dimensional space.

Rigidity and persistence of graphs

A graph is (generically) rigid if almost all its representations are rigid, or
equivalently if almost all its representations are infinitesimally rigid.

A graph is (generically) constraint consistent if almost all its representa-
tions are constraint consistent, or equivalently if almost all its representations
are infinitesimally constraint consistent.

A graph is (generically) persistent if almost all its representations are per-
sistent, or equivalently if almost all its representations are infinitesimally per-
sistent.

Minimal rigidity and persistence

A graph is minimally rigid if it is rigid and if the removal of any one or several
of its edges leads to a loss of rigidity. Containing a minimally rigid subgraph
on all its vertices is necessary and sufficient for a graph to be rigid.

A graph is minimally persistent if it is persistent and if the removal of
any one or several of its edges leads to a loss of persistence. Every persistent
graph contains a minimally persistent graph on all its vertices, but containing
such a subgraph is not sufficient for persistence.

When a graph has more than D vertices, it is minimally rigid (respectively
persistent) if and only if it is rigid (respectively persistent) and contains ex-
actly nD − 1

2D(D + 1) edges.
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Subgraphs

A closed subgraph G′(V ′, E′) of a graph G(V,E) is a subgraph for which
d+

i,G′ = d+
i,G holds for all i. Every edge leaving a vertex of G′ arrives thus in G′

and belongs to E′.

A min D-subgraph G′(V ′, E′) of a graph G(V,E) is a subgraph for which

d+
i,G′ ≥ min

(

D, d+
i,G

)

holds for all i. A vertex of a minD-subgraph may thus

be left by an edge of E \ E′ if it is left by at least D edges of E′.

A strict min D-subgraph G′(V ′, E′) of a graph G(V,E) is a subgraph for

which d+
i,G′ = min

(

D, d+
i,G

)

holds for all i. A vertex of a strict minD-subgraph

is thus left by exactly D edges of E′ if its out-degree is larger than or equal to
D. If its out-degree is smaller than D, all its outgoing edges belong to E′.

A subgraph of G(V,E) on all its vertices is a subgraph G′(V,E′) of G
sharing the same vertex set.

Miscellaneous

The number of degrees of freedom (in ℜD) of a vertex in a directed graph
is the generic dimension of the set of its possible equilibrium displacement
(in ℜD), considering the displacements of the other agents as fixed. It equals
D−min

(

D, d+
i

)

. The sum over all vertices in a persistent graph of their num-
ber of degrees of freedom is at most fD = 1

2D(D + 1).

A double edge in a directed graph is a cycle of length 2. There is a dou-
ble edge between i and j if (i, j) ∈ E and (j, i) ∈ E.


