
JSR: a Toolbox to Compute the Joint Spectral Radius

Guillaume
Vankeerberghen

∗

ICTEAM, Université catholique
de Louvain

4, Av. G. Lemaître
1348 Louvain-la-Neuve,

Belgium
guillaume.vankeerberghen

@uclouvain.be

Julien M. Hendrickx
ICTEAM, Université catholique

de Louvain
4, Av. G. Lemaître

1348 Louvain-la-Neuve,
Belgium

julien.hendrickx
@uclouvain.be

Raphaël M. Jungers
†

ICTEAM, Université catholique
de Louvain

4, Av. G. Lemaître
1348 Louvain-la-Neuve,

Belgium
raphael.jungers
@uclouvain.be

ABSTRACT
We present a toolbox for computing the Joint Spectral Radius of a
set of matrices, i.e., the maximal asymptotic growth rate of prod-
ucts of matrices taken in that set. The Joint Spectral Radius has
a wide range of applications, including switched and hybrid sys-
tems, combinatorial words theory, or the study of wavelets. How-
ever, it is notoriously difficult to compute or approximate; it is actu-
ally uncomputable, and its approximation is NP-hard. The toolbox
compiles several recent computation and approximation methods,
and also contains an automatic blackbox method for inexperienced
users, selecting the most appropriate methods based on an auto-
matic study of the matrix set provided. The tool is implemented
in Matlab and is freely downloadable (with documentation and de-
mos) from Matlab Central1.

Categories and Subject Descriptors
G.1.0.f [Mathematics of Computing]: Numerical Analysis—Gen-
eral - Numerical algorithms; G.4.a [Mathematics of Computing]:
Mathematical Software—Algorithm design and analysis; F.2.1 [Theory
of Computation]: Analysis of Algorithms and Problem Complex-
ity—Numerical algorithms and problems

Keywords
Matlab; Joint Spectral Radius; Switched Systems; Stability

∗G. V. is a F.R.I.A. Fellow
†R. M. J. is a F.R.S.-FNRS Research Associate
1http://www.mathworks.com/matlabcentral/
fileexchange/33202-the-jsr-toolbox. Some of the
methods also require SeDuMi, http://coral.ie.lehigh.
edu/~newsedumi/ [31].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HSCC’14, April 15–17, 2014, Berlin, Germany.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2732-9/14/04 ...$15.00.
http://dx.doi.org/10.1145/2562059.2562124 .

1. INTRODUCTION
The Joint Spectral Radius (JSR) of a finite set of matrices M is

defined by

ρ(M) = lim
k→∞

max{‖Ad1 · · ·Adk‖
1/k : Adi ∈M }. (1)

It thus represents the largest asymptotic growth rate of all possible
products of matrices in M . Note that it can more generally be
defined for compact (or even larger) sets M , but we will restrict
our attention to finite sets here. See [18] for a recent monograph on
the topic. The JSR was introduced by Rota and Strang in 1960 [30],
and has since then been the object of extensive research, partly due
to its surprisingly diverse spectrum of applications.

Maybe the most natural application concerns the stability of switched
linear dynamical systems. In these systems, the state x(t) evolves
as x(t + 1) = Atx(t), where At can be any matrix in a given set
M . Such systems can be unstable for certain sequences of matri-
ces even when every individual matrix in M is stable.

The evolution of the state depends of course on the particular se-
quence of matrices selected, but it can be easily seen that all possi-
ble trajectories converge to 0 if ρ(M)< 1. On the other hand, one
can prove that if ρ(M)≥ 1, then there exists a sequence of matri-
ces A0,A1,A2, . . . and an initial condition x(0) for which x(t) does
not converge to 0. Similarly, if ρ(M) > 1 there exists a sequence
of matrices and an initial condition such that ||x(t)|| diverges [18,
Corollary 1.1].

Switched systems are present in an increasing number of con-
texts, including systems relying on complex communication net-
works subject to failures and unreliabilities, which can temporarily
modify the system behavior [12, 19]. They can also be used to
derive bounds for more general hybrid systems. In various natural
contexts, the behaviour of the system can be modeled in the fol-
lowing way x(t +1) = Aσ(x;t)x(t); where σ(.; .) takes its values in
a set indexing some set of matrices M , and may depend on x, the
history of x, and on time. This is for example typically the case
when analyzing multi-agent systems where the ability of agents to
communicate depends on their position (see for example [5, 33]
and references therein). Analyzing the behavior of these systems is
often extremely challenging due to their nonlinear and sometimes
discontinuous behavior. However, the JSR ρ(M) provides an up-
per bound on their convergence or divergence rate.

The JSR also has very different applications in engineering and
computer science. For instance, it characterizes the smoothness
properties of certain wavelet functions, among which the celebrated
Daubechies’ finitely supported wavelets [11]. Recently, the value

of the JSR also proved useful in combinatorics on words. Overlap-
free words are words on a finite alphabet satifsying certain com-
binatorial properties, and an important question in their study is
to characterize the rate at which the number of words of length n
grows with n. It has been shown that this number could be obtained
by taking the largest of all possible products (of a certain length re-
lated to n) of two matrices. By computing bounds on the JSR of
these two matrices, a new approximation of the growth rate of the
number of overlap-free words was obtained, outperforming previ-
ous bounds that were obtained by ad hoc methods [21]. Similar
results were obtained for α-power-free words [4]. The JSR also
plays a key role in the trackability of malicious agents in sensor
networks [10], or the computation of the capacity of codes subject
to particular constraints [24].

Unfortunately, the JSR of a set of matrices is very hard to com-
pute or even to approximate. More specifically, the question of
determining whether ρ(M) ≤ 1 is undecidable, even if M only
consists of two matrices [9]. In addition, it is also NP-hard to
approximate, even if M consists of two matrices whose nonzero
entries are all equal to one [32]. Meaning that there is no single
algorithm that will work well on all cases.

Nevertheless, several approximation methods have been proposed
over the years (see Section 2), and it appears that the JSR can be
computed to a satisfactory level of accuracy at an acceptable cost
in many applications.

However, even if more than a dozen approximation methods are
available in the literature, very little work has been done on com-
paring their accuracy and efficacy on given classes of problems.
We also found that several of these methods were hard to obtain, so
that the interested users essentially needed to re-implement them.

More importantly, implementing and using these methods, and
selecting the appropriate one for a given problem, is far from triv-
ial, and often requires some experience in the domain. As a result,
it is rather difficult for researchers of other fields to test the appli-
cation of the JSR to their problems. The application of the JSR to
certain combinatorial word problems was for example only made
possible by the collaboration between experts in the two fields [4],
and many other possible applicatons of the JSR may have been left
unexplored due to the lack of such collaborations.

These two issues motivated the development of the toolbox pre-
sented here, which contains two main features.
a) A compilation of fourteen recent methods for approximating the
JSR in a unified interface. The goal of this part is to allow experi-
enced users to use and test different techniques on their problems,
to compare the efficiency of different methods (tuning some meth-
ods’ parameters when relevant), or to help them comparing new
methods that they have developed with the existing ones. Note that
the toolbox will be open and that the addition of any new method
by an interested contributor is welcome. Our goal is also to pro-
pose a benchmark of matrices that would be available to test new
methods.
b) A ready-to-use jsr function with which the user can compute
the JSR of a set of matrices in blackbox and that requires no un-
derstanding of the methods used. This function analyzes the set of
matrices provided by the user, pre-treats them when relevant, and
then selects the methods that appear the most appropriate. Our goal
here is to provide researchers from other fields with a simple way
of computing the JSR and to test if the results can help them in their
research field.

2. DESCRIPTION OF THE METHODS
We describe here the theoretical ideas behind the methods im-

plemented in the toolbox. The precise way to use each method in

Matlab is extensively described in the help and the toolbox itself
contains demos. A list of all implementations can be obtained in
Matlab with the command help JSR_louvain if the toolbox’s
folder is named JSR_louvain.

Most methods to approach the JSR rely on the following inequal-
ities, bounding it from above and from below.

max{ρ(A) : A ∈M k} ≤ ρ(M)k ≤max{||A|| : A ∈M k} (2)

where M k =
{

Ad1 · · ·Adk

∣∣∣ Ad j ∈M , j = 1, . . . ,k
}
.

After preprocessing steps, which we review in Section 2.1, there
are essentially two families of methods. A first one consists in com-
puting the spectral radius and/or the norm of products of k matri-
ces of M , and using the results to bound ρ(M) from below and/or
above using the general bounds (2). We review some of these meth-
ods in Section 2.2.

The second class of methods uses the fact that the upper bound in
(2) is valid for any submultiplicative norm. They consist in build-
ing specific norms for which this upper bound is as small as possi-
ble. Some methods achieve this by an iterative procedure using the
matrices of M . Others directly build the norm using optimization
techniques. We review the former in Section 2.3 and the latter in
Section 2.4.

2.1 Preprocessing

2.1.1 Joint triangularizability (jointTriangul)
If the set of matrices is jointly triangularizable (i.e., if the ma-

trices share a common nontrivial invariant subspace), then the ma-
trices can be split into blocks so that the JSR is equal to the max-
imum of the JSR of the different diagonal blocks (see [18, Propo-
sition 1.5]). To the best of our knowledge, no efficient algorithm is
known to decide whether a set of matrices has a nontrivial invariant
subspace. The toolbox uses a heuristic search that allows in some
cases to find such a subspace if it exists.

2.1.2 Joint triangularizability under permutation
(permTriangul)

Contrary to the above general triangularizability case, it is pos-
sible to decide in polynomial time whether a set of matrices is tri-
angularizable under a common permutation of the entries of the
matrix (that is, to decide whether a coordinate hyperplane is invari-
ant). See [18, Lemma 3.1].

2.1.3 The products lifting (itMeth)
From Equation (2), for any natural number k, one can first com-

pute all the products of length k of the matrices in M , and then
apply any method to compute the JSR of the new set in order to
compute the JSR of the initial set. Note that for instance, comput-
ing the maximal spectral radius (or the maximal norm, for an arbi-
trary norm) of the set for increasing k already gives a method that
asymptotically converges towards the JSR (this is straightforward
from Equations (1) and (2)). This method is described in Section
2.2.1.

2.1.4 The semidefinite lifting
(jsr_lift_semidefinite)

The semidefinite lifting introduced in [7] is another way of con-
structing a new set of matrices in the same spirit as in the previous
subsection. That is, for any natural k, it builds a new set of matrices
M [k] such that

ρ(M [k]) = ρ(M)2k.

Even though any method could be applied on the set M [k], the main
motivation of this lifting is that it allows for the use of a very fast
method to obtain converging upper and lower bounds on the JSR,
by summing all the matrices in M [k], and computing the spectral
radius of the obtained matrix [7, Theorem 5]. Since it is the prin-
cipal motivation of performing the semidefinite lifting, we directly
implemented it within the function jsr_lift_semidefinite.
See also [18, Section 2.3.6].

2.1.5 The Kronecker lifting (itMeth)
The Kronecker lifting also consists in building a new set of ma-

trices formed by taking the Kronecker product of each matrix with
itself. This lifting has the same effect as taking all products of a
certain length [7]. The method itMeth can apply the Kronecker
lifting and call user-specified methods on the new set of matrices.

2.2 Enumeration based methods

2.2.1 Brute force (jsr_prod_bruteForce)
This method iteratively computes the products sets M k and re-

turns the simple upper and lower bounds provided by (2) with the
euclidean norm.

2.2.2 Pruning method for nonnegative matrices
(jsr_prod_pruningAlgorithm)

Thanks to the partial order implied by the positive orthant, if
the matrices have nonnegative entries, it is possible to modify the
brute force method described above by pruning the set of products
at every step in order to save both time and space during the com-
putations. This technique can prove extremely fast in some cases.
See [6, 18, Section 2.3.3] for more explanations.

2.2.3 Gripenberg’s algorithm (jsr_prod_Gripenberg)
This method, introduced in [14], is an adaptation of the brute

force technique described above, which carefully prunes some of
the products with the guarantee that the lower and upper bounds
are still valid, up to a certain prespecified arbitrary maximal error.
If this maximal error is not taken too small, this method is quite
efficient, and is usually used as a first way of getting quick bounds
on the JSR. Since it works by generating the products, it has the ad-
ditional advantage that it provides a guess for the optimal product.

2.3 Iterative norm methods
In this section and the next one we describe methods that work

on the upper bound part of Equation (2). They consist in finding a
good norm so that the upper bound is as small as possible, hence
providing an approximation of the JSR even without having to com-
pute products of matrices. They rely on the following fundamental
theorem:

THEOREM 1. If a set of matrices M is irreducible (i.e. it does
not have a common nontrivial invariant subspace), then there exists
a norm || · || such that

ρ(M) = max{||Ai|| : Ai ∈M } .

The idea of the iterative methods is to start with a candidate optimal
product, an optimal product being a product A ∈M k for which the
left-hand side inequality in (2) is tight. If the product is really opti-
mal, then M /(ρ(A)1/k) has JSR equal to one. One can show that
one can converge to a norm as in Theorem 1 by iteratively applying
the matrices of M to the unit ball of a particular initial norm. If
the candidate product was not optimal, then M /(ρ(A)1/k) has JSR
larger than one, and one can detect that when iteratively applying
the matrices. See for instance [16,17] for proofs and developments.

A significant advantage of these methods is that they can end
in finite time, if the upper bound provided by the norm obtained
at some step is equal to the lower bound provided by the candi-
date optimal product A. This actually happens rather frequently,
provided that one starts with a particular initial norm, which is
constructed with the leading eigenvectors of the candidate optimal
product. See [18,27] for more explanation on this phenomena, and
for other similar methods not implemented in this toolbox.

2.3.1 Balanced Real Polytope method
(jsr_norm_balancedRealPolytope)

This method, described in [17], can be used if the leading eigen-
vectors of the candidate product are real. Fig. 1 illustrates a Bal-
anced Real Polytope, i.e., a polytope with nonempty interior and
symmetric around the origin, (plain polytope) such that its image
by any of the matrices in M (dashed polytopes) is contained in the
polytope. This proves that ρ(M) ≤ 1 (we do not present here the
set M because of length constraints).

Figure 1: A Balanced real Polytope (plain lines) and its images
by two matrices in R2×2 (dashed lines). This provides a guarantee
that the JSR is smaller than or equal to one.

2.3.2 Balanced Complex Polytope (BCP) method
(jsr_norm_balancedComplexPolytope)

This method, described in [15, 16] can be used in the general
case where the leading eigenvectors of the candidate product have
complex values.

2.3.3 Lifted Polytope method (jsr_norm_conitope)
This method, recently introduced in [20], mixes the spirit of the

iterative methods with algebraic properties of liftings like the ones
described above. The authors of [20] introduce new types of norms,
which allow to prune vertices of the norm constructed at every step,
hence allowing to save computational time and space. They also
sometimes allow to deliver shorter certificates of optimality.

2.3.4 Kozyakin’s numerical algorithms
(jsr_norm_linearRelaxation2D,
jsr_norm_maxRelaxation2D,
jsr_norm_maxRelaxation)

These methods implement the numerical algorithms described in
[22, 23]. In these papers, the author proposes numerical ways to

approximate the norm provided by Theorem 1 and proves that they
asymptotically converge towards the true value.

2.4 Optimization-based norm methods
The methods described here also try to compute a norm in order

to provide a small upper bound in Equation (2). However, con-
trary to Section 2.3, they do not rely on iterative application of the
matrices in M . Instead, they make use of optimization methods in
order to minimize this upper bound, by creating a norm ab initio.
A significant advantage of these methods is that they come with a
guarantee of accuracy: for each of them, one can compute an ε(n),
depending only on the dimension of the matrices, such that the up-
per bound ρ∗ obtained with this method satisfies

(1− ε)ρ∗ ≤ ρ ≤ ρ
∗.

2.4.1 The linear norms for nonnegative matrices
(jsr_conic_linear)

If the matrices have nonnegative entries, norms yielding a bound
ρ∗ arbitrarily close to ρ can be obtained as the solution of linear
optimization problems. See [29] for more details and an expression
of ε(n).

2.4.2 The ellipsoid method (jsr_conic_ellipsoid)
Thanks to Semidefinite Programming techniques, one can opti-

mize on the set of ellipsoidal norms in order to minimize the upper
bound ρ∗. Fig. 2 illustrates this for 2 matrices in R2×2. In Fig. 2,
the plain ellipse corresponds to the unit ball of an ellipsoidal norm
such that its image by any of the two matrices is contained in the
unit ball. This provides a guarantee that the JSR is smaller than or
equal to one. Upper-bounds other than one can be found by scaling
the matrices. See [2,8] for more details and an expression of ε(n).

Figure 2: The ellipse corresponding to the unit ball of a norm (plain
line) and its images by two matrices in R2×2 (dashed lines). This
provides a guarantee that the JSR is smaller than or equal to one.

2.4.3 Sum-Of-Squares (jsr_opti_sos)
It has been shown in [26] that the idea of the ellipsoidal norm can

be pushed further, by replacing ellipsoidal norms (represented by
Sum-of-squares of degree 2) with higher degree Sum-Of-Squares
functions in order to improve the accuracy of the bound. See [18,
26, Section 2.3.7] for more details and an expression of ε(n).

3. BLACKBOX METHOD: JSR
In the previous section we introduced and briefly described the

different algorithms implemented in the JSR Toolbox. As explained
in the introduction however, selecting the best method to use for a
given problem is not necessarily easy and may require some ex-
perience in the domain. As a result, a user unfamiliar with these
methods might find them difficult to use. Therefore, we have in-
cluded in the toolbox an easily callable function that automatically
checks conditions on the set of matrices and then sequentially runs
appropriate methods with the goal of providing as good as possible
bounds in a reasonable time. This function is named jsr. Our
goal is to allow anyone to check the approximate value of the JSR
of a set of matrices, without requiring her or him to know any-
thing about the computation methods used. The implementation is
assorted with explanatory outputs that are understandable by non-
experts. See Fig. 3 for a flow-chart of the algorithm.

The algorithm first checks if the matrices are real and nonneg-
ative. Indeed, many applications lead to nonnegative matrices [4,
10,21,24], and it turns out that specific and more efficient methods
can be applied in that case. Then, jsr checks if the matrices can
be jointly block-triangularized. The method first checks for block-
triangularization by permutation with permTriangul and if it
did not work it tries with the heuristic jointTriangul. If none
is found, it will assume that there is no joint block-triangularization.
In this case it can be proved that the methods called by jsr will

still converge to the true value, even if the matrices are in fact block-
triangularizable [20]. Depending on the results of this test, it selects
one of the three options described below.

Joint block-triangularizable matrices
As mentioned in Section 2.1.1, when matrices can be block-triangularized,
the JSR of the set is equal to the maximum of the joint spectral radii
of the sets of diagonal blocks [18]. Hence in this case, the compu-
tation of the JSR can be done by computing the JSR of each set of
blocks and taking the largest one, which can usually be done at a
smaller cost. Because the JSR of the set is the largest JSR of the
sets of blocks, it is not always necessary to compute precisely the
JSR of every block: we can ignore all those for which we know
that their JSR will not be the largest one. Hence, when a block-
triangularization could be found, jsr computes quick bounds with
the pruning method in the nonnegative real case and with brute
force method in the case with complex or negative and positive
entries. It then checks if the upper bound on some set is lower than
the lower bound on some other set so as to stop the analysis on the
former. After this quick pruning attempt, jsr calls itself on each
remaining set of blocks. As these blocks have a smaller size than
the original matrices these recursive calls always stop. When the re-
cursive jsr calls have provided bounds on each set of blocks, jsr
tries to prune sets of blocks in the same way as described above.
If only one set of blocks remains it outputs the bounds on this set
which also bound the JSR of the original set of matrices. If more
than one set of blocks remain, jsr prints a message explaining the
situation and outputs the different blocks and the best bounds found
on each of them to allow the user to pursue the analysis.

Nonnegative matrices with no joint
block-triangularization
For real nonnegative matrices that cannot be block-triangularized,
jsr first launches the pruning method. Then the bounds obtained
are successively refined by the linear norm and the ellipsoid meth-
ods. Finally, the iterative lifted polytope method is launched with
the product attaining the pruning method’s lower bound as candi-
date optimal product. The rationale for applying these methods is
as follows. First, the pruning method on nonnegative matrices it-
eratively generates long products by keeping only the interesting
ones, so it has a chance of finding an optimal product. Then, the
linear and ellipsoid norm methods might refine the upper-bound
found. Finally, lifted polytope might provide very tight bounds if
the candidate optimal product is good and if it has enough time
remaining.

General matrices with no joint
block-triangularization found
For matrices with entries that are complex or of both signs and that
could not be block-triangularized, jsr starts by using Gripenberg’s
method. This method is good to generate products of long length by
keeping only the interesting ones. Then, jsr launches the ellipsoid
method to try refining the upper-bound from Gripenberg. Finally,
jsr launches the lifted polytope method with as input candidate
optimal product the candidate optimal product output by Gripen-
berg. This method has the potential to find tight bounds when it
is initialized with a good candidate optimal product and is given
enough time.

Additional options of jsr
There are three options that can be specified to jsr:
Computation time: One can specify an approximate time-limit on
the execution. In the implementation of jsr, the desired time-

limit is divided in smaller time-limits that are given, to the various
methods used. Note that the time cannot be checked after each op-
eration and it is hard to predict the time a future iteration will take.
Therefore, the desired time-limit is not always strictly respected.
By default this time-limit is set to 120 seconds.
Tolerance: The tolerance fed as option to the methods called. Its
precise implication depends on the particular methods called. We
refer the reader to the help of these methods. By default it is set
to 10−6.
Block-triangularization (boolean): This boolean variable allows
disabling the tests for block-triangularization. There are indeed sit-
uations where it is preferable not to launch the jointTriangul
heuristic which could take too much time, such as for instance,
when dealing with many big matrices with positive and negative
entries. By default, jsr will try to block-triangularize as described
in Fig. 3.

4. EXAMPLES

4.1 Random matrices
As a first example, we use the toolbox to compare two methods

on a set of 3 random matrices in [0,1]10×10. The two methods are
jsr_prod_pruningAlgorithm and jsr_norm_conitope.
The bounds found at each depth, or product length, by these meth-
ods is represented on Fig. 4. We see that for a comparable length of
products the conitope algorithm gives substantially tighter bounds.
However, this comes at the expense of time as the pruning algo-
rithm took around 3 seconds whereas the conitope one took around
2 minutes on our personal computer. The candidate product with
highest growth-rate output by these two methods is the same and is
A2A3.

The matrices, the plot of Fig. 4, and more outputs can be gener-
ated by the script demo2_JSR.m in the toolbox.

4.2 Wavelet
The function waveletMat in the toolbox generates the set of

two matrices corresponding to the Nth Daubechies wavelet, for N
up to 19. We launched jsr on the two matrices in R7×7 corre-
sponding to the wavelets of index N = 15. The method computes
upper and lower bounds in less than 2 minutes, the lower bound
found is the actual value of the JSR, 0.14754035 . . . [14], and the
upper bound is 2.171 ·10−5 more.

5. CONCLUSION
The JSR toolbox has been implemented and released in beta ver-

sion in 2011 with two goals: to provide the practitioner with quick
and efficient tools to approximate the JSR of a set of matrices, a task
that can be cumbersome and sometimes necessitates to delve into
quite an intricate theory; and to provide researchers with bench-
marks and solid implementations of most available methods in the
literature in order to compare them, adapt them to particular cases,
or create new methods. We are confident that the currently avail-
able version is sufficiently solid to achieve these goals.

In the future, we plan to implement newly proposed methods
that appear to outperform previous ones in some particular cases,
like the so-called path-dependent Lyapunov functions recently pro-
posed in [1]. Another development would be to broaden the scope
of the toolbox towards more general tools to analyze switched sys-
tems, like the top Lyapunov exponent of matrices (see [13,28]), the
joint spectral subradius [3, 29], the p-radius [25], etc.

6. ACKNOWLEDGMENTS

Figure 3: Flow chart of the jsr algorithm.

Set of matrices

Are matrices
real and

nonnegative?

Can
permTriangul

find block-
triangul.?

Can
jointTriangul

find block-
triangul.?

Can
permTriangul

find block-
triangul.?

Can
jointTriangul

find block-
triangul.?

Launch
pruning
method

Launch
linear norms
with previous

bounds
as initial
bounds

Launch
ellipsoid

method with
best bounds

as initial
bounds

Launch lifted
polytope

with product
attaining

lower bound
from pruning

method
as initial
product

Try pruning
sets of blocks

after a few
steps of

brute force

Try pruning
sets of blocks

after a few
steps of
pruning
method

Launch jsr

on each set
of blocks

Try pruning
sets of blocks

Only one
set of

blocks left?

Print
explanations

Output sets
of blocks &

their bounds

Output best
bounds &

info on used
algorithms

Launch
Gripen-
berg’s alg.

Launch
ellipsoid

method with
previous
bounds

as initial
bounds

Launch lifted
polytope with

candidate
optimal

product from
Gripenberg
as initial
product

jsr

Yes No

No

Yes

No

Yes

Yes

No

Yes

No

No

Yes

We are grateful to Chia-Tche Chang and Vincent Blondel for
providing their own codes for certain methods, which served as a
basis for the implementation of some of the algorithms contained
in the Toolbox. The research was funded by the Belgian Network
DYSCO initiated by the Belgian State and by an ARC of the French
Community of Belgium.

7. REFERENCES
[1] A. A. Ahmadi, R. M. Jungers, P. A. Parrilo, and

M. Roozbehani. Analysis of the joint spectral radius via
lyapunov functions on path-complete graphs. In Proceedings
of HSCC ’11, pages 13–22, 2011.

[2] T. Ando and M.-H. Shih. Simultaneous contractibility. SIAM
Journal on Matrix Analysis and Applications,
19(2):487–498, 1998.

0 5 10 15 20

4.9

5

5.1

5.2

5.3
Bounds found at each depth

depth

Lb conitope

Ub conitope

Lb pruning

Ub pruning

Figure 4: Bounds on the JSR found at each depth (i.e., product
length) by jsr_prod_pruningAlgorithm and
jsr_norm_conitope.

[3] F. Blanchini, P. Colaneri, and M.E. Valcher. Co-positive
lyapunov functions for the stabilization of positive switched
systems. Automatic Control, IEEE Transactions on,
57(12):3038–3050, 2012.

[4] V. D. Blondel, J. Cassaigne, and R. M. Jungers. On the
number of α-power-free words for 2 < α < 7/3. Theoretical
Computer Science, 410(38-40):2823–2833, 2009.

[5] V. D. Blondel, J. M. Hendrickx, and J. N. Tsitsiklis. On
Krause’s multi-agent consensus model with state-dependent
connectivity. Automatic Control, IEEE Transactions on,
54(11):2586–2597, 2009.

[6] V. D. Blondel, R. M. Jungers, and V. Y. Protasov. On the
complexity of computing the capacity of codes that avoid
forbidden difference patterns. Information Theory, IEEE
Transactions on, 52(11):5122–5127, 2006.

[7] V. D. Blondel and Y. Nesterov. Computationally efficient
approximations of the joint spectral radius. SIAM Journal on
Matrix Analysis and Applications, 27(1):256–272, 2005.

[8] V. D. Blondel, Y. Nesterov, and J. Theys. Approximations of
the Rate of Growth of Switched Linear Systems. In
Proceedings of HSCC ’04, pages 173–186, 2004.

[9] V. D. Blondel and J. N. Tsitsiklis. The boundedness of all
products of a pair of matrices is undecidable. Systems &
Control Letters, 41(2):135–140, 2000.

[10] V. Crespi, G. Cybenko, and G. Jiang. The theory of
trackability with applications to sensor networks. ACM
Transactions on Sensor Networks, 4(3):1–42, 2008.

[11] I. Daubechies and J. C. Lagarias. Two-scale difference
equations. ii. local regularity, infinite products of matrices
and fractals. SIAM Journal of Mathematical Analysis,
23:1031–1079, 1992.

[12] P. Frasca and J. M. Hendrickx. On the mean square error of
randomized averaging algorithms. to appear in Automatica,
2013.

[13] R. Gharavi and V. Anantharam. An upper bound for the
largest lyapunov exponent of a markovian product of
nonnegative matrices. Theoretical Computer Science,
332:543–557, 2005.

[14] G. Gripenberg. Computing the joint spectral radius. Linear
Algebra and its Applications, 234:43–60, 1996.

[15] N. Guglielmi and V. Y. Protasov. Exact computation of joint
spectral characteristics of linear operators. Foundations of
Computational Mathematics, 13(1):37–97, 2013.

[16] N. Guglielmi, F. Wirth, and M. Zennaro. Complex polytope
extremality results for families of matrices. SIAM Journal on
Matrix Analysis and Applications, 27(3):721–743, 2005.

[17] N. Guglielmi and M. Zennaro. Finding extremal complex
polytope norms for families of real matrices. SIAM Journal
on Matrix Analysis and Applications, 31(2):602–620, 2009.

[18] R. M. Jungers. The joint spectral radius, Theory and
applications. In Lecture Notes in Control and Information
Sciences, volume 385. Springer-Verlag, Berlin, 2009.

[19] R. M. Jungers, A. D’Innocenzo, and M. D. Di Benedetto.
Feedback stabilization of dynamical systems with switched
delays. Proceedings of the IEEE CDC2012, 2012.

[20] R. M. Jungers, N. Guglielmi, and A. Cicone. Lifted polytope
methods for computing the joint spectral radius. Preprint.

[21] R. M. Jungers, V. Y. Protasov, and V. D. Blondel.
Overlap-free words and spectra of matrices. Theoretical
Computer Science, 410:3670–3684, 2009.

[22] V. Kozyakin. Iterative building of barabanov norms and
computation of the joint spectral radius for matrix. Discrete
and Continuous Dynamical Systems-series B,
14(1):143–158, 2010.

[23] V. Kozyakin. A relaxation scheme for computation of the
joint spectral radius of matrix sets. Journal of Difference
Equations and Applications, 17(2):185–201, 2011.

[24] B. E. Moision, A. Orlitsky, and P. H. Siegel. On codes that
avoid specified differences. Information Theory, IEEE
Transactions on, 47:433–442, 2001.

[25] M. Ogura and C. F. Martin. Stability of switching systems
and generalized joint spectral radius. Proceedings of the
IEEE ECC 2013, 2013.

[26] P. A. Parrilo and A. Jadbabaie. Approximation of the joint
spectral radius using Sum Of Squares. Linear Algebra and its
Applications, 428(10):2385–2402, 2008.

[27] V. Y. Protasov. The geometric approach for computing the
joint spectral radius. In Proceedings of the 44th IEEE
CDC-ECC, pages 3001–3006, 2005.

[28] V. Y. Protasov and R. M. Jungers. Lower and Upper Bounds
for the Largest Lyapunov Exponent of matrices. To appear
in: Linear Algebra and its Applications, 2013.

[29] V. Y. Protasov, R. M. Jungers, and V. D. Blondel. Joint
spectral characteristics of matrices: a conic programming
approach. SIAM Journal on Matrix Analysis and
Applications, 31(4):2146–2162, 2010.

[30] G. C. Rota and W. G. Strang. A note on the joint spectral
radius. Indag. Math., 22:379–381, 1960.

[31] J.F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for
optimization over symmetric cones. Optimization Methods
and Software, 11–12:625–653, 1999.

[32] J. N. Tsitsiklis and V. D. Blondel. The Lyapunov exponent
and joint spectral radius of pairs of matrices are hard - when
not impossible - to compute and to approximate.
Mathematics of Control, Signals, and Systems, 10:31–40,
1997.

[33] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and
O. Shochet. Novel type of phase transition in a system of
self-driven particles. Physical Review Letters, 75(6):1226,
1995.

