TV–L2 Refractive Index Map Reconstruction from Polar Domain Deflectometry

ADRIANA GONZÁLEZ

Joint work with L. Jacques, C. De Vleeschouwer and Ph. Antoine.
ICTEAM. Université catholique de Louvain (UCL). Louvain-la-Neuve, Belgium.

iTWIST12
May 9th - 11th 2012
OUTLINE

- Refractive Deflectometry
- Inverse Problem Formulation
- Prior conditions
- Image Reconstruction
- Results
OUTLINE

- Refractive Deflectometry
- Inverse Problem Formulation
- Prior conditions
- Image Reconstruction
- Results
Deflectometry Framework

Problem:
• Reconstructing the refractive index map of transparent materials from light deflection measurements under multiple orientations.

Interests:
• (Transparent) Object surface topology.

Schlieren Deflectometry:
• “Coding light deviation in intensity variations”.

Multifocal lenses
Mathematical Model
Mathematical Model

First order approximation

\[\Delta(\tau, \theta) \simeq \int_{\mathbb{R}^2} (\nabla n(\mathbf{x}) \cdot \mathbf{p}_\theta) \delta(\tau - \mathbf{x} \cdot \mathbf{p}_\theta) \, d^2 \mathbf{x} \]
OUTLINE

- Refractive Deflectometry
- Inverse Problem Formulation
- Prior conditions
- Image Reconstruction
- Results
Continuous Facts

- Sensing Model

\[\Delta(\tau, \theta) \simeq \int_{\mathbb{R}^2} (\nabla n(x) \cdot p_\theta) \delta(\tau - x \cdot p_\theta) \, d^2x \]

- Deflectometric Central Slice Theorem

\[y(\omega, \theta) := \int_{\mathbb{R}} \Delta(\tau, \theta) e^{-i\tau \omega} \, d\tau = i\omega \hat{n}(\omega \cdot p_\theta) \]

\[y(\omega, \theta) = i\omega \hat{n}(\omega \cdot p_\theta) \]

2-D FT of \(n \).
Sensing Operator I

\[y(\omega, \theta) = i\omega \hat{n}(\omega p\theta) \]

Polar FT of \(n \).

Non-Equispaced FFT (NFFT) \(^\dagger\)\(^\ddagger\)

- Fast Fourier Transform for nonequispaced data defined in the Polar grid.
- Possibility to control the interpolation error.

\[Q \in \mathbb{C}^{M \times N} \]

\(\sigma \) oversampling

m window

\(^\dagger\) M. Fenn, S. Kunis and D. Potts. (2007)

\(^\ddagger\) D. Potts and G. Steidl. (2000)
Sensing Operator II

\[y(\omega, \theta) = i \omega \hat{n}(\omega p_{\theta}) \]

\[D = i \text{diag}(\omega_1, \ldots, \omega_M) \in i \mathbb{R}^{M \times M} \]

\[y(\omega, \theta) = i \omega \hat{n}(\omega p_{\theta}) \]

\[\Phi = DQ \in \mathbb{C}^{M \times N} \]

\[y = \Phi n + \eta \]

\[M (N_{\theta}) < N \quad \text{ill-posed problem} \]

Observation + NFFT interpolation noise
OUTLINE

- Refractive Deflectometry
- Inverse Problem Formulation
- Prior conditions
- Image Reconstruction
- Results
Sparsity prior

• Heterogeneous transparent materials with slowly varying refractive index separated by sharp interfaces.

TV and BV promote the perfect “cartoon shape” model.

“Sparse” gradient

Small Total Variation norm

\[\| n \|_{TV} := \| \nabla n \|_{2,1} \]
Other priors

- Positive RIM
 \[n \geq 0 \]

- The object is completely contained in the image. Pixels in the border are set to zero in order to guarantee uniqueness of the solution.
 \[n|_{\delta \Omega} = 0 \]
OUTLINE

- Refractive Deflectometry
- Inverse Problem Formulation
- Prior conditions
- Image Reconstruction
- Results
Filtered Back Projection (FBP)

\[y = \Phi n + \eta \]

(In our notation) FBP attempts to solve

\[
\hat{n}_{est} = \left[\arg \min_{n \in \mathbb{R}^N} \| n \|_2 \quad \text{s.t.} \quad y = \Phi n \right] \equiv \Phi^\dagger y
\]

Pseudo-inverse Operator

\[\Phi^\dagger := \Phi^* \left(\Phi \Phi^* \right)^{-1} \]

- Does not take into account the noise in the measurements.
- Does not take into account the lack of measurements (ill-posed problem).
TV-L2 Minimization

Using the a priori information and imposing L2 data fidelity, TV-L2 attempts to solve

\[n_{est} = \arg \min_{n \in \mathbb{R}^N} \|n\|_{TV} \quad \text{s.t.} \quad \|y - \Phi n\|_2 \leq \varepsilon, \quad n \geq 0, \quad n|_{\delta\Omega} = 0 \]

\[n_{est} = \arg \min_{n \in \mathbb{R}^N} \|\nabla n\|_{2,1} + \nu_c(\Phi n) + \nu_{P_0}(n) \]

\(\nu_c(v) \) and \(\nu_{P_0}(v) \) are the indicator functions into the following convex sets

\[\mathcal{C} = \{v \in \mathbb{C}^M : \|y - v\| \leq \varepsilon\} \]

\[\mathcal{P}_0 = \{v \in \mathbb{R}^N : v_i \geq 0 \text{ if } i \in \text{int } \Omega; \quad v_i = 0 \text{ if } i \in \delta\Omega\} \]
Reconstruction Algorithm

\[n_{est} = \arg \min_{n \in \mathbb{R}^N} \| \nabla n \|_{2,1} + \nu_C(\Phi n) + \nu_{P_0}(n) \]

Two mapping operators \(\Phi \) and \(\nabla \), where \(\Phi \Phi^* \neq I \).

Iterative Chambolle-Pock (CP)† Algorithm

\[x_{est} = \arg \min_{x} F(Kx) + G(x) \]

Product Space Optimization

\[x_{est} = \arg \min_{x} (F_1 F_2) \left(\begin{array}{cc} K_1 & 0 \\ 0 & K_2 \end{array} \right) \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) + H(x_1) + \nu_\pi(x_1, x_2) \]

† A. Chambolle and T. Pock. (2011)
OUTLINE

- Refractive Deflectometry
- Inverse Problem Formulation
- Prior conditions
- Image Reconstruction
- Results
Deflectometry vs. Tomography I

\[\theta = 60^\circ \]

Deflectometry

Tomography
Deflectometry vs. Tomography II

- Without noise, MSNR = 20dB

- RSNR [dB]
- $N_\theta/360$ [%]

Graphs showing comparison between Deflectometry and Tomography under different conditions.
TV-L2 vs. FBP

- No measurement noise.
- $N_\theta/360 = 100\%$.

FBP: 21.28dB

TV-L2: 68.54dB
TV-L2 vs. FBP II

- No measurement noise.
- $N_\theta/360 = 5\%$.

FBP

TV-L2

4.78dB

57.59dB
TV-L2 vs. FBP III

- $\text{MSNR} = 10\text{dB}$.
- $N_\theta/360 = 5\%$.

FBP:

TV-L2:

- 16.84dB
- 4.62dB
TV-L2 vs. FBP: Noise Robustness

Without Noise

\[\frac{N_0}{360} \% \]

\[\text{RSNR [dB]} \]

\[\text{MSNR} = 10\text{dB} \]

\[\text{Without Noise} \]

- TV-L2
- FBP
Experimental Images

- Bundle of 10 fibers immersed in an optical fluid.
- $N_\theta = 60 \rightarrow N_\theta / 360 = 17\%$.

FBP

TV-L2
Conclusion and future work

- Sparse-based reconstruction methods can be applied to Optical Deflectometry.

- Future Improvements:
 - Precondition mapping operators.
 - Light trajectory
 - Iterative estimation of the actual light ray trajectory to remove the effects of the paraxial approximation.
 - Extension to some non-linear problems.
 - Same framework valid for Phase-Contrast X-Ray Tomography, no first order approximation is needed.
TV–L2 Refractive Index Map Reconstruction from Polar Domain Deflectometry

ADRIANA GONZÁLEZ

Joint work with L. Jacques, C. De Vleeschouwer and Ph. Antoine.
ICTEAM. Université catholique de Louvain (UCL). Louvain-la-Neuve, Belgium.

iTWIST12
May 9th - 11th 2012