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1 + 2 Construction of Khovanov homology

Kauffman state sum of Jones polynomial:

ξ0 ξ1

resolution for K : ξ ∈ {0, 1}#crossings, that is a choice of resolution ξ0 or ξ1
for each crossing.

V (K ) =
∑
ξ(−1)#{ξ1 in ξ}(q + q−1)#{circles in ξ}
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1 + 2 Construction of Khovanov homology

taken from Bar-Natan, “Khovanov’s homology for tangles and cobordisms”
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2′ 2-categories: examples

1 homotopies:
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2′ Defining the invariant
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1 The complex is a cube of dimension n, where n is the number of
crossings ⇒ similar to Khovanov homology!

2 But we used the “slice strategy” , similarly to quantum algebras,
and S is purely algebraic.
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Conclusion

1 Khovanov homology is a categorication of the Jones polynomial: it
categorifies the Kauffman bracket into a complex of length 1. The
Jones polynomial is the Euler characteristic of this homology.

2 Categorification is the process of turning classical notion into
categorical notion. We use this idea to unify the two approaches to
the Jones polynomial (Khovanov homology and quantum algebras).

2′ The right structure to categorify the quantum algebra is a
2-category. Thanks to this structure, we can sketch a construction
that match both Khovanov’s construction and the quantum
algebra’s construction.

3 What is odd Khovanov homology? And how to adapt this
construction to it (superstructures)? See you after the break!
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ALG superstructures: superspaces

A superspace V is a Z/2Z-graded vector space:
even and odd vectors:

V = V0 ⊕ V1 |v | := grading of v (0 or 1)

End(V ,V ) inherits a superspace structure:
even maps := maps preserving the parity
odd maps := maps exchanging the parity

super tensor product:

(V ⊗W )0 = V0⊗W0⊕V1⊗W1 and (V ⊗W )1 = V0⊗W1⊕V1⊗W0

(f ⊗ g)(v ⊗ w) := (−1)|g ||v |f (v)⊗ g(w)

super interchange law (compatibility law between composition and
tensor product):

(f ⊗ g) ◦ (h ⊗ k) = (−1)|g||h|(f ◦ h)⊗ (g ◦ k)
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ALG superstructures: supercategories

A supercategory is a category where:
each Hom-set is a superspace
composition induces an even map:

|f ◦ g | = |f |+ |g |

a superfunctor is a functor preserving parity

A monoidal supercategory is a supercategory...
...like a monoidal category (category with a “product” like a tensor
product)...
...but with the super interchange law:

(f ⊗ g) ◦ (h ⊗ k) = (−1)|g ||h|(f ◦ h)⊗ (g ◦ k)
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ALG superstructures: 2-supercategories

A 2-supercategory is
a 2-category whose 2-morphisms have a parity...
...and compatibility between horizontal and vertical product is given
by the super interchange law:

C B A
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g
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◦
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γ

f

α

= (−1)|β||γ| C B

g ′

f ′

δ

γ

∗ B A

g

f

β

α

(δ ∗ β) ◦ (γ ∗ α) = (−1)|β||γ|(δ ◦ γ) ∗ (β ◦ α)
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A• ∗ B• must preserve
homotopy classes

⇒ Need of a definition applicable
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ALG Product of complexes

TASK: define horizontal product of complexes such that homotopy
classes are preserved.

Remark

monoid ↔ one-object category
monoidal category ↔ one-object 2-category

monoidal supercategory ↔ one-object 2-supercategory

TASK2: define tensor product of complexes such that...
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ALG Product of complexes

A(0) A(1)α

⊗

B(0) B(1)β

=

A(0) ⊗ B(0) A(1) ⊗ B(0)

A(0) ⊗ B(1) A(1) ⊗ B(1)

α⊗1

1⊗β 1⊗β

α⊗1

(α⊗ 1) ◦ (1⊗ β) = (1⊗ β) ◦ (α⊗ 1) (commutative)
⇒ Koszul rule (anti-commutative)

−

Assume α and β are odd:

(α⊗ 1) ◦ (1⊗ β) = −(1⊗ β) ◦ (α⊗ 1) (anti-commutative)
⇒ super Koszul rule?
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ALG Product of complexes

Theorem
The super Koszul rule:

1 exists for homogeneous complexes (complexes whose differentials
are either even or odd)

2 is unique, at least for cubes (all choices of signs result in isomorphic
complexes)

3 preserves homotopy classes: given complexes A•, B•, C• and D•, if

A• ' B• and C• ' D•

Then
A• ⊗ C• ' B• ⊗ D•
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Conclusion

1 We defined a knot invariant using a supercategorification S of a
quantum algebra...

2 Is it odd Khovanov homology? Still a conjecture but...
coincide on simple examples (and differ from even)
as odd Khovanov homology, the invariant can be split into two
identical invariants:

Khodd = Kh′odd ⊕ Kh′odd.

3 Application? Proof of functoriality
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