

Institut de recherche en mathématique et physique

Odd Khovanov homology and higher representation theory

Léo Schelstraete 23th February, 2023

Winter Braids XII

QUANTUM POLYNOMIALS

Jones polynomial

[1984]

Representation Theory

Khovanov homology

or the topological side of the story

(2) $\bigcup_{\text{(for any diagram D)}} \text{II } D \mapsto (q+q^{-1})\langle D \rangle$

$$(1) \swarrow \mapsto | | \xrightarrow{[]} [1]$$

(2) $\mathcal{F}: (2Cob, II) \to (Vec, \otimes)$ $\bigcirc \mapsto A := \mathbb{Z}[x]/x^2$

(3) add signs \rightsquigarrow Koszul rule

(4) grading
$$\Rightarrow$$
 gdim(A) = q + q^{-1}
A = $\mathbb{Z} \oplus \mathbb{Z} x \cong \mathbb{Z}[-1] \oplus \mathbb{Z}[1]$

 $J(L) := (q+q^{-1})^2 - 2(q+q^{-1})q + (q+q^{-1})^2q^2$

$$(1) \swarrow \mapsto | | \stackrel{[]}{\longrightarrow} \underset{[1]}{\longrightarrow} \underset{[1]}{\overset{[1]}{\longrightarrow}}$$

(2) $\mathcal{F}: (2Cob, II) \to (Vec, \otimes)$ $\bigcirc \mapsto A := \mathbb{Z}[x]/x^2$

(3) add signs \rightsquigarrow Koszul rule

(4) grading
$$\Rightarrow$$
 gdim(A) = q + q^{-1}
A = $\mathbb{Z} \oplus \mathbb{Z}x \cong \mathbb{Z}[-1] \oplus \mathbb{Z}[1]$

 $J(L) := (q+q^{-1})^2 - 2(q+q^{-1})q + (q+q^{-1})^2q^2$

$$(1) \swarrow \mapsto | | \stackrel{\frown}{\longrightarrow} \smile [1]$$

(2) $\mathcal{F}: (2Cob, II) \to (Vec, \otimes)$ $\bigcirc \mapsto A := \mathbb{Z}[x]/x^2$

(3) add signs \rightsquigarrow Koszul rule

(4) grading
$$\Rightarrow$$
 gdim(A) = $q + q^{-1}$
A = $\mathbb{Z} \oplus \mathbb{Z} x \cong \mathbb{Z}[-1] \oplus \mathbb{Z}[1]$

$$\mathcal{F}\left(\begin{array}{c} \mathcal{F}\left(\begin{array}{c} \mathcal{F}\left(\begin{array}{c} \mathcal{F}\right) \\ \mathcal{F}\right) \\ \mathcal{F}\left(\begin{array}{c} \mathcal{F}\right) \\ \mathcal{F}\left(\begin{array}{c} \mathcal{F}\right) \\ \mathcal{F}\right) \\ \mathcal{F}\left(\begin{array}{c} \mathcal{F}\right) \\ \mathcal{F}\right) \\ \mathcal{F}\left(\begin{array}{c} \mathcal{F}\right) \\ \mathcal{F}\right) \\ \mathcal{F}\left(\begin{array}{c} \mathcal{F}\right) \\ \mathcal{F}\left(\begin{array}{c} \mathcal{F}\right) \\ \mathcal{F}\left(\begin{array}{c} \mathcal{F}\right) \\ \mathcal{F}\right) \\ \mathcal{F}\left(\begin{array}{c} \mathcal{F}\right) \\ \mathcal{F}\left(\begin{array}{c} \mathcal{F}\right) \\ \mathcal{F}\left(\begin{array}{c} \mathcal{F}\right) \\ \mathcal{F}\right) \\ \mathcal{F}\left(\begin{array}{c} \mathcal{F$$

$$J(L) := (q+q^{-1})^2 - 2(q+q^{-1})q + (q+q^{-1})^2q^2$$

$$(1) \swarrow \mapsto | | \xrightarrow{[]} [1]$$

(2) $\mathcal{F}: (2Cob, II) \to (Vec, \otimes)$ $\bigcirc \mapsto A := \mathbb{Z}[x]/x^2$

(3) add signs \rightsquigarrow Koszul rule

(4) grading
$$\Rightarrow$$
 gdim(A) = q + q^{-1}
A = $\mathbb{Z} \oplus \mathbb{Z}x \cong \mathbb{Z}[-1] \oplus \mathbb{Z}[1]$

$$\mathcal{F}\left(\begin{array}{c} & & \\$$

 $J(L) := (q+q^{-1})^2 - 2(q+q^{-1})q + (q+q^{-1})^2q^2$

(1)
$$\begin{array}{c} \swarrow \\ (1) \\ \swarrow \\ (2) \\ (2) \\ (2) \\ (2) \\ (3) \\ (3) \\ (4) \\ (3) \\ (4)$$

Why care? functorial invariant ⇒ 4D-information! (e.g. applications to sliceness detections)

THE PRINCIPLE OF CATEGORIFICATION

Given some objects, can we (meaningfully) "enrich" (categorify) them with morphisms?

categorification

Categorifying $U_q(\mathfrak{sl}_2)$ -representation theory

or the algebraic side of the story

Elementary $U_q(\mathfrak{sl}_2)$ -representations:

- $\mathbb{C}(q)$ = the trivial representation $U_q(\mathfrak{sl}_2) \curvearrowright \mathbb{C}(q)$
- V = the *q*-regular representation $U_q(\mathfrak{sl}_2) \curvearrowright \mathbb{C}(q) \times \mathbb{C}(q)$

Elementary $U_q(\mathfrak{sl}_2)$ -intertwiners (i.e. equivariant maps):

$$\begin{array}{c} V \otimes V \\ E \uparrow \\ \mathbb{C}(q) \\ \mathbb{C}(q) \\ F \uparrow \\ V \otimes V \end{array} \rightarrow id - q EF \uparrow \\ V \otimes V \\ V \otimes V \end{array} \sim \left| -q \bigvee_{i=1}^{V \otimes V} - \frac{1}{V \otimes V} \right|$$

Reshetikhin-Turaev construction: Jones from $U_q(\mathfrak{sl}_2)$ -representation theory

Theorem

This construction recovers the Jones polynomial.

Khovanov homology from higher $U_q(\mathfrak{sl}_2)$ -representation theory

Representation Theory

Khovanov homology from higher $U_q(\mathfrak{sl}_2)$ -representation theory

Representation Theory

Odd Khovanov homology and supercategorification

A new world?

Odd Khovanov homology, another categorification of Jones

FACTS: Kh(L) and OKh(L) coincide over $\mathbb{Z}/2\mathbb{Z}$, but they are distinct over \mathbb{Z}

FACTS: Kh(L) and OKh(L) coincide over $\mathbb{Z}/2\mathbb{Z}$, but they are distinct over \mathbb{Z}

QUESTION:a construction of odd Khovanov homology
from higher representation theory?YES![Vaz-S. 22+]

Comparing even and odd Khovanov homology

(even) Khovanov homology

odd Khovanov homology

$$\mathcal{F}\left(\underbrace{\bigcirc \amalg \ldots \amalg \bigcirc}_{n}\right) = \mathbb{Z}[x_1, \ldots, x_n]/(x_1^2, \ldots, x_n^2)$$
(commutative)

$$\mathcal{OF}\left(\underbrace{\bigcirc II \dots II \bigcirc}_{n}\right) = \Lambda(x_1, \dots, x_n)$$
(anti-commutative)

Comparing even and odd Khovanov homology

(even) Khovanov homology

odd Khovanov homology

$$\mathcal{F}\left(\underbrace{\bigcirc \amalg \ldots \amalg \bigcirc}_{n}\right) = \mathbb{Z}[x_1, \ldots, x_n]/(x_1^2, \ldots, x_n^2)$$
(commutative)

TQFT

$$\mathcal{OF}\left(\underbrace{\bigcirc II \dots II \bigcirc}_{n}\right) = \Lambda(x_1, \dots, x_n)$$
(anti-commutative)

"almost" TQFT

Comparing even and odd Khovanov homology

(even) Khovanov homology

odd Khovanov homology

$$\mathcal{F}\left(\underbrace{\bigcirc \amalg \ldots \amalg \bigcirc}_{n}\right) = \mathbb{Z}[x_1, \ldots, x_n]/(x_1^2, \ldots, x_n^2)$$
(commutative)

$$\mathcal{OF}\left(\underbrace{\bigcirc II \dots II}_{n} \bigcirc\right) = \Lambda(x_1, \dots, x_n)$$
(anti-commutative)

"almost" TQFT

TOFT

Q: how to capture this kind of behaviour? **A:** use **parities**, that is, 2-**super**categories.

Odd Khovanov homology from higher representation theory

Theorem (S.-Vaz 2022)

There exists a 2-supercategory \mathcal{OU} , from which one can define a tangle invariant.

Theorem (S.-Vaz 2022)

There exists a 2-supercategory \mathcal{OU} , from which one can define a tangle invariant.

Work in progress (S.-Vaz 2023)

This invariant (very likely) recovers odd Khovanov homology.

Theorem (S.-Vaz 2022)

There exists a 2-supercategory \mathcal{OU} , from which one can define a tangle invariant.

Work in progress (S.-Vaz 2023)

This invariant (very likely) recovers odd Khovanov homology.

FURTHER DIRECTIONS:

- Is odd Khovanov homology **functorial**? (If so, in which sense?)
- What about other homological invariants? (sl_n-homologies, triply-graded homology)
 Do they also admit an "odd" version?

Could we discover them through supercategorified quantum groups? (or analogues?)

Appendix

Theorem (Lauda-Queffelec-Rose \sim 2010)*

(i) There exists a 2-category $\ensuremath{\mathcal{U}}$ such that

 $K_0(\mathcal{U}) \cong Rep(U_q(\mathfrak{sl}_2)).$

(ii) There exists a tangle invariant, defined with tensor product of complexes in U.(iii) This tangle invariant recovers Khovanov homology in the case of links.

*notably building on work by Cautis-Kamnitzer-Morrison and Khovanov-Lauda

(1) Need to extend the construction to tangle cobordisms:
 ⇒ cannot put parities on merge and splits!

(2) Solution: use \mathfrak{gl}_2 -foams \Rightarrow two different saddles:

(3) Difficulty: different parities as original definition \Rightarrow hard to compare

Definition

In a **2-supercategory**, 2-morphisms

- have parities (i.e. $\mathbb{Z}/2\mathbb{Z}$ -grading),
- admit both vertical (0) and horizontal (*) compositions...
- ...but with a *twisted coherence law*:

$$(f \circ g) * (h \circ k) = (-1)^{|g||h|} (f * h) \circ (g * k)$$

super interchange law

Remark: a 2-supercategory is (in general) not a (strict) 2-category!

Proposition (S. 2020)

In any 2-supercategory, the tensor product of complexes exists and preserves homotopy type:

$$A^{\bullet} \simeq B^{\bullet}$$
 and $B^{\bullet} \simeq D^{\bullet} \Rightarrow A^{\bullet} * C^{\bullet} \simeq B^{\bullet} * D^{\bullet}$.