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Khovanov homology

or the topological side of the story
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Definition of Khovanov homology
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Definition of Khovanov homology

NS T VAY

()
(2) F: (2Cob, 1) — (Vec, ®) / | \

C)n—>A::Z[x]/x2 f([]U) Gé F(B:{])[Z]
(3) add signs ~» Koszul rule i \ | i
I

(4) grading = gdim(A) =g+ g~
A=ZoIx = Z[-1] @ Z[1] 1

% Kh*(L) : H’(AéA—>(A®‘A)[1] —>(A®‘A)[2])
L= Xq<
Ly = (@+q9'Y - 2g+qg g + (a+9)¢

3/10



The principle of categorification

Knot Theory

LINK HOMOLOGIES
Why care?
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Categorifying
Uq(sly)-representation theory

or the algebraic side of the story




Fundamentals of U,(sl,)-representation theory

Elementary Uq(sly)-representations:
o C(q) = thetrivial representation Ug(sly) ~ C(q)

o 1% the g-regular representation  Ug(sl,) ~ C(g) x C(q)

Elementary Uq(sl)-intertwiners (i.e. equivariant maps):
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Reshetikhin-Turaev construction: Jones from U,(sl,)-representation theory

Cla) © C(q) = C(q)
FOF
-- Ve Ve VeV
id ®(id —qEF) @ id
-- F - V ® V& V & V
id ®(id —qEF) ® id
-- |- - V ® V¥ V ® V
EQE
Cl@) ® C(q) =  (C(q)

Theorem
This construction recovers the Jones polynomial.
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Khovanov homology from higher U,(sl;)-representation theory
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Khovanov homology from higher U,(sl;)-representation theory

Representation Theory Knot Theory
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0dd Khovanov homology
and supercategorification

A new world?




0dd Khovanov homology, another categorification of Jones

Theorem (Ozsvath-Rasmussen-Szabo 2007)

(even) OKh(L odd
Khovanov \ J Khovanov
homology Xq 0 Xq homology

There exists another categorification of the Jones!

FacTs: Kh(L) and OKh(L) coincide over Z/27Z, but they are distinct over Z
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Khovanov \ J Khovanov
homology Xq 0 Xq homology

There exists another categorification of the Jones!

FacTs: Kh(L) and OKh(L) coincide over Z/27Z, but they are distinct over Z

QUESTION: a construction of odd Khovanov homology
from higher representation theory? [Vaz-S. 22+]
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Comparing even and odd Khovanov homology

(EVEN) KHOVANOV HOMOLOGY obD KHOVANOV HOMOLOGY
f(OLI...LIO) = Zlx1, .. xal /OG- X) 0?(011...110) = A(X1, - Xn)
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Comparing even and odd Khovanov homology

(EVEN) KHOVANOV HOMOLOGY obD KHOVANOV HOMOLOGY
f(OLI...LIO) = Zlx1, .. xal /OG- X) 0?(011...110) = A(X1, - Xn)
N—— S——
n n
(commutative) (anti-commutative)
TQFT “almost” TQFT
F =F OF =—-0OF

Q: how to capture this kind of behaviour?
A: use parities, that is, 2-supercategories.
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0dd Khovanov homology from higher representation theory

Theorem (S.-Vaz 2022)
There exists a 2-supercategory OU, from which one can define a tangle invariant.
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0dd Khovanov homology from higher representation theory

Theorem (S.-Vaz 2022)
There exists a 2-supercategory OU, from which one can define a tangle invariant.

Work in progress (S.-Vaz 2023)
This invariant (very likely) recovers odd Khovanov homology.

FURTHER DIRECTIONS:

- Is odd Khovanov homology functorial? (If so, in which sense?)

- What about other homological invariants? (sl,-homologies, triply-graded homology)
Do they also admit an "odd” version?

Could we discover them through supercategorified quantum groups? (or analogues?)
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Appendix



Khovanov homology from higher U,(sl;)-representation theory

Theorem (Lauda-Queffelec-Rose ~2010)*

(i) There exists a 2-category U such that
Ko(U) = Rep(Uq(sly)).

(ii) There exists a tangle invariant, defined with tensor product of complexes in U.

(iii) This tangle invariant recovers Khovanov homology in the case of links.

*notably building on work by Cautis-Kamnitzer-Morrison and Khovanov-Lauda



Main features of the construction

(1) Need to extend the construction to tangle cobordisms:

= cannot put parities on merge and splits!

(2) Solution: use gl,-foams = two different saddles:

7

even parity

and

N

odd parity

(3) Difficulty: different parities as original definition = hard to compare



2-supercategories

Definition
In a 2-supercategory, 2-morphisms

- have parities (i.e. Z/27Z-grading),
- admit both vertical (o) and horizontal (*) compositions...
- ..but with a twisted coherence law:

(fog)  (hok) = (=1)I9"I(fx h)o (g« k)
super interchange law

Remark: a 2-supercategory is (in general) not a (strict) 2-category!



Proposition (S. 2020)
In any 2-supercategory, the tensor product of complexes exists and preserves homotopy

type:
A® ~B®and B®* ~D®* = A®x(C®~B°®=xD°.
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