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1 Introduction

Nowadays, complex networks are present in many fields (social science, infor-
mation theory, chemistry, biology, computer science, ...) as they allow to model
systems with interacting agents. In many cases, the number of interacting agents
is large (from hundreds to millions of nodes). In order to get information about
the functionality of the underlying system, we are interested in studying the
structure of the network. One way to do that is by partitioning the network into
communities (many links within the clusters and few links between them). In
the last decade, this community detection problem has attracted many interest
in research [1–3, 6, 8–10, 12, 13].

In this paper, we present a method to detect a partition of the network such
that the dynamics of a random walker on the lumped network is a good model
of the dynamics of a random walker in the original network. In particular, our
strategy allows to find the communities in a well clustered network, or to discover
if the network is multipartite. Moreover, in the case of a lumpable Markov chain,
this strategy provides the partition with respect to which the chain is lumpable
[7].

2 The Partitioning Problem

Consider an undirected and unweighted network. The dynamics defined on the
network is the following: being at node i, the probability of jumping to node j

is

pij =

{

Aij

ki
if ki 6= 0

0 otherwise

where ki is the degree of node i and A is the adjacency matrix of the network.
This dynamical process is a Markov chain on the network.

We are interested in partitioning the network so that the dynamics defined
on the blocks is a good model of the dynamics in the original network. More



precisely, we look for a partition S = {S1, ..., Sn} such that for any blocks Sk,
Sl and for any nodes i, j ∈ Sk,

∑

m∈Sl

pim =
∑

m∈Sl

pjm . (1)

Notice this partitioning problem exactly corresponds to the lumpability of the
Markov chain defined on the original network.

In general, the Markov chain defined on the network in not lumpable, which
means that there does not exist a relevant partition S having exactly property
(1). That is why we are interested in the most relevant partition whose dynamics
on the blocks is a good model of the dynamics in the original network. The
blocks of this partition will be called “roles” (this role definition differs from
those proposed in [4, 5, 11]). In next section, we present our strategy to find such
a partition.

3 The Objective Function

In [7], E et al suggest a method in order to partition the network as defined
in previous section. However, in their method they have to fix in advance the
number of roles to detect. As this number is a priori unknown, this seems to be
a big disadvantage of their strategy. That is why we present another strategy in
which the relevant number of roles is provided by the method itself.

The role partition will be represented by a lumped network. The nodes of the
lumped network correspond to the different roles and the weight of the directed
edge from node nk to node nl in the lumped network represents the probability
of jumping from node nk to node nl.

Given a role partition S = {S1, ..., Sn} of the original network, the weight
mkl of the edge from node nk to node nl in the corresponding lumped network
is given by the arithmetic mean of the probabilities of jumping from a node of
role Sk to any node of role Sl, that is

mkl =
1

|Sk|

∑

i∈Sk

p(i, Sl) ,

where p(i, Sl) =
∑

j∈Sl
pij is the probability of jumping from node i to any node

of role Sl.

We would like to find a partition S = {S1, ..., Sn} such that for any nodes i
and j belonging to a same block and for any block Sl, the probabilities p(i, Sl)
and p(j, Sl) are very similar, that is we would like to find a partition S which
minimizes the expression:

n
∑

k,l=1

∑

i∈Sk

(p(i, Sl)−mkl)
2

|Sk|
.



However, the partition with only one block and the partition with the maximum
number of blocks (that is, any node of the original network is a block) are
trivial solutions. So, minimizing previous expression does not provide a relevant
partition. To deal with this problem, we compare the observed “variance” ekl :=
∑

i∈Sk

(p(i,Sl)−mkl)
2

|Sk|
with its expected value E(ekl) in a null model (e.g., the

Erdos-Rényi model). Then, we compute the mean of these differences on all
pairs of blocks.

Consequently, we would like to find a partition minimizing the function:

f(S = {S1, ..., Sn}) =
1

n2

n
∑

k,l=1

ekl − E(ekl) .

Notice that the partition with only one block and the partition with the
maximum number of blocks are not trivial minimizers of f .

We will show the efficiency of this objective function through several exam-
ples.
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