The Minimum Rank Problem of a Graph

Maguy Trefois Jean-Charles Delvenne

May 31, 2011

Some basic notions

Some basic notions

Motivation

Some basic notions

Motivation

Minimum Rank Problem

Some basic notions

Motivation

Minimum Rank Problem

A lower bound for the minimum rank

Some basic notions

Motivation

Minimum Rank Problem

A lower bound for the minimum rank

A graph G consists of :

- a set V(G) : the vertices
- a set E(G) : the edges

An edge is a two-vertex subset.

A graph G consists of :

- a set V(G) : the vertices
- a set E(G) : the edges

An edge is a two-vertex subset.

Example

 $V(G) = \{1, 2, 3, 4\}$ and $E(G) = \{\{1, 2\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\}$

A graph G consists of :

- a set V(G) : the vertices
- a set E(G) : the edges

An edge is a two-vertex subset.

Example

 $V(G) = \{1, 2, 3, 4\}$ and $E(G) = \{\{1, 2\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\}$

A representation of this graph is :

The adjacency matrix of a graph on n vertices (numbered from 1 to n) is a matrix A of order n: the entry (i, j) is the number of edges between vertices i and j.

The adjacency matrix of a graph on n vertices (numbered from 1 to n) is a matrix A of order n: the entry (i, j) is the number of edges between vertices i and j.

Example

$$1 \xrightarrow{2} A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

 $P(\lambda) = \det(A - \lambda I),$

where I denotes the identity matrix.

 $P(\lambda) = \det(A - \lambda I),$

where I denotes the identity matrix.

The roots of the characteristic polynomial are the eigenvalues of the matrix A.

 $P(\lambda) = \det(A - \lambda I),$

where I denotes the identity matrix.

The roots of the characteristic polynomial are the eigenvalues of the matrix A.

The spectrum of A is the set of its eigenvalues $[\lambda_1, ..., \lambda_n]$ with $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n$.

 $P(\lambda) = \det(A - \lambda I),$

where I denotes the identity matrix.

The roots of the characteristic polynomial are the eigenvalues of the matrix A.

The spectrum of A is the set of its eigenvalues $[\lambda_1, ..., \lambda_n]$ with $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n$.

The spectrum of a graph is the spectrum of its adjacency matrix.

Some basic notions

Motivation

Minimum Rank Problem

A lower bound for the minimum rank

We associate to a graph G on n vertices the matrix set :

 $\mathcal{Q}(G) = \{B \in \mathbb{R}^{n \times n} | B = B^T, \text{for } i \neq j, b_{ij} \neq 0 \Leftrightarrow \{i, j\} \in E(G)\}$

We associate to a graph G on n vertices the matrix set :

$$\mathcal{Q}(G) = \{B \in \mathbb{R}^{n \times n} | B = B^T, \text{for } i \neq j, b_{ij} \neq 0 \Leftrightarrow \{i, j\} \in E(G)\}$$

Remark : The diagonal entries are free : they can be zero or nonzero.

We associate to a graph G on n vertices the matrix set :

 $\mathcal{Q}(G) = \{B \in \mathbb{R}^{n \times n} | B = B^T, \text{for } i \neq j, b_{ij} \neq 0 \Leftrightarrow \{i, j\} \in E(G)\}$

Remark : The diagonal entries are free : they can be zero or nonzero.

Question : Let $[\mu_1, ..., \mu_n]$ be a sequence of non increasing real numbers.

Is there a matrix $B \in \mathcal{Q}(G)$ such that $\text{Spectrum}(B) = [\mu_1, ..., \mu_n]$?

We associate to a graph G on n vertices the matrix set :

 $\mathcal{Q}(G) = \{B \in \mathbb{R}^{n \times n} | B = B^T, \text{for } i \neq j, b_{ij} \neq 0 \Leftrightarrow \{i, j\} \in E(G)\}$

Remark : The diagonal entries are free : they can be zero or nonzero.

Question : Let $[\mu_1, ..., \mu_n]$ be a sequence of non increasing real numbers.

Is there a matrix $B \in \mathcal{Q}(G)$ such that $\text{Spectrum}(B) = [\mu_1, ..., \mu_n]$?

It is difficult to answer that question.

We associate to a graph G on n vertices the matrix set :

 $\mathcal{Q}(G) = \{B \in \mathbb{R}^{n \times n} | B = B^T, \text{for } i \neq j, b_{ij} \neq 0 \Leftrightarrow \{i, j\} \in E(G)\}$

Remark : The diagonal entries are free : they can be zero or nonzero.

Question : Let $[\mu_1, ..., \mu_n]$ be a sequence of non increasing real numbers.

Is there a matrix $B \in \mathcal{Q}(G)$ such that $\text{Spectrum}(B) = [\mu_1, ..., \mu_n]$?

It is difficult to answer that question.

⇒ A first step : let $\mu \in \mathbb{R}$. What is the maximum possible multiplicity of eigenvalue μ for a matrix in $\mathcal{Q}(G)$?

Some basic notions

Motivation

Minimum Rank Problem

A lower bound for the minimum rank

Definition The minimum rank of a graph G is :

```
min rank(G) = min{rank(B)|B \in Q(G)}.
```

Definition The minimum rank of a graph G is :

```
min rank(G) = min{rank(B)|B \in Q(G)}.
```

Question : let $\mu \in \mathbb{R}$. What is the maximum possible multiplicity of eigenvalue μ for a matrix in $\mathcal{Q}(G)$?

Definition The minimum rank of a graph G is :

```
min rank(G) = min{rank(B)|B \in Q(G)}.
```

Question : let $\mu \in \mathbb{R}$. What is the maximum possible multiplicity of eigenvalue μ for a matrix in $\mathcal{Q}(G)$?

Answer :

maximum possible multiplicity of eigenvalue $\mu = |G|$ -min rank(G),

where |G| denotes the number of vertices in G.

Some basic notions

Motivation

Minimum Rank Problem

A lower bound for the minimum rank

Definition A hypergraph H consists of :

- a set V(H) : the vertices
- a set E(H) : the hyperedges

A hyperedge of size n is a set of n vertices.

Example

Example

We associate to it the hypergraph H_G : $V(H_G) = V(G)$ and $E(H_G) = \{\{1,2\}, \{1,2,3,4\}, \{2,3,4\}\}.$

Example

We associate to it the hypergraph H_G : $V(H_G) = V(G)$ and $E(H_G) = \{\{1,2\}, \{1,2,3,4\}, \{2,3,4\}\}.$

A color change rule on H_G :

- it is applied to each hyperedge of H_G until no more color change is possible.
- if a hyperedge of size n contains exactly n-1 black vertices, then its unique white vertex is colored in black.

- A color change rule on H_G :
 - it is applied to each hyperedge of H_G until no more color change is possible.
 - if a hyperedge of size n contains exactly n 1 black vertices, then its unique white vertex is colored in black.

The generating set number $Z(H_G)$ is the minimum number of vertices we have to color in black so that after applying the color change rule to H_G no more vertex is white.

The generating set number $Z(H_G)$ is the minimum number of vertices we have to color in black so that after applying the color change rule to H_G no more vertex is white.

$$\Rightarrow Z(H_G) = 2.$$

The generating set number $Z(H_G)$ is the minimum number of vertices we have to color in black so that after applying the color change rule to H_G no more vertex is white.

$$\Rightarrow Z(H_G) = 2.$$

$$\Rightarrow |H_G| - Z(H_G) = 4 - 2 = 2 \le \min \operatorname{rank}(G).$$

The rank of the following matrix :

$$\left(\begin{array}{rrrrr} 1 & -1 & 0 & 0 \\ -1 & 2 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{array}\right)$$

is 2.

As this matrix is in $\mathcal{Q}(G)$, we conclude :

min rank(G) = 2.

Conjecture : For any graph G,

min rank
$$(G) = |H_G| - Z(H_G)$$
.

Thank you for your attention !