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Definition
A graph G consists of :

• a set V (G ) : the vertices

• a set E (G ) : the edges

An edge is a two-vertex subset.

Example

V (G ) = {1, 2, 3, 4} and E (G ) = {{1, 2}, {2, 3}, {2, 4}, {3, 4}}

A representation of this graph is :
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Definition
The adjacency matrix of a graph on n vertices (numbered from 1 to
n) is a matrix A of order n : the entry (i , j) is the number of edges
between vertices i and j .
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⇒ A =









0 1 0 0

1 0 1 1

0 1 0 1

0 1 1 0








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P(λ) = det(A − λI ),

where I denotes the identity matrix.
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Definition
The characteristic polynomial of a symmetric matrix A of order n is:

P(λ) = det(A − λI ),

where I denotes the identity matrix.

The roots of the characteristic polynomial are the eigenvalues of
the matrix A.

The spectrum of A is the set of its eigenvalues [λ1, ..., λn] with
λ1 ≥ λ2 ≥ ... ≥ λn.

The spectrum of a graph is the spectrum of its adjacency matrix.
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Inverse eigenvalue problem of a graph :

We associate to a graph G on n vertices the matrix set :

Q(G ) = {B ∈ R
n×n|B = BT , for i 6= j , bij 6= 0 ⇔ {i , j} ∈ E (G )}
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Inverse eigenvalue problem of a graph :

We associate to a graph G on n vertices the matrix set :

Q(G ) = {B ∈ R
n×n|B = BT , for i 6= j , bij 6= 0 ⇔ {i , j} ∈ E (G )}

Remark : The diagonal entries are free : they can be zero or

nonzero.

Question : Let [µ1, ..., µn] be a sequence of non increasing real

numbers.

Is there a matrix B ∈ Q(G ) such that Spectrum(B) = [µ1, ..., µn]?

It is difficult to answer that question.

⇒ A first step : let µ ∈ R. What is the maximum possible

multiplicity of eigenvalue µ for a matrix in Q(G ) ?
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The minimum rank of a graph G is :

min rank(G ) = min{rank(B)|B ∈ Q(G )}.
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Definition
The minimum rank of a graph G is :

min rank(G ) = min{rank(B)|B ∈ Q(G )}.

Question : let µ ∈ R. What is the maximum possible multiplicity

of eigenvalue µ for a matrix in Q(G ) ?

Answer :

maximum possible multiplicity of eigenvalue µ = |G |−min rank(G ),

where |G | denotes the number of vertices in G .
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Definition
A hypergraph H consists of :

• a set V (H) : the vertices

• a set E (H) : the hyperedges

A hyperedge of size n is a set of n vertices.



13

Example

1 2

�
�
�
�
�
�
�

3 4



13

Example

1 2

�
�
�
�
�
�
�

3 4

We associate to it the hypergraph HG :

V (HG ) = V (G ) and E (HG ) = {{1, 2}, {1, 2, 3, 4}, {2, 3, 4}}.
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A color change rule on HG :

• it is applied to each hyperedge of HG until no more color

change is possible.

• if a hyperedge of size n contains exactly n − 1 black vertices,

then its unique white vertex is colored in black.
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Definition
The generating set number Z (HG ) is the minimum number of
vertices we have to color in black so that after applying the color
change rule to HG no more vertex is white.
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Definition
The generating set number Z (HG ) is the minimum number of
vertices we have to color in black so that after applying the color
change rule to HG no more vertex is white.

⇒ Z (HG ) = 2.

⇒ |HG | − Z (HG ) = 4 − 2 = 2 ≤ min rank(G ).
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The rank of the following matrix :









1 −1 0 0

−1 2 1 1

0 1 1 1

0 1 1 1









is 2.

As this matrix is in Q(G ), we conclude :

min rank(G ) = 2.
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Conjecture : For any graph G ,

min rank(G ) = |HG | − Z (HG ).
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Thank you for your attention !
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