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Minimum rank of directed graphs



e The adjacency matrix is one of the most important tools in
graph theory
e We are often interested in the rank of the adjacency matrix:

- Open problem: characterizing the singular graphs
- The nullity of a bipartite graph is of interest in chemistry

In many applications, the rank of any real matrix described by the
graph is of interest...



A real matrix described by the graph:

0 0 10
-4 V2 00
A=| 5 0 0 0
0 9 00
0 0 00

For any directed graph G,

Q(G) :={AcRICICl . 5, £ 0 & (i,j) is an edge in G}.
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For any directed graph G,
Q(G) := {AcRICICl . 3 £ 0 & (i,)) is an edge in G}.

All the matrices in Q(G) have the same zero-nonzero pattern P:
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For any directed graph G,
Q(G) := {AcRICICl . 3 £ 0 & (i,)) is an edge in G}.

In many applications,

- we have a system described by a graph G but with unknown
weights, namely the matrix A representing the system is in Q(G).

- we need information about the rank of A ...

Examples: chemical reaction networks

A+B=—=

8 The rate constants «,f,
WT 5 ~,9 are unknown.

D+E



For any directed graph G,
Q(G) :={AcRICICl . 5 £ 0 & (i,j) is an edge in G}.
The minimum rank of G is
mr(G) = min{rank(A) : A€ Q(G)}.

Challenging problem: How compute mr(G) 7



Zero forcing number of directed graphs



The zero forcing number of a directed graph G

A color change rule on G: suppose that any node of G is either
black or white. If a node j is the only white out-neighbor of node /,
then change the color of j to black.

The color change rule is repeatedly applied to each node until no
color change is possible.
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The zero forcing number of a directed graph G

A color change rule on G: suppose that any node of G is either
black or white. If a node j is the only white out-neighbor of node /,
then change the color of j to black.

The color change rule is repeatedly applied to each node until no
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The zero forcing number Z(G) of G is defined as the minimum
number of nodes which have to be initially black so that after
applying the color change rule all the nodes of G are black.

Its zero forcing number
Z(G) equals 2.

{1,6} is called a minimum
zero forcing set.




Theorem: For any directed graph G,
|G| — Z(G) < mr(G).

Theorem: The computation of the zero forcing number of any
directed graph is NP-hard.

However, the zero forcing number is mostly interesting in the
case of directed trees.



Minimum rank of directed trees



A tree is a connected undirected graph without cycle.



Put (a) direction(s) on the edges, you obtain a directed tree:



Put (a) direction(s) on the edges, you obtain a directed tree.
Loops are allowed.



Theorem: For any directed graph G,
G| = Z(G) < mr(G).
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Theorem: For any directed graph G,
G| = Z(G) < mr(G).
Theorem: If T is a directed tree,

|T|—Z(T)=mr(T).

= How compute Z(T)?



Let T be a directed tree.

A symmetric edge {/,j}: .

Subgraph T induced by the symmetric
edges of T:

Definition: A directed tree T is said to be of class C* if

ff symmetric edges < f loop-less nodes in Ts.



A directed tree T is said to be of class C* if

# symmetric edges < t loop-less nodes in Ts.

2 <2, 3> 1.

= of class C* = not of class C*



An elimination process:




An elimination process:




An elimination process:

0 0 x 00
* % 0 %
* *x 0 0 % L 00 %
mr(G)=mr| = 0 0 0 | =1+mr
0 « 00
0 « 00O 000 0
00 00O

Theorem: The minimum rank of any directed tree of class C*
can be computed in linear time thanks to the elimination
process.



Zero forcing sets and constraint matchings



Let B =(V, V' E) be a bipartite graph.

A t-matching is a set of t edges such that no two edges have a
common node.

{1,3'},{2,2'},{3,4'} is a
3-matching.

The nodes 1,2,3,2',3 4/
are called matched nodes,
whereas 4,1’ are un-
matched nodes.




A t-matching is a constraint t-matching if it is the only t-matching
between the matched nodes.

{1,3'},{2,2'},{3,4'} is a
NOT a constraint match-
ing.
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A t-matching is a constraint t-matching if it is the only t-matching
between the matched nodes.

{1,3'},{3,2'} is a con-
straint matching.




A t-matching is a set of t edges such that no two edges have a
common node.

A t-matching is a constraint t-matching if it is the only t-matching
between the matched nodes.

A (constraint) t-matching is maximum if there is no (constraint)
s-matching with s > t.



Directed graph and bipartite graph

Let G be a directed graph with nodes 1, ..., N. The bipartite graph
associated with G is Bg = (V, V', E) with:

e V={1,..,N}and V' ={1',.. N}

e {i,j'} € Eif and only if (j, /) is an edge in G.

K




%

{3} is a minimum zero forcing set of G with chronological list of
forces:

4—-521—-13—4
iff

{2,4'},{1,1'},{4,3'} is a maximum constraint matching in Bg.



Conclusion



We have presented:
- the notion of minimum rank of a directed graph
- a graph invariant: the zero forcing number

for any directed graph G, |G| — Z(G) < mr(G)

the computation of Z(G) is NP-hard

for any directed tree T, |T| — Z(T) = mr(T)

the minimum rank of any directed tree of class C* is computable in
linear time

- the equivalence between the minimum zero forcing sets in a
directed graph G and the maximum constraint matchings in the
associated bipartite graph B¢



We have presented:

- the notion of minimum rank of a directed graph

[«5)

graph invariant: the zero forcing number

for any directed graph G, |G| — Z(G) < mr(G)

the computation of Z(G) is NP-hard

for any directed tree T, |T| — Z(T) = mr(T)

the minimum rank of any directed tree of class C* is computable in
linear time

- the equivalence between the minimum zero forcing sets in a
directed graph G and the maximum constraint matchings in the
associated bipartite graph B¢

Future work: finding an algorithm for the computation of the zero
forcing number/minimum rank of any directed tree.
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