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• The adjacency matrix is one of the most important tools in
graph theory

• We are often interested in the rank of the adjacency matrix:

- Open problem: characterizing the singular graphs

- The nullity of a bipartite graph is of interest in chemistry

- ...

In many applications, the rank of any real matrix described by the
graph is of interest...
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A real matrix described by the graph:

A =













0 0 1 0 0

−4
√

2 0 0 π

56 0 0 0 2
0 9 0 0 0
0 0 0 0 0













For any directed graph G ,

Q(G ) := {A ∈ R
|G |×|G | : aij 6= 0 ⇔ (i , j) is an edge in G}.
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For any directed graph G ,

Q(G ) := {A ∈ R
|G |×|G | : aij 6= 0 ⇔ (i , j) is an edge in G}.

All the matrices in Q(G ) have the same zero-nonzero pattern P :

P =













0 0 ⋆ 0 0
⋆ ⋆ 0 0 ⋆

⋆ 0 0 0 ⋆

0 ⋆ 0 0 0
0 0 0 0 0
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For any directed graph G ,

Q(G ) := {A ∈ R
|G |×|G | : aij 6= 0 ⇔ (i , j) is an edge in G}.

In many applications,

- we have a system described by a graph G but with unknown
weights, namely the matrix A representing the system is in Q(G ).

- we need information about the rank of A ...

Examples: chemical reaction networks
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The rate constants α, β,

γ, δ are unknown.
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For any directed graph G ,

Q(G ) := {A ∈ R
|G |×|G | : aij 6= 0 ⇔ (i , j) is an edge in G}.

The minimum rank of G is

mr(G ) = min{rank(A) : A ∈ Q(G )}.

Challenging problem: How compute mr(G ) ?
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The zero forcing number of a directed graph G

A color change rule on G : suppose that any node of G is either
black or white. If a node j is the only white out-neighbor of node i ,
then change the color of j to black.

The color change rule is repeatedly applied to each node until no
color change is possible.
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The zero forcing number Z (G ) of G is defined as the minimum
number of nodes which have to be initially black so that after
applying the color change rule all the nodes of G are black.

Its zero forcing number
Z (G ) equals 2.

{1, 6} is called a minimum
zero forcing set.
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Theorem: For any directed graph G ,

|G | − Z (G ) ≤ mr(G ).

Theorem: The computation of the zero forcing number of any
directed graph is NP-hard.

However, the zero forcing number is mostly interesting in the
case of directed trees.
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A tree is a connected undirected graph without cycle.
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Put (a) direction(s) on the edges, you obtain a directed tree:
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Put (a) direction(s) on the edges, you obtain a directed tree.
Loops are allowed.
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Theorem: For any directed graph G ,

|G | − Z (G ) ≤ mr(G ).
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Theorem: For any directed graph G ,

|G | − Z (G ) ≤ mr(G ).

Theorem: If T is a directed tree,

|T | − Z (T ) = mr(T ).

⇒ How compute Z (T )?
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Let T be a directed tree.

A symmetric edge {i , j}:

Subgraph Ts induced by the symmetric
edges of T :

Definition: A directed tree T is said to be of class C ⋆ if

♯ symmetric edges ≤ ♯ loop-less nodes in Ts.
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A directed tree T is said to be of class C ⋆ if

♯ symmetric edges ≤ ♯ loop-less nodes in Ts .

2 ≤ 2.

⇒ of class C ⋆

3 > 1.

⇒ not of class C ⋆
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An elimination process:

P =













0 0 ⋆ 0 0
⋆ ⋆ 0 0 ⋆

⋆ 0 0 0 ⋆

0 ⋆ 0 0 0
0 0 0 0 0













mr(G ) = mr













0 0 ⋆ 0 0
⋆ ⋆ 0 0 ⋆

⋆ 0 0 0 ⋆

0 ⋆ 0 0 0
0 0 0 0 0
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An elimination process:

P =













0 0 ⋆ 0 0
⋆ ⋆ 0 0 ⋆

⋆ 0 0 0 ⋆

0 ⋆ 0 0 0
0 0 0 0 0













mr(G ) = mr













0 0 ⋆ 0 0
⋆ ⋆ 0 0 ⋆

⋆ 0 0 0 ⋆

0 ⋆ 0 0 0
0 0 0 0 0













= 1 + mr









⋆ ⋆ 0 ⋆

⋆ 0 0 ⋆

0 ⋆ 0 0
0 0 0 0
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An elimination process:

mr(G ) = mr













0 0 ⋆ 0 0
⋆ ⋆ 0 0 ⋆

⋆ 0 0 0 ⋆

0 ⋆ 0 0 0
0 0 0 0 0













= 1 + mr









⋆ ⋆ 0 ⋆

⋆ 0 0 ⋆

0 ⋆ 0 0
0 0 0 0









Theorem: The minimum rank of any directed tree of class C ⋆

can be computed in linear time thanks to the elimination
process.
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Let B = (V ,V ′,E ) be a bipartite graph.

A t-matching is a set of t edges such that no two edges have a
common node.

{1, 3′}, {2, 2′}, {3, 4′} is a
3-matching.

The nodes 1, 2, 3, 2′, 3′, 4′

are called matched nodes,
whereas 4, 1′ are un-
matched nodes.
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A t-matching is a constraint t-matching if it is the only t-matching
between the matched nodes.

{1, 3′}, {2, 2′}, {3, 4′} is a
NOT a constraint match-
ing.
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A t-matching is a constraint t-matching if it is the only t-matching
between the matched nodes.

{1, 3′}, {3, 2′} is a con-
straint matching.
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A t-matching is a set of t edges such that no two edges have a
common node.

A t-matching is a constraint t-matching if it is the only t-matching
between the matched nodes.

A (constraint) t-matching is maximum if there is no (constraint)
s-matching with s > t.
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Directed graph and bipartite graph

Let G be a directed graph with nodes 1, ...,N. The bipartite graph
associated with G is BG = (V ,V ′,E ) with:

• V = {1, ...,N} and V ′ = {1′, ...,N ′}
• {i , j ′} ∈ E if and only if (j , i) is an edge in G .
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{3} is a minimum zero forcing set of G with chronological list of
forces:

4 → 2, 1 → 1, 3 → 4

iff

{2, 4′}, {1, 1′}, {4, 3′} is a maximum constraint matching in BG .
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We have presented:

- the notion of minimum rank of a directed graph

- a graph invariant: the zero forcing number

• for any directed graph G , |G | − Z (G) ≤ mr(G)
• the computation of Z (G) is NP-hard

• for any directed tree T , |T | − Z (T ) = mr(T )
• the minimum rank of any directed tree of class C

⋆ is computable in

linear time

- the equivalence between the minimum zero forcing sets in a
directed graph G and the maximum constraint matchings in the
associated bipartite graph BG
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We have presented:
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- a graph invariant: the zero forcing number

• for any directed graph G , |G | − Z (G) ≤ mr(G)
• the computation of Z (G) is NP-hard

• for any directed tree T , |T | − Z (T ) = mr(T )
• the minimum rank of any directed tree of class C

⋆ is computable in

linear time

- the equivalence between the minimum zero forcing sets in a
directed graph G and the maximum constraint matchings in the
associated bipartite graph BG

Future work: finding an algorithm for the computation of the zero
forcing number/minimum rank of any directed tree.
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