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Abstract— This paper examines the strong structural control-
lability of networked systems. We use the notion of zero forcing
set, a concept borrowed from combinatorial matrix theory, in
order to solve the problem of determining a minimum-size input
node set S so that a system with a self-damped/undamped tree
structure is strongly S-controllable.

. INTRODUCTION

In many real systems, the interaction strengths between
the different components of the system are unknown or only
partially known. In such a case, determining the controlla-
bility of the system from classical Kalman controllability
condition becomes inapplicable. An alternative is to use the
structure of the system in order to get information about
its controllability. That is why weak and strong structural
controllability has been introduced [1], [2].

Weak structural controllability can be studied from the
maximum matchingsin the network [3] and provides a lower
bound on the minimum number of nodes which have to
be controlled for classical control over the system. Instead,
the strong structural controllability (or strong controllability
for short) can be determined from constraint matchings in a
bipartite graph defined from the network [4] and it provides
an upper bound on the minimum number of nodes to be
controlled for classical control of the whole system.

Given a networked system and an outside controller on this
system, the input node set is the set of nodes whose state
is directly influenced by the controller. In the framework of
the strong structural controllability, the tricky point is finding
a minimum-size node set .S for which it is possible to set
up an outside controller directly influencing the state of the
nodes in S and strongly controlling the system.

Finding such a node set, called minimum-size input node
set, for strong controllability is an NP-hard problem. To
our best knowledge, there is currently no agorithm for
systems with some particular structure. We partially solve
this problem when the system is a tree.

In this paper, we solve the problem of determining a
minimum-size input node set S for strong controllability
whenever the system structure is a tree and either every
node’s state influences itself (self-damped systems) or every
node's state is influenced by the state of some other nodes but
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not itself (undamped systems). To do so, we use the notion
of zero forcing set, a concept borrowed from combinatorial
matrix theory. Our method consists in finding a minimum
zero forcing set in the simpl e tree associated with the system.

The outline of the paper is as follows: in Section Il we
provide some background used throughout the rest of the
paper. The strong structural controllability of a system is
presented in Section I11. Section IV is devoted to the notion
of zero forcing set and to their role in the study of the strong
structural controllability of a system. Finaly in Section V,
we solve the problem of determining a minimum-size input
node set for the strong controllability of a system with a self-
damped/undamped tree structure. Section VI draws a short
conclusion.

Il. NOTATIONS AND PRELIMINARIES

In this section, we provide some background used in the
rest of the paper.

An n x m zero-nonzero pattern (or pattern for short) is
an n x m matrix whose each entry is either zero or a star.

A realization A of a pattern A is areal matrix whose any
entry is nonzero if and only if the corresponding entry in A
is a star. We write A € A.

Given an n x m pattern A, we define the bipartite graph
By, asfollows: the node sets of By are V' = {1,...,n} and
V' ={l',..,m'}. Besides, {i,j'} is an edge in Bp if and
only if (4, 7)-entry of A is a dtar.

A directed graph G' on n nodes defines an n x n. pattern A
whose (i, j)-entry is a star if and only if there is a directed
edge from node j to node i in G. The bipartite graph B¢
associated with G is by definition the bipartite graph B p
associated with A.

A t-matching in a bipartite graph is a set of ¢ edges such
that no two edges share a node. Given a matching, the nodes
of the bipartite graph connected to an edge in the matching
are called matched nodes, whereas the other nodes are called
unmatched nodes. A ¢-matching is said to be constraint if
there is no other t-matching with the same matched nodes.

By abuse of language, a constraint matching in the bi-
partite graph associated with a pattern A is referred as a
constraint matching of A.

Let T be anode subset of adirected graph G. A constraint
T-less matching in the bipartite graph B¢ is a constraint
matching that does not contain edges of the form {4, ¢’} with
¢ € T. In particular, if T contains all the nodes of G, then a
constraint T'-less matching is referred as a constraint self-less
matching.



Given an n x m pattern A and anode set S C {1,...,n},
A(S|.) is the pattern obtained from A by deleting the rows
indexed by S.

Given a directed graph G, G x denotes the graph obtained
from G by putting a loop on each node of G. Similarly, the
pattern obtained from a pattern A by putting stars along the
diagonal of A is denoted A .

Given a graph G on n nodes and a node subset S =
{i1, ..., im }, the n. x m pattern B(S) is defined as

B(S> = [eb1|eb2| eim]a

where any e; is the n x 1 pattern with a star in its i*" row
and O's otherwise.

1. STRONG STRUCTURAL CONTROLLABILITY

Consider a dynamical networked system represented by
the directed graph G and consider an outside controller u(t)
directly influencing the state of the nodes in a node subset
S. Such a set is called the input node set of the controlled
system. The dynamics of the system is then described by the
differentia equation:

&(t) = Azx(t) + Bu(t),

where A is aredization of the pattern A defined from G and
B is arealization of the pattern B(S). This latter pattern has
been defined so that only the nodes in S are controlled by
the outside controller u(t).

If the state matrix A is not completely known, Kalman's
classical condition for controllability becomes inapplicable.
Therefore, the structural controllability has been introduced.
We distinguish two kinds of structural controllability: the
weak one and the strong one. They provide respectively
a lower and an upper bound on the minimum number of
nodes that have to be controlled by the outside controller for
classical control over the whole system.

Below, we present the strong structural controllability.
For a description of the weak structural controllability and
interesting references see [3].

Definition 3.1: The pair (A,B(S)) is strongly S-
controllable if any realization (A, B) is controllable (in the
sense that the controllability matrix is full rank).

The following test criterion for strong controllability was
proved in [4]. Define V; as the set of nodes with a loop in
the original graph G. In terms of dynamics, this means that
the state of each node in V, influences itself.

Theorem 3.1: [4] Consider a system represented by a di-
rected graph G on n nodes and a node set S with cardinality
m < n. The par (A,B(S)) is strongly S-controllable if
and only if A(S].) has a constraint (n — m)-matching and
A, (S].) has a congtraint V-less (n — m)-matching.

Given a node set S, a O(n?) agorithm was presented in
[4] in order to test if the system is strongly .S-controllable.
If not, it provides an input node set S containing S such that
the system is strongly S-controllable.

Finding a minimum-size input node set for strong control-
lahility is an NP-hard problem. However, this problem may

be easy in the case of systems with some particular structure.
The following theorem proved in [4] gives moreinsight about
minimum-size input node sets for strong controllability of
self-damped/undamped systems.

A self-damped graph is a graph with a loop on each node
(every node’s state influences itself), whereas an undamped
graph is a loop-free graph (every node's state is influenced
by the state of some other nodes but not itself).

Theorem 3.2: [4] Consider a system modeled by a di-
rected graph G on n nodes which is self-damped or un-
damped. Consider a maximum constraint self-less (n — m)-
matching in the bipartite graph (V, V', E) associated with
G, with unmatched nodes S’ c V' and S C V. Then S is
a minimum-size input node set for strong controllability of
the system.

This theorem provides thus a way to obtain a minimum-
size input node set in the case of a self-damped/undamped
system. However, computing a maximum constraint match-
ing in a bipartite graph is known to be NP-hard [5].

In Section 5, we solve the problem of computing a
minimum-size input node set when the system structure is a
self-damped/undamped tree. To do so, we use the notion of
zero forcing set. In the next section, we define this notion
and we show how it is related to the strong controllability
of the system.

IV. ZERO FORCING SETS AND STRONG
CONTROLLABILITY

This section is devoted to the notions of zero forcing
number and zero forcing set and to the equivalence between
the zero forcing sets in a directed graph G and the constraint
matchings in the bipartite graph B¢ associated with G.
Thanks to this equivalence, we restate the results presented
in the previous section about strong controllability in terms
of zero forcing sets. These will be useful in the next
section in order to determine a minimum-size input node
set for the strong controllability of a system with a self-
damped/undamped tree structure.

In order to present the zero forcing number/sets of a
directed graph G, we need to define the following color
change rule on the graph: suppose that any node of G is
either black or white. If exactly one out-neighbor j of node
i is white (possibly j = 1), then change the color of j to
black. Repeat this rule on each node of G until no more
color change is possible.

When the color change ruleis applied to a node i in order
to change the color of node j, we say that i forces j and we
write i — j.

A zero forcing set of G is then a set of nodes in G such
that if only these nodes areinitially black, then after applying
the color change rule repeatedly on G, the whole graph is
black.

The zero forcing number of G, denoted Z(G), is the
minimum size of a zero forcing set in G.

A minimum zero forcing set is then a zero forcing set of
size Z(G) in G.



In order to state the theorem showing the equivalence
between the zero forcing sets in G and the constraint
matchings in the bipartite graph B¢, we need the definition
of a chronological list of forces.

Given a zero forcing set of a directed graph G, we can list
the forces in order in which they were performed in order to
color the graph in black. Such alist is called a chronological
list of forces.

Theorem 4.1: Let G be a directed graph and B¢ the
bipartite graph associated with G. Then, a node subset of
G is a zero forcing set of G with a chronological list of
forces j; — i1,j2 — i2,...,5: — 1y if and only if M =
{{i1, 41}, {ie, 453, .- {ir, 41} } 1S @ constraint matching in
Bg.

Thanks to this equivalence, we can restate Theorems 3.1
and 3.2 as follows.

Theorem 4.2: Consider a system represented by a di-
rected graph G on n nodes and a node set .S with cardinality
m < n. The pair (A, B(S)) is strongly S-controllable if and
only if S is a zero forcing set of G« for which there is a
chronological list of forces that does not contain a force of
the form ¢ — 4 with ¢ € V; and a zero forcing set of G.

Theorem 4.3: Consider a system modeled by a directed
graph G on n nodes which is self-damped or undamped.
Consider a minimum zero forcing set S of G« for which
there is a chronological list of forces with no forces of the
form i — 4. Then, S is a minimum-size input node set for
the strong controllability of the system.

Thanks to these results, we completely solve the prob-
lem of determining a minimum-size input node set for
strong controllability in the case of a system with a self-
damped/undamped tree structure.

V. THE CASE OF THE SYSTEMS WITH A TREE STRUCTURE

In this section, we present an agorithm computing a
minimum-size input node set for strong controllability of a
system with a self-damped/undamped tree structure.

Systems with a tree structure appear in many different
fields. For example, tree-structured organizations are de-
signed in multiagent systems|[7], and tree-structured stochas-
tic processes are used in order to model complex data [8].

As previously, the term directed graph refers to a directed
graph alowing loops. However, for the scope of our ago-
rithm, we distinguish the directed graphs that allow loops
from the simple directed graphs, that prohibit loops. In a
simple directed graph G, the color change rule is dlightly
different: suppose that any node of G is either black or
white. If node i is black and if node j is the only white out-
neighbor of 4, then change the color of j to black. Therefore,
unlike in a directed graph alowing loops, in the case of a
simple directed graph a node must be black to be able to
force one of its out-neighbors.

Notice that a directed graph G with no loops can be
considered either as a directed graph allowing loops or as
a simple directed graph. According to the case, the color
change rule on G is different.

Using this new color change rule, the zero forcing number
and the zero forcing sets of a simple directed graph are
defined as in the case of a directed graph alowing loops.

Consequently, notice the minimum zero forcing set S in
Theorem 4.3 meets the definition of a minimum zero forcing
set in the simple directed graph G, associated with G, i.e.
G is obtained from G by deleting its loops.

Corollary 5.1: Consider a system modeled by a sdlf-
damped/undamped directed graph G. Let .S be a minimum
zero forcing set in the simple graph G, associated with G.
Then, S is a minimum-size input node set for the strong
controllability of the system.

The previous corollary claims that a minimum zero forcing
set in the simple directed graph G is a minimum-size
input node set for the strong controllability of G. However,
computing a minimum zero forcing set in a simple directed
graph is known to be NP-hard.

Below, we present a O(n?) algorithm that computes a
minimum zero forcing set in a simple tree on n nodes.

The term tree refers equivalently to an undirected tree
or a symmetric directed tree, which is obtained from an
undirected tree by replacing each edge {i, j} by both directed
edges (4, 7), (j, ). Trees alow loops.

The color change rules defined above are the same in
the case of a (simple) directed graph as in an (simple)
undirected graph: instead of considering the out-neighbors,
the neighbors are taken into account.

With the algorithm presented below, the problem of com-
puting a minimum-size input node set for strong controllabil-
ity of a system with a self-damped/undamped tree structure
is completely solved.

In order to present the algorithm, we need the following
definition and proposition.

Consider a simple tree 7" and a node v of 7. Then, T —
v denotes the forest obtained from 7' by removing node v
as well as the edges connected to v. Denote T}, ..., T* the
connected components of 7' — v. If at least two of them are
paths connected to v from one of their endpoints, then v is
said to be an appropriate node.

Proposition 5.1: [6] Any tree on at least three nodes has
an appropriate node.

Our agorithm is stated in Algorithm 1.

Since finding an appropriate node can be done in O(n)
time from a depth-first search and since at each iteration at
least three nodes are removed from G, our algorithm runsin
O(n?) time.

VI. CONCLUSION

Computing a minimum-size input node set for the strong
controllability of a networked system is NP-hard. In this
paper, we have solved this problem in the case of a self-
damped or an undamped system with a tree structure. Our
method is based on the notion of zero forcing set in asimple
graph, a concept borrow from combinatorial matrix theory.
For a tree on n nodes, our algorithm runs in O(n?) time.
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Algorithm 1:

Input: a simple tree T;

Output: a minimum zero forcing set S of T';
Set S = 0;

G=T;

While G is non empty

- if G is aforest whose each connected component has
less than 3 nodes, then put a node of each component
in S and set G = ();

- else consider an appropriate node v of G
in a connected component T; of G;

o denote k(> 2) the number of connected
components of T; — v which are paths connected
to v from an endpoint;

o for k — 1 among them, put in S the endpoint
which is a leaf in T5;

« remove v from G as well as the k paths connected
to v from an endpoint;

end



