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Strong Controllability of Networked Systems
and Minimum Rank of a Graph:
what can we compute ?
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Strong Structural Controllability Minimum Rank of a Graph

Definition: The minimum rank of A Is the
minimum possible rank for a realization of A.

Consider the system described by the equation:
#(t) = Az(t) + B(S)u(t)

where the matrix B(S) is such that only the nodes of G(A)
which are in S are directly controlled by the outside
controller.

Question: How compute the minimum rank of A ?

Tool: The zero forcing number (ZFN) Z(G) of G(A)

A color change rule (CCR):

Goal: Identify a minimum number 7, of nodes to control in
order to have full control over the system.

Initial coloring Step 1 Step 2 Step 3

Definition [1]. The system (A,B(S)) is strongly s-
controllable if ALL realizations (A,B) are controllable.

Interest: Denote m := min{|S| : (4, B(9)) is strongly s-controllable}. 3 4 )

Then,n < m .
Definition [2]: The ZFN of a graph is the minimum

number of nodes which have to be initially black so
that after the CCR the whole graph is black.

Theorem [2]: If G is a loop directed tree, |G| — Z(G) = mr(G)

Question: How to find a set S with minimum size such
that (A,B(S)) is strongly s-controllable “?

Tool: A maximum constraint matching in a bipartite graph

Notation: A, is the matrix A with stars along the diagonal.
| | Problem: How compute Z(G) ?
Theorem [1]. (A,B(S)) Is strongly s-controllable iff the

bipartite graphs associated to A(S|.) and A.(S|.) have both a
constraint matching of size 4-|S]|.

Theorem [3]: Computing Z(G) is equivalent to compute the
size of a maximum constraint matching in the bipartite

. . _ graph associated with G.
Remark: This theorem holds only if A has a zero diagonal.

Problem: Computing a maximum constraint matching (and Question: Is it easy for trees ?

even its size) in a bipartite graph is NP-hard.

Minimum Rank of an Undamped Loop Directed Tree
Example

Minimum Rank of a Loop Oriented Tree
Example
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Theorem [3]: The minimum rank of any loop oriented tree
can be computed in linear time thanks to the elimination
process.

Theorem: The minimum rank of any undamped loop directed
tree can be computed in linear time thanks to the elimination
pProcess.
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Conclusion

If A(S|.) and Ay(S|.) are (a disjoint union of) loop oriented
trees, then the strong s-controllability of the system (A,B(S))
can be studied in linear time.




