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A  =  G(A):  

Strong	
  Structural	
  Controllability	
  
Consider the system described by the equation:  

Goal: Identify a minimum number     of nodes to control in 
order to have full control over the system. 
Definition [1]: The system (A,B(S)) is strongly s-
controllable if ALL realizations (A,B) are controllable. 
Interest: Denote  
Then,            . 
Question: How to find a set     with minimum size such 
that (A,B(S)) is strongly s-controllable ?  
Tool: A maximum constraint matching in a bipartite graph 

Theorem [1]: (A,B(S)) is strongly s-controllable iff  the 
bipartite graphs associated to A(S|.) and AX(S|.) have both a 
constraint matching of size 4-|S|. 

Problem: Computing a maximum constraint matching (and 
even its size) in a bipartite graph is NP-hard. 

Minimum	
  Rank	
  of	
  a	
  Graph 

Minimum	
  Rank	
  of	
  a	
  Loop	
  Oriented	
  Tree Minimum	
  Rank	
  of	
  an	
  Undamped	
  Loop	
  Directed	
  Tree 

Definition: The minimum rank of A is the 
minimum possible rank for a realization of A. 
Question: How compute the minimum rank of A ? 
Tool: The zero forcing number (ZFN) Z(G) of G(A) 
A color change rule (CCR): 

Definition [2]: The ZFN of a graph is the minimum 
number of nodes which have to be initially black so 
that after the CCR the whole graph is black. 
Theorem [2]: If     is a loop directed tree,  

Problem: How compute Z(G) ? 
Theorem [3]: Computing Z(G) is equivalent to compute the 
size of a maximum constraint matching in the bipartite 
graph associated with G. 

Question: Is it easy for trees ? 

Example  

An elimination process: 

T: 

A(T) =  

Theorem [3]: The minimum rank of any loop oriented tree 
can be computed in linear time thanks to the elimination 
process. 

Example 
T: 

A(T) =  

Theorem: The minimum rank of any undamped loop directed 
tree can be computed in linear time thanks to the elimination 
process. 

An elimination process: 

where the matrix B(S) is such that only the nodes of G(A) 
which are in S are directly controlled by the outside 
controller. 

Notation: AX is the matrix A with stars along the diagonal.  

Conclusion 
If A(S|.) and AX(S|.) are (a disjoint union of) loop oriented 
trees, then the strong s-controllability of the system (A,B(S)) 
can be studied in linear time. 

Remark: This theorem holds only if A has a zero diagonal. 


