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Motivation: the finite-time average consensus problem

We have:

• n communicating agents with an initial position

• a communication topology

At each time step:

• each agent sends its current position to some other agents

according to the communication pattern

• with the received information, each agent changes its position

The goal: after a finite time, all the agents meet at the average of

their initial positions
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Vector of initial positions:

~x(0)

Dynamics:

~x(t + 1) = At+1.~x(0)

The matrix A respects the communication topology:

A =









0 ? 0 0

0 0 0 ?
0 ? 0 0

? 0 ? 0








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~x(t + 1) = At+1.~x(0)

The matrix A is a solution to the consensus if:

• A is of the form









0 ? 0 0

0 0 0 ?
0 ? 0 0

? 0 ? 0









• After a finite time m, Am = 1
4
.







1 . . . 1
...

...
...

1 . . . 1






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~x(t + 1) = At+1.~x(0)

The matrix A is a solution to the consensus if:

• A is of the form









0 ? 0 0

0 0 0 ?
0 ? 0 0

? 0 ? 0









• After a finite time m, Am = 1
4
.







1 . . . 1
...

...
...

1 . . . 1







Question: for which communication patterns is it possible to reach

the consensus ?
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We should study the solutions to the equation:

Am =
1

n
.







1 . . . 1
...

...
...

1 . . . 1






,

where A ∈ R
n×n.
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We should study the solutions to the equation:

Am =
1

n
.







1 . . . 1
...

...
...

1 . . . 1






,

where A ∈ R
n×n.

⇒ difficult to tackle directly

Simpler problem: study the solutions to:

Am =







1 . . . 1
...

...
...

1 . . . 1






,

where A ∈ {0, 1}n×n .
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Outline

Factorization problem
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Factorizations into commuting factors

General form of a root of In with minimum rank

A root class of In

Conclusion
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We are looking for the solutions to

m
∏

i=1

Ai = A1A2...Am = In,

where

- In is the n × n matrix with all ones

- each factor Ai is an n × n binary matrix.
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We are looking for the solutions to

m
∏

i=1

Ai = A1A2...Am = In,

where

- In is the n × n matrix with all ones

- each factor Ai is an n × n binary matrix.

In particular, we are investigating the solutions to:

Am = In,

where A is a binary matrix.
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Factorization problem

The De Bruijn matrices

Factorizations into commuting factors

General form of a root of In with minimum rank

A root class of In

Conclusion



10

Lemma
If A ∈ {0, 1}n×n is such that Am = In, then

- A is p-regular, i.e A.1 = p.1 and 1
T .A = p.1T

- n = pm
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Lemma
If A ∈ {0, 1}n×n is such that Am = In, then

- A is p-regular, i.e A.1 = p.1 and 1
T .A = p.1T

- n = pm

Definition
The De Bruijn matrix of order p and dimension n is a matrix of the
form:

D(p, n) := 1p ⊗ In/p ⊗ 1
T
p ,

where

- In/p is the identity matrix of dimension n/p

- 1p is the p × 1 vector with all ones

- ⊗ denotes the Kronecker product

Moreover, it is imposed that n = pm, for some integer m.
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D(2, 8) =

























1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1
























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D(2, 8) =

























1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

























Proposition

The De Bruijn matrix D(p, n) with n = pm is such that

D(p, n)m = In.
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D(2, 8) =

























1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

























Proposition

The De Bruijn matrix D(p, n) with n = pm is such that

D(p, n)m = In.

Question: Can we characterize all the roots from the De Bruijn

matrices ?
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Factorization into commuting factors:

Looking for the solutions to:

AB = BA = In,

where

- A and B are binary matrices

- A is p-regular

- B is l -regular
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Factorization problem:

AB = BA = In,

where A is p-regular and B is l -regular.

Theorem
If A and B are commuting factors, then

• p.l = n

• rank(A) ≥ n/p and rank(B) ≥ n/l

• if rank(A) = n/p (resp. rank(B) = n/l ), then there exist
permutation matrices P1,P2 such that

P1APT
2 = D(p, n) (resp. P2BPT

1 = D(l , n)).



15

Question: Is it possible that rank(A) > n/p ?

A =









1 0 1 0

0 1 0 1

1 0 0 1

0 1 1 0









B =









1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1









- A and B are 2-regular

- AB = BA = I4

- BUT, rank(A) = 3 > 4/2
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Question: Can we choose P1 = P2 ?

A =

















0 1 0 1 0 1

1 0 1 0 1 0

0 1 0 1 0 1

1 0 1 0 1 0

0 1 0 1 0 1

1 0 1 0 1 0

















B =

















1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

















- A is 3-regular, B is 2-regular and AB = BA = I6

- rank(A) = 6/3, rank(B) = 6/2

- BUT, A is not isomorphic to D(3, 6) since

A2 =

















3 0 3 0 3 0

0 3 0 3 0 3

3 0 3 0 3 0

0 3 0 3 0 3

3 0 3 0 3 0

0 3 0 3 0 3

















,D(3, 6)2 =

















2 2 2 1 1 1

1 1 1 2 2 2

2 2 2 1 1 1

1 1 1 2 2 2

2 2 2 1 1 1

1 1 1 2 2 2
















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Corollary

Let A be a binary matrix satisfying Am = In. Then,

- A is p-regular

- if rank(A) = n/p, then there are permutation matrices P1,P2

such that
P1APT

2 = D(p, n).

As previously,

- A may have a rank greater than n/p

- A may not be isomorphic to D(p, n) even though rank(A) = n/p
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Factorization problem

The De Bruijn matrices

Factorizations into commuting factors

General form of a root of In with minimum rank

A root class of In

Conclusion
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Theorem
Let A ∈ {0, 1}n×n such that Am = In, A is p-regular and pm = n.
If rank(A) = n/p, then A is isomorphic to a matrix

P1D(p, n),

where P1 = diag(Q1, ...,Qp) with each Qi ∈ {0, 1}n/p×n/p is a
permutation matrix.
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Theorem
Let A ∈ {0, 1}n×n such that Am = In, A is p-regular and pm = n.
If rank(A) = n/p, then A is isomorphic to a matrix

P1D(p, n),

where P1 = diag(Q1, ...,Qp) with each Qi ∈ {0, 1}n/p×n/p is a
permutation matrix.

Not all the matrices of that form are solutions. Indeed, consider

A =

























1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1

0 0 0 0 1 1 0 0

0 0 1 1 0 0 0 0
























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A 2-circulant matrix:













0 1 0 1 0

1 0 0 1 0

1 0 1 0 0

0 0 1 0 1

0 1 0 0 1













Theorem (Wu, 2002)

Let A ∈ {0, 1}n×n be g-circulant and such that Am = In. If

- gm ≡ 0 mod n

- A is p-regular,

then A is isomorphic to D(p, n).
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Definition
A nice permutation matrix is built as follows: start with a p × p
permutation matrix. Then, replace all the zeros by a zero p × p
matrix and each one by a p × p permutation matrix. Repeat this m
times. You obtain a permutation matrix of dimension pm.
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Definition
A nice permutation matrix is built as follows: start with a p × p
permutation matrix. Then, replace all the zeros by a zero p × p
matrix and each one by a p × p permutation matrix. Repeat this m
times. You obtain a permutation matrix of dimension pm.

Theorem
Any matrix of the form P1D(p, n) (n = pm) with P1 a nice
permutation matrix is a m-th root of In.
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Definition
A nice permutation matrix is built as follows: start with a p × p
permutation matrix. Then, replace all the zeros by a zero p × p
matrix and each one by a p × p permutation matrix. Repeat this m
times. You obtain a permutation matrix of dimension pm.

Theorem
Any matrix of the form P1D(p, n) (n = pm) with P1 a nice
permutation matrix is a m-th root of In.

Theorem
Any nice permutation of the De Bruijn matrix D(p, n) is isomorphic
to D(p, n).
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General form of a root of In with minimum rank
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We have investigated the solutions to

Am = In,

over the n × n binary matrices.
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Am = In,

over the n × n binary matrices.

• If A is a solution, then

- A is p-regular and n = pm

- rank(A) ≥ n/p
- rank(A) = n/p implies that A is essentially a De Bruijn matrix
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where any Qi is a permutation matrix.
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We have investigated the solutions to

Am = In,

over the n × n binary matrices.

• If A is a solution, then

- A is p-regular and n = pm

- rank(A) ≥ n/p
- rank(A) = n/p implies that A is essentially a De Bruijn matrix

• Any root of In with minimum rank is isomorphic to a matrix of

the form

diag(Q1, ...,Qp).D(p, n),

where any Qi is a permutation matrix.

• Any nice permutation of the De Bruijn matrix is a root of In
isomorphic to the De Bruijn matrix

• Future work: characterize all the roots of In with minimum

rank.
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Thank you for your attention !
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