Binary Factorizations of the Matrix of All Ones

Maguy Trefois Paul Van Dooren Jean-Charles Delvenne

Université catholique de Louvain, Belgium

ILAS, June 2013

Motivation: the finite-time average consensus problem We have:

- *n* communicating agents with an initial position
- a communication topology

At each time step:

- each agent sends its current position to some other agents according to the communication pattern
- with the received information, each agent changes its position

The goal: after a finite time, all the agents meet at the average of their initial positions

Vector of initial positions:

 $\vec{x}(0)$

Dynamics:

$$\vec{x}(t+1) = A^{t+1}.\vec{x}(0)$$

The matrix A respects the communication topology:

$$\vec{x}(t+1) = A^{t+1}.\vec{x}(0)$$

The matrix A is a solution to the consensus if:

• A is of the form
$$\begin{pmatrix} 0 & ? & 0 & 0 \\ 0 & 0 & 0 & ? \\ 0 & ? & 0 & 0 \\ ? & 0 & ? & 0 \end{pmatrix}$$

• After a finite time $m, A^m = \frac{1}{4} \cdot \begin{pmatrix} 1 & \dots & 1 \\ \vdots & \vdots & \vdots \\ 1 & \dots & 1 \end{pmatrix}$

$$\vec{x}(t+1) = A^{t+1}.\vec{x}(0)$$

The matrix A is a solution to the consensus if:

• A is of the form
$$\begin{pmatrix} 0 & ? & 0 & 0 \\ 0 & 0 & 0 & ? \\ 0 & ? & 0 & 0 \\ ? & 0 & ? & 0 \end{pmatrix}$$

• After a finite time m, $A^m = \frac{1}{4} \begin{pmatrix} 1 & \dots & 1 \\ \vdots & \vdots & \vdots \\ 1 & \dots & 1 \end{pmatrix}$

Question: for which communication patterns is it possible to reach the consensus ?

We should study the solutions to the equation:

$$A^m = rac{1}{n} \cdot \left(egin{array}{cccc} 1 & \ldots & 1 \ dots & dots & dots \ dots & dots \ dots & dots \ dots \$$

where $A \in \mathbb{R}^{n \times n}$.

We should study the solutions to the equation:

$$A^m = rac{1}{n} \cdot \left(egin{array}{cccc} 1 & \ldots & 1 \ dots & dots & dots \ dots & dots \ dots & dots \ dots \$$

where $A \in \mathbb{R}^{n \times n}$.

\Rightarrow difficult to tackle directly

We should study the solutions to the equation:

$$\mathcal{A}^m = rac{1}{n} \left(egin{array}{cccc} 1 & \ldots & 1 \ dots & dots & dots \ dots & dots \ dots & dots \ dots$$

where $A \in \mathbb{R}^{n \times n}$.

\Rightarrow difficult to tackle directly

Simpler problem: study the solutions to:

$$A^m = \left(egin{array}{cccc} 1 & \ldots & 1 \ dots & dots & dots \ 1 & \ldots & 1 \end{array}
ight),$$

where $A \in \{0,1\}^{n \times n}$.

Outline

Factorization problem

The De Bruijn matrices

Factorizations into commuting factors

General form of a root of \mathbb{I}_n with minimum rank

A root class of \mathbb{I}_n

Conclusion

Factorization problem

The De Bruijn matrices

Factorizations into commuting factors

General form of a root of I_n with minimum rank

A root class of \mathbb{I}_n

Conclusion

We are looking for the solutions to

$$\prod_{i=1}^m A_i = A_1 A_2 \dots A_m = \mathbb{I}_n,$$

where

- \mathbb{I}_n is the $n \times n$ matrix with all ones
- each factor A_i is an $n \times n$ binary matrix.

We are looking for the solutions to

$$\prod_{i=1}^m A_i = A_1 A_2 \dots A_m = \mathbb{I}_n,$$

where

- \mathbb{I}_n is the $n \times n$ matrix with all ones
- each factor A_i is an $n \times n$ binary matrix.

In particular, we are investigating the solutions to:

$$A^m = \mathbb{I}_n,$$

where A is a binary matrix.

Factorization problem

The De Bruijn matrices

Factorizations into commuting factors

General form of a root of I_n with minimum rank

A root class of \mathbb{I}_n

Conclusion

Lemma

If $A \in \{0,1\}^{n \times n}$ is such that $A^m = \mathbb{I}_n$, then

- A is p-regular, i.e A.1 = p.1 and $1^T.A = p.1^T$
- $n = p^m$

Lemma

If $A \in \{0,1\}^{n \times n}$ is such that $A^m = \mathbb{I}_n$, then

- A is p-regular, i.e A. $\mathbf{1} = p.\mathbf{1}$ and $\mathbf{1}^T.A = p.\mathbf{1}^T$
- $n = p^{m}$

Definition

The **De Bruijn matrix** of order p and dimension n is a matrix of the form:

$$D(p,n) := \mathbf{1}_p \otimes I_{n/p} \otimes \mathbf{1}_p^T,$$

where

- $I_{n/p}$ is the identity matrix of dimension n/p
- $\boldsymbol{1}_p$ is the p imes 1 vector with all ones
- \otimes denotes the Kronecker product

Moreover, it is imposed that $n = p^m$, for some integer m.

$$D(2,8) = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

$$D(2,8) = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

Proposition

The De Bruijn matrix D(p, n) with $n = p^m$ is such that

$$D(p,n)^m = \mathbb{I}_n.$$

$$D(2,8) = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

Proposition

The De Bruijn matrix D(p, n) with $n = p^m$ is such that

$$D(p,n)^m = \mathbb{I}_n.$$

 $\ensuremath{\textbf{Question}}$: Can we characterize all the roots from the De Bruijn matrices ?

Factorization problem

The De Bruijn matrices

Factorizations into commuting factors

General form of a root of I_n with minimum rank

A root class of \mathbb{I}_n

Conclusion

Factorization into commuting factors:

Looking for the solutions to:

$$AB = BA = \mathbb{I}_n,$$

where

- A and B are binary matrices
- A is p-regular
- B is I-regular

Factorization problem:

$$AB = BA = \mathbb{I}_n,$$

where A is p-regular and B is I-regular.

Theorem

If A and B are commuting factors, then

- *p*.*l* = *n*
- $rank(A) \ge n/p$ and $rank(B) \ge n/l$
- if rank(A) = n/p (resp. rank(B) = n/l), then there exist permutation matrices P₁, P₂ such that

$$P_1AP_2^T = D(p, n) \qquad (resp. \ P_2BP_1^T = D(l, n)).$$

Question: Is it possible that rank(A) > n/p?

$$A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

- A and B are 2-regular
- $AB = BA = \mathbb{I}_4$
- BUT, rank(A) = 3 > 4/2

Question: Can we choose $P_1 = P_2$?

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

- A is 3-regular, B is 2-regular and $AB = BA = \mathbb{I}_6$

-
$$rank(A) = 6/3$$
, $rank(B) = 6/2$

- BUT, A is not isomorphic to D(3,6) since

$$A^{2} = \begin{pmatrix} 3 & 0 & 3 & 0 & 3 & 0 \\ 0 & 3 & 0 & 3 & 0 & 3 \\ 3 & 0 & 3 & 0 & 3 & 0 \\ 0 & 3 & 0 & 3 & 0 & 3 \\ 3 & 0 & 3 & 0 & 3 & 0 \\ 0 & 3 & 0 & 3 & 0 & 3 \end{pmatrix}, D(3,6)^{2} = \begin{pmatrix} 2 & 2 & 2 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 & 2 & 2 \\ 2 & 2 & 2 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 & 2 & 2 \\ 2 & 2 & 2 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 & 2 & 2 \end{pmatrix}$$

Corollary

Let A be a binary matrix satisfying $A^m = \mathbb{I}_n$. Then,

- A is p-regular
- if rank(A) = n/p, then there are permutation matrices P_1, P_2 such that

 $P_1AP_2^T=D(p,n).$

As previously,

- A may have a rank greater than n/p
- A may not be isomorphic to D(p, n) even though rank(A) = n/p

Factorization problem

The De Bruijn matrices

Factorizations into commuting factors

General form of a root of \mathbb{I}_n with minimum rank

A root class of \mathbb{I}_n

Conclusion

Theorem

Let $A \in \{0,1\}^{n \times n}$ such that $A^m = \mathbb{I}_n$, A is p-regular and $p^m = n$. If rank(A) = n/p, then A is isomorphic to a matrix

$P_1D(p,n),$

where $P_1 = diag(Q_1, ..., Q_p)$ with each $Q_i \in \{0, 1\}^{n/p \times n/p}$ is a permutation matrix.

Theorem

Let $A \in \{0,1\}^{n \times n}$ such that $A^m = \mathbb{I}_n$, A is p-regular and $p^m = n$. If rank(A) = n/p, then A is isomorphic to a matrix

$P_1D(p,n),$

where $P_1 = diag(Q_1, ..., Q_p)$ with each $Q_i \in \{0, 1\}^{n/p \times n/p}$ is a permutation matrix.

Not all the matrices of that form are solutions. Indeed, consider

Factorization problem

The De Bruijn matrices

Factorizations into commuting factors

General form of a root of I_n with minimum rank

A root class of \mathbb{I}_n

Conclusion

A 2-circulant matrix:

$$\left(\begin{array}{cccccc} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \end{array}\right)$$

Theorem (Wu, 2002)

Let $A \in \{0,1\}^{n \times n}$ be g-circulant and such that $A^m = \mathbb{I}_n.$ If

- $g^m \equiv 0 \mod n$
- A is p-regular,

then A is isomorphic to D(p, n).

Definition

A nice permutation matrix is built as follows: start with a $p \times p$ permutation matrix. Then, replace all the zeros by a zero $p \times p$ matrix and each one by a $p \times p$ permutation matrix. Repeat this m times. You obtain a permutation matrix of dimension p^m .

Definition

A nice permutation matrix is built as follows: start with a $p \times p$ permutation matrix. Then, replace all the zeros by a zero $p \times p$ matrix and each one by a $p \times p$ permutation matrix. Repeat this m times. You obtain a permutation matrix of dimension p^m .

Theorem

Any matrix of the form $P_1D(p, n)$ $(n = p^m)$ with P_1 a nice permutation matrix is a m-th root of \mathbb{I}_n .

Definition

A nice permutation matrix is built as follows: start with a $p \times p$ permutation matrix. Then, replace all the zeros by a zero $p \times p$ matrix and each one by a $p \times p$ permutation matrix. Repeat this m times. You obtain a permutation matrix of dimension p^m .

Theorem

Any matrix of the form $P_1D(p, n)$ $(n = p^m)$ with P_1 a nice permutation matrix is a m-th root of \mathbb{I}_n .

Theorem

Any nice permutation of the De Bruijn matrix D(p, n) is isomorphic to D(p, n).

Factorization problem

The De Bruijn matrices

Factorizations into commuting factors

General form of a root of I_n with minimum rank

A root class of \mathbb{I}_n

Conclusion

$$A^m = \mathbb{I}_n,$$

over the $n \times n$ binary matrices.

$$A^m = \mathbb{I}_n,$$

over the $n \times n$ binary matrices.

- If A is a solution, then
 - A is p-regular and $n = p^m$
 - $rank(A) \ge n/p$
 - rank(A) = n/p implies that A is essentially a De Bruijn matrix

$$A^m = \mathbb{I}_n,$$

over the $n \times n$ binary matrices.

- If A is a solution, then
 - A is p-regular and $n = p^m$
 - $rank(A) \ge n/p$
 - rank(A) = n/p implies that A is essentially a De Bruijn matrix
- Any root of \mathbb{I}_n with minimum rank is isomorphic to a matrix of the form

$$diag(Q_1,...,Q_p).D(p,n),$$

where any Q_i is a permutation matrix.

$$A^m = \mathbb{I}_n,$$

over the $n \times n$ binary matrices.

- If A is a solution, then
 - A is p-regular and $n = p^m$
 - $rank(A) \ge n/p$
 - rank(A) = n/p implies that A is essentially a De Bruijn matrix
- Any root of \mathbb{I}_n with minimum rank is isomorphic to a matrix of the form

$$diag(Q_1,...,Q_p).D(p,n),$$

where any Q_i is a permutation matrix.

Any nice permutation of the De Bruijn matrix is a root of I_n isomorphic to the De Bruijn matrix

$$A^m = \mathbb{I}_n,$$

over the $n \times n$ binary matrices.

- If A is a solution, then
 - A is p-regular and $n = p^m$
 - $rank(A) \ge n/p$
 - rank(A) = n/p implies that A is essentially a De Bruijn matrix
- Any root of \mathbb{I}_n with minimum rank is isomorphic to a matrix of the form

$$diag(Q_1,...,Q_p).D(p,n),$$

where any Q_i is a permutation matrix.

- Any nice permutation of the De Bruijn matrix is a root of I_n isomorphic to the De Bruijn matrix
- Future work: characterize all the roots of \mathbb{I}_n with minimum rank.

Thank you for your attention !