Unicity of optimal topology of communication in the average consensus problem

Trefois Maguy

March 16, 2011

Plan

The average consensus problem

Plan

The average consensus problem

The minimum rank problem

Plan

The average consensus problem

The minimum rank problem

Suggested approach

The average consensus problem

The minimum rank problem

Suggested approach

Idea :

We have :

- *N* communicating agents
- each agent communicates with a given small number $\boldsymbol{\nu}$ of agents

We would like :

Each agent moves to the average of their initial positions

Problem formulation :

• Vector of the initial positions :

$$\vec{x}(0) = (x_1(0), ..., x_N(0))^T \in \mathbb{R}^{N imes 1}$$

Problem formulation :

• Vector of the initial positions :

$$\vec{x}(0) = (x_1(0), ..., x_N(0))^T \in \mathbb{R}^{N \times 1}$$

• Dynamics of the problem in discrete time :

$$\vec{x}(t+1) = A.\vec{x}(t) = A^{t+1}.\vec{x}(0),$$

where $A \in \mathbb{R}^{N \times N}$.

Problem formulation :

• Vector of the initial positions :

$$\vec{x}(0) = (x_1(0), ..., x_N(0))^T \in \mathbb{R}^{N \times 1}$$

• Dynamics of the problem in discrete time :

$$\vec{x}(t+1) = A.\vec{x}(t) = A^{t+1}.\vec{x}(0),$$

where $A \in \mathbb{R}^{N \times N}$.

 \Rightarrow <u>Problem</u> : To find a matrix $A \in \mathbb{R}^{N \times N}$ such that

$${\cal A}^k = rac{1}{N} . \left(egin{array}{cccccccc} 1 & 1 & \ldots & 1 \ dots & dots & \ldots & dots \ 1 & 1 & \ldots & 1 \end{array}
ight),$$

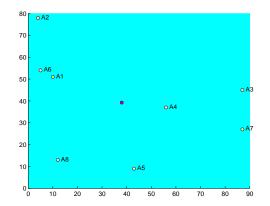
for a certain $k \in \mathbb{N}$.

Example : For N = 8 and $\nu = 2$, the matrix

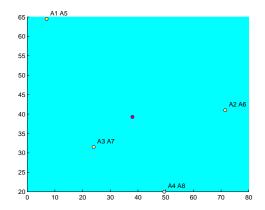
$$A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

is a solution.

Initial positions

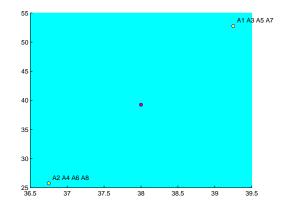


Positions at time 1

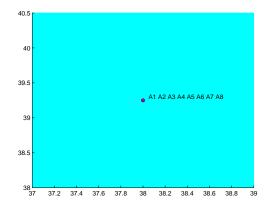


8

Positions at time 2



Positions at time 3



Definition

Let $A \in \mathbb{R}^{N \times N}$. The graph G(V, E) is the communication graph of A if :

- |V| = N
- (*i*, *j*) is an edge of G iff

the entry (i, j) of A is different from zero

Remark : The communication graph of the matrix *A*, in the previous example :

$$A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix},$$

is a de Bruijn's graph.

Conjecture : The only possible communication graph for the consensus is essentially a de Bruijn's graph.

The average consensus problem

The minimum rank problem

Suggested approach

The minimum rank of a loop digraph :

Let G be a loop digraph. We define the matrices set $\mathcal{Q}(G)$ in this way :

A matrix $A \in Q(G)$ is a real matrix such that the communication graph of A is G.

The minimum rank of a loop digraph :

Let G be a loop digraph. We define the matrices set $\mathcal{Q}(G)$ in this way :

A matrix $A \in Q(G)$ is a real matrix such that the communication graph of A is G.

The **minimum rank** of G, denoted mr(G), is the minimum possible rank of a matrix in Q(G).

Example : consider the following loop digraph :

Example : consider the following loop digraph :

The matrices in $\mathcal{Q}(G)$ have the following pattern :

$$P = \left(\begin{array}{ccc} 0 & \star & \star & 0 \\ 0 & 0 & \star & \star \\ 0 & 0 & 0 & \star \\ 0 & 0 & 0 & 0 \end{array}\right)$$

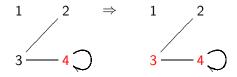
Example : consider the following loop digraph :

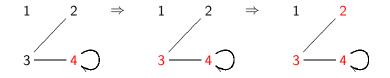
The matrices in $\mathcal{Q}(G)$ have the following pattern :

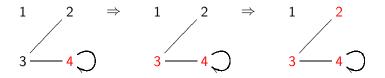
$$P = \left(\begin{array}{cccc} 0 & \star & \star & 0 \\ 0 & 0 & \star & \star \\ 0 & 0 & 0 & \star \\ 0 & 0 & 0 & 0 \end{array}\right)$$

We define a hypergraph H in this way :

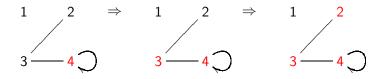
1 2 3







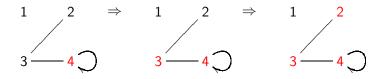
This last hypergraph is denoted H_G .



This last hypergraph is denoted H_G .

We compute the minimum number of black vertices we have to color to deduce the others thanks to the hyperedges :

$$Z(H_G)=1.$$



This last hypergraph is denoted H_G .

We compute the minimum number of black vertices we have to color to deduce the others thanks to the hyperedges :

$$Z(H_G)=1.$$

And finally,

$$mr(G) = 4 - 1 = 3.$$

1. we know the pattern P of the matrices in $\mathcal{Q}(G)$

- 1. we know the pattern P of the matrices in $\mathcal{Q}(G)$
- 2. from P, we define a hypergraph H_G

- 1. we know the pattern P of the matrices in $\mathcal{Q}(G)$
- 2. from P, we define a hypergraph H_G
- 3. we define a color change rule (CCR) on H_G

- 1. we know the pattern P of the matrices in $\mathcal{Q}(G)$
- 2. from P, we define a hypergraph H_G
- 3. we define a color change rule (CCR) on H_G
- 4. we compute the generating set number $Z(H_G)$: the minimum number of black vertices we have to color ourselves in order to deduce, thanks to the CCR, all the other black vertices of H_G

- 1. we know the pattern P of the matrices in $\mathcal{Q}(G)$
- 2. from P, we define a hypergraph H_G
- 3. we define a color change rule (CCR) on H_G
- 4. we compute the generating set number $Z(H_G)$: the minimum number of black vertices we have to color ourselves in order to deduce, thanks to the CCR, all the other black vertices of H_G
- 5. $mr(G) = N Z(H_G)$, where N is the order of G.

The average consensus problem

The minimum rank problem

Suggested approach

If A resolves the consensus in k steps, then

and trivially,

$$\operatorname{rank}(A^k) = 1.$$

If A resolves the consensus in k steps, then

$$\mathcal{A}^k = rac{1}{N} \cdot \left(egin{array}{ccccc} 1 & 1 & \ldots & 1 \ dots & dots & \ldots & dots \ dots & dots & \ldots & dots \ 1 & 1 & \ldots & 1 \end{array}
ight),$$

and trivially,

$$\operatorname{rank}(A^k) = 1.$$

 \Rightarrow The ranks of the powers of A have to decrease to 1

If A resolves the consensus in k steps, then

$$\mathcal{A}^k = rac{1}{N} \cdot \left(egin{array}{ccccc} 1 & 1 & \ldots & 1 \ dots & dots & \ldots & dots \ dots & dots & \ldots & dots \ 1 & 1 & \ldots & 1 \end{array}
ight),$$

and trivially,

$$\operatorname{rank}(A^k) = 1.$$

 \Rightarrow The ranks of the powers of A have to decrease to 1

 \Rightarrow We hope to use the minimum rank to deduce the solutions for the consensus.

Thank you for your attention !