
1

Solving SDD Linear Systems
in Nearly-Linear Time

M. Trefois J.-C. Delvenne M. Schaub? P. Van Dooren

Université catholique de Louvain

?and Université de Namur

Benelux Meeting on Systems and Control
March 24, 2015

2

Goal:

Solve
Av = b

where A ∈ Rn×n is symmetric and diagonally-dominant (SDD):

aii ≥
∑
j 6=i

|aij |.

Several classical methods:

• Gauss elimination: time O(n3)

• Fast matrix inversion (Strassen 1969, Coppersmith-Winograd
1987, ...): time O(n2.37)

• ...

⇒ Too slow in case of huge matrix A

3

Revised goal I:

Solve any SDD system
Av = b

in nearly-linear time, i.e. in

O(m logc n) time,

where

- n is the size of the system
- m is the number of nonzero entries in A

4

Particular case of interest: when A is a Laplacian matrix.

Laplacian systems for...

• solving any SDD linear system

but also...

• computing effective resistances in a network
• computing dominant eigenvectors of graphs (by inverse power
method)

• ...

5

Outline

Laplacian systems: definition

Overview of Kelner, Orecchia, Sidford and Allen Zhu’s method

Kelner et al’s method: Step 1

Running time

Conclusion

6

Laplacian systems: definition

Overview of Kelner, Orecchia, Sidford and Allen Zhu’s method

Kelner et al’s method: Step 1

Running time

Conclusion

7

Laplacian systems: definition

G : undirected graph: n nodes, m edges
positive weights along the edges

Laplacian matrix:

L =

29 −4 −25 0 0
−4 17 0 −4 −9
−25 0 26 0 −1
0 −4 0 5 −1
0 −9 −1 −1 11

The Laplacian matrix is SDD .

8

Laplacian systems: definition

Revised Goal II:

Solve the Laplacian system

Lv = b

in nearly-linear time, namely in time O(m logc n).

More precisely, given ε > 0, find vK ∈ Rn such that

||vK − vopt ||L ≤ ε · ||vopt ||L,

where Lvopt = b.

9

Laplacian systems: definition

Overview of Kelner, Orecchia, Sidford and Allen Zhu’s method

Kelner et al’s method: Step 1

Running time

Conclusion

10

Kelner et al’s method: overview

B =

1 2 3 4 5
e1 1 -1 0 0 0
e2 1 0 -1 0 0
e3 0 1 0 -1 0
e4 0 1 0 0 -1
e5 0 0 0 -1 1
e6 0 0 -1 0 1

R =

1/4 0 0 0 0 0
0 1/25 0 0 0 0
0 0 1/4 0 0 0
0 0 0 1/9 0 0
0 0 0 0 1 0
0 0 0 0 0 1

Factorize L as:
L = BTR−1B

11

Kelner et al’s method: overview

Laplacian System:
BTR−1Bv = b

Set f = R−1Bv .

• Step 1: Find fK an approximation of the unique solution
fopt ∈ Rm of minimal R-norm to

BT f = b.

• Step 2: given fK and ε > 0, compute vK ∈ Rn such that

||vK − vopt ||L ≤ ε · ||vopt ||L,

where Lvopt = b.

11

Kelner et al’s method: overview

Laplacian System:
BTR−1Bv = b

Set f = R−1Bv .

• Step 1: Find fK an approximation of the unique solution
fopt ∈ Rm of minimal R-norm to

BT f = b.

• Step 2: given fK and ε > 0, compute vK ∈ Rn such that

||vK − vopt ||L ≤ ε · ||vopt ||L,

where Lvopt = b.

12

Laplacian systems: definition

Overview of Kelner, Orecchia, Sidford and Allen Zhu’s method

Kelner et al’s method: Step 1

Running time

Conclusion

13

Kelner et al’s method: Step 1

fopt ∈ Rm is the solution to BT f = b of minimal R-norm, namely

• BT fopt = b

• fopt is orthogonal to the kernel of BT

Revised Goal III:

given ε > 0, find fK ∈ Rm such that BT fK = b and

||fK − fopt ||R ≤ ε · ||fopt ||R

in nearly-linear time.

Needed:

• A basis of the kernel of BT ⇒ spanning tree
• An iterative algorithm ⇒ a coordinate descent method

14

A basis of the kernel of BT

Any off-tree edge e = {a, b} defines a unique cycle of the form:

e + path between a and b in T

For edge e5: cycle = {e3, e4, e5} ⇒ define cycle vector Qe5 =

0
0
−1
1
1
0

14

A basis of the kernel of BT

The cycle vectors Qe ’s where e is an off-tree edge form a basis of
the kernel of BT

In our example, a basis is:

Qe5 =

0
0
−1
1
1
0

Qe6 =

1
−1
0
1
0
1

15

An iterative algorithm: coordinate descent

We want to minimize

Rm → R : f 7→ ||f ||R

under the constraint BT f = b.

Coordinate Descent Method:

• start with f0 ∈ Rm such that BT f0 = b

• search directions: the cycle vectors Qe ’s
• at each iteration:
? pick randomly a cycle vector Qe

? find

α? := argmin
α
||fk + αQe ||R = − f Tk RQe

QT
e RQe

So, the iterations become:

fk+1 = fk −
f Tk RQe

QT
e RQe

· Qe

16

An iterative algorithm: coordinate descent

• Start with f0 such that BT f0 = b

• Recursive step:

fk+1 = fk −
f Tk RQe

QT
e RQe

· Qe ,

with Qe in the kernel of BT .

⇒ For any k, BT fk = b.

Convergence rate: depends on the spanning tree
Number of iterations: always at least in O(m)

Wanted:
Running time in O(m logc n)⇒ each iteration in logarithmic time

17

An iterative algorithm: coordinate descent

Recursive step:

fk+1 = fk −
f Tk RQe

QT
e RQe

· Qe

Wanted: each iteration in logarithmic time

Problem: support of Qe in O(n)

Kelner et al. solve this as a data-structure problem.

Question: can we understand this purely from a Linear Algebra
perspective ?

18

An iterative algorithm: coordinate descent

Recursive step:

fk+1 = fk −
f Tk RQe

QT
e RQe

· Qe

Wanted: each iteration in logarithmic time

Our contribution:

work with two different bases G1,G2 such that
• in G1 and G2, any Qe is O(log n)-sparse
• given fk and Qe in bases G1 and G2, compute f Tk RQe in
O(log n) time.

19

An iterative algorithm: coordinate descent

Any iteration: in O(log n) time

Convergence rate: depends on the spanning tree

Number of iterations: always at least in O(m)

But, is the running time nearly-linear ???

20

Laplacian systems: definition

Overview of Kelner, Orecchia, Sidford and Allen Zhu’s method

Kelner et al’s method: Step 1

Running time

Conclusion

21

Running time

Theorem (Abraham-Neiman, 2012):

One can find in O(m log n) time a spanning tree such that the
number of iterations is O(m log n log(n/ε)).

The running time of Kelner et al’s method is:

O(m log2 n log(n/ε)) =] of iterations ×O(log n) time per iteration

22

Laplacian systems: definition

Overview of Kelner, Orecchia, Sidford and Allen Zhu’s method

Kelner et al’s method: Step 1

Running time

Conclusion

23

Conclusion

• Goal: solving any Laplacian system in time which is nearly
linear in the number of nonzero entries

• Motivation: solving any SDD system in nearly-linear time
• Kelner et al’s method (2013): running time: O(m log2 n)

• Our contribution I: understand Kelner et al’s method from a
Linear Algebra perspective

• Our contribution II: extend the trick to other linear systems

J.A. Kelner, L. Orecchia, A. Sidford, Z. Allen Zhu, A simple,
combinatorial algorithm for solving SDD systems in nearly-linear
time, in Proceedings of the 45th annual ACM Symposium on Theory
Of Computing (STOC), pp. 911-920, New York, NY, USA, 2013.

	Laplacian systems: definition
	Overview of Kelner, Orecchia, Sidford and Allen Zhu's method
	Kelner et al's method: Step 1
	Running time
	Conclusion

