Solving SDD Linear Systems in Nearly-Linear Time

M. Trefois J.-C. Delvenne M. Schaub* P. Van Dooren

Université catholique de Louvain

*and Université de Namur

Benelux Meeting on Systems and Control March 24, 2015 Goal:

Solve

$$Av = b$$

where $A \in \mathbb{R}^{n \times n}$ is symmetric and diagonally-dominant (SDD):

$$\mathsf{a}_{ii} \geq \sum_{j \neq i} |\mathsf{a}_{ij}|$$

Several classical methods:

- Gauss elimination: time $\mathcal{O}(n^3)$
- Fast matrix inversion (Strassen 1969, Coppersmith-Winograd 1987, ...): time O(n^{2.37})

• ...

\Rightarrow Too slow in case of huge matrix A

Revised goal I:

```
Solve any SDD system

Av = b

in nearly-linear time, i.e. in

\mathcal{O}(m \log^c n) time,

where

- n is the size of the system
```

- *m* is the number of nonzero entries in *A*

Particular case of interest: when A is a Laplacian matrix.

Laplacian systems for ...

• solving any SDD linear system

but also...

- computing effective resistances in a network
- computing dominant eigenvectors of graphs (by inverse power method)

• ...

Outline

Laplacian systems: definition

Overview of Kelner, Orecchia, Sidford and Allen Zhu's method

Kelner et al's method: Step 1

Running time

Overview of Kelner, Orecchia, Sidford and Allen Zhu's method

Kelner et al's method: Step 1

Running time

G: undirected graph: n nodes, m edges positive weights along the edges

Laplacian matrix:

$$L = \begin{vmatrix} 29 & -4 & -25 & 0 & 0 \\ -4 & 17 & 0 & -4 & -9 \\ -25 & 0 & 26 & 0 & -1 \\ 0 & -4 & 0 & 5 & -1 \\ 0 & -9 & -1 & -1 & 11 \end{vmatrix}$$

The Laplacian matrix is SDD .

Revised Goal II:

Solve the Laplacian system

$$Lv = b$$

in nearly-linear time, namely in time $\mathcal{O}(m \log^c n)$.

More precisely, given $\epsilon > 0$, find $v_{\mathcal{K}} \in \mathbb{R}^n$ such that

$$||\mathbf{v}_{\mathsf{K}} - \mathbf{v}_{opt}||_{\mathsf{L}} \leq \epsilon \cdot ||\mathbf{v}_{opt}||_{\mathsf{L}},$$

where $Lv_{opt} = b$.

Overview of Kelner, Orecchia, Sidford and Allen Zhu's method

Kelner et al's method: Step 1

Running time

Kelner et al's method: overview

$$B = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ e_1 & 1 & -1 & 0 & 0 & 0 \\ e_2 & 1 & 0 & -1 & 0 & 0 \\ e_3 & 0 & 1 & 0 & -1 & 0 \\ e_4 & 0 & 1 & 0 & 0 & -1 \\ e_5 & 0 & 0 & 0 & -1 & 1 \\ e_6 & 0 & 0 & -1 & 0 & 1 \end{bmatrix} R = \begin{bmatrix} 1/4 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1/25 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/9 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Factorize L as:

$$L = B^T R^{-1} B$$

Kelner et al's method: overview

Laplacian System:

$$B^T R^{-1} B v = b$$

Set $f = R^{-1}Bv$.

• Step 1: Find f_K an approximation of the unique solution $f_{opt} \in \mathbb{R}^m$ of minimal *R*-norm to

$$B^T f = b.$$

• Step 2: given f_K and $\epsilon > 0$, compute $v_K \in \mathbb{R}^n$ such that

$$||v_{K} - v_{opt}||_{L} \leq \epsilon \cdot ||v_{opt}||_{L},$$

where $Lv_{opt} = b$.

Kelner et al's method: overview

Laplacian System:

$$B^T R^{-1} B v = b$$

Set $f = R^{-1}Bv$.

• Step 1: Find $f_{\mathcal{K}}$ an approximation of the unique solution $f_{opt} \in \mathbb{R}^m$ of minimal *R*-norm to

$$B^T f = b.$$

• Step 2: given f_K and $\epsilon > 0$, compute $v_K \in \mathbb{R}^n$ such that

$$||v_K - v_{opt}||_L \le \epsilon \cdot ||v_{opt}||_L,$$

where $Lv_{opt} = b$.

Overview of Kelner, Orecchia, Sidford and Allen Zhu's method

Kelner et al's method: Step 1

Running time

Kelner et al's method: Step 1

 $f_{opt} \in \mathbb{R}^m$ is the solution to $B^T f = b$ of minimal *R*-norm, namely

- $B^T f_{opt} = b$
- f_{opt} is orthogonal to the kernel of B^T

Revised Goal III:

given
$$\epsilon > 0$$
, find $f_K \in \mathbb{R}^m$ such that $B^T f_K = b$ and
$$||f_K - f_{opt}||_R \le \epsilon \cdot ||f_{opt}||_R$$

in nearly-linear time.

Needed:

- A basis of the kernel of $B^T \Rightarrow$ spanning tree
- An iterative algorithm \Rightarrow a coordinate descent method

A basis of the kernel of B^T

Any off-tree edge $e = \{a, b\}$ defines a unique cycle of the form:

e + path between a and b in T

For edge e_5 : cycle = $\{e_3, e_4, e_5\}$ \Rightarrow define cycle vector $Q_{e_5} = \begin{vmatrix} 0 \\ 0 \\ -1 \\ 1 \\ 1 \end{vmatrix}$

0

A basis of the kernel of B^{T}

The cycle vectors Q_e 's where e is an off-tree edge form a basis of the kernel of B^T

In our example, a basis is:

We want to minimize

$$\mathbb{R}^m \to \mathbb{R} : f \mapsto ||f||_R$$

under the constraint $B^T f = b$.

Coordinate Descent Method:

- start with $f_0 \in \mathbb{R}^m$ such that $B^T f_0 = b$
- search directions: the cycle vectors Q_e 's
- at each iteration:
 - \star pick randomly a cycle vector Q_e
 - \star find

$$\alpha^{\star} := \arg\min_{\alpha} ||f_k + \alpha Q_e||_R = -\frac{f_k^T R Q_e}{Q_e^T R Q_e}$$

So, the iterations become:

$$f_{k+1} = f_k - \frac{f_k^T R Q_e}{Q_e^T R Q_e} \cdot Q_e$$

- Start with f_0 such that $B^T f_0 = b$
- Recursive step:

$$f_{k+1} = f_k - \frac{f_k^T R Q_e}{Q_e^T R Q_e} \cdot Q_e,$$

with Q_e in the kernel of B^T .

$$\Rightarrow$$
 For any k , $B^T f_k = b$.

Convergence rate: depends on the spanning tree Number of iterations: always at least in O(m)

Wanted:

Running time in $\mathcal{O}(m \log^c n) \Rightarrow$ each iteration in logarithmic time

Recursive step:

$$f_{k+1} = f_k - \frac{f_k^T R Q_e}{Q_e^T R Q_e} \cdot Q_e$$

Wanted: each iteration in logarithmic time

Problem: support of Q_e in $\mathcal{O}(n)$

Kelner et al. solve this as a data-structure problem.

Question: can we understand this purely from a Linear Algebra perspective ?

Recursive step:

$$f_{k+1} = f_k - \frac{f_k^T R Q_e}{Q_e^T R Q_e} \cdot Q_e$$

Wanted: each iteration in logarithmic time

Our contribution:

work with two different bases G_1 , G_2 such that

- in G_1 and G_2 , any Q_e is $\mathcal{O}(\log n)$ -sparse
- given f_k and Q_e in bases G_1 and G_2 , compute $f_k^T R Q_e$ in $\mathcal{O}(\log n)$ time.

Any iteration: in $\mathcal{O}(\log n)$ time Convergence rate: depends on the spanning tree Number of iterations: always at least in $\mathcal{O}(m)$

But, is the running time nearly-linear ???

Overview of Kelner, Orecchia, Sidford and Allen Zhu's method

Kelner et al's method: Step 1

Running time

Running time

Theorem (Abraham-Neiman, 2012):

One can find in $\mathcal{O}(m \log n)$ time a spanning tree such that the number of iterations is $\mathcal{O}(m \log n \log(n/\epsilon))$.

The running time of Kelner et al's method is:

 $\mathcal{O}(m\log^2 n\log(n/\epsilon)) = \sharp$ of iterations $\times \mathcal{O}(\log n)$ time per iteration

Overview of Kelner, Orecchia, Sidford and Allen Zhu's method

Kelner et al's method: Step 1

Running time

Conclusion

- Goal: solving any Laplacian system in time which is nearly linear in the number of nonzero entries
- Motivation: solving any SDD system in nearly-linear time
- Kelner et al's method (2013): running time: $\mathcal{O}(m \log^2 n)$
- Our contribution I: understand Kelner et al's method from a Linear Algebra perspective
- Our contribution II: extend the trick to other linear systems

J.A. Kelner, L. Orecchia, A. Sidford, Z. Allen Zhu, A simple, combinatorial algorithm for solving SDD systems in nearly-linear time, in Proceedings of the 45th annual ACM Symposium on Theory Of Computing (STOC), pp. 911-920, New York, NY, USA, 2013.