Structural controllability, minimum rank and constrained matchings

Maguy Trefois* Airlie Chapman† Jean-Charles Delvenne*

* Université catholique de Louvain, Louvain-La-Neuve, Belgium
† University of Washington, Seattle, USA

Benelux Meeting, 27 March 2013
Goal of the presentation

- Strong Structural Controllability of Networked Systems
- Minimum Rank of a Loop Directed Graph

Same scope

Computing a maximum constrained matching in a bipartite graph
Outline

Constrained matchings in a bipartite graph

Structural controllability of networked systems

Minimum rank of a loop directed graph

Conclusion
Constrained matchings in a bipartite graph

Structural controllability of networked systems

Minimum rank of a loop directed graph

Conclusion
Let $B = (V, V', E)$ be a bipartite graph.

A t-matching is a set of t edges such that no two edges have a common node.
Let \(B = (V, V', E) \) be a bipartite graph.

A \textit{t-matching} is a set of \(t \) edges such that no two edges have a common node.

\[\{1, 3'\}, \{2, 2'\}, \{3, 4'\} \] is a 3-matching.
Let $B = (V, V', E)$ be a bipartite graph.

A t-matching is a set of t edges such that no two edges have a common node.

\{1, 3'\}, \{2, 2'\}, \{3, 4'\} is a 3-matching.

The nodes 1, 2, 3, 2', 3', 4' are called matched nodes, whereas 4, 1' are unmatched nodes.
A t-matching is a **constrained t-matching** if it is the only t-matching between the matched nodes.

$\{1, 3'\}, \{2, 2'\}, \{3, 4'\}$ is **not** a constrained matching.
A t-matching is a \textbf{constrained t-matching} if it is the only t-matching between the matched nodes.

\begin{itemize}
 \item \{1, 3\}', \{2, 2\}', \{3, 4\}' is \textbf{NOT} a constrained matching.
\end{itemize}
A t-matching is a constrained t-matching if it is the only t-matching between the matched nodes.

$\{1, 3\}', \{3, 2\}'$ is a constrained matching.
A *t*-matching is a set of *t* edges such that no two edges have a common node.

A *t*-matching is a **constrained *t*-matching** if it is the only *t*-matching between the matched nodes.

A (constrained) *t*-matching is **maximum** if there is no (constrained) *s*-matching with *s* > *t*.
Directed graph and bipartite graph

Let G be a directed graph with nodes $1, \ldots, N$. The bipartite graph associated with G is $B_G = (V, V', E)$ with:

- $V = \{1, \ldots, N\}$ and $V' = \{1', \ldots, N'\}$
- $\{i, j'\} \in E$ if and only if (j, i) is an edge in G.
Directed graph and bipartite graph

Let \(G \) be a directed graph with nodes \(1, ..., N \). The **bipartite graph associated with** \(G \) is \(B_G = (V, V', E) \) with:

- \(V = \{1, ..., N\} \) and \(V' = \{1', ..., N'\} \)
- \(\{i, j'\} \in E \) if and only if \((j, i)\) is an edge in \(G \).
More generally,

\[A = \begin{pmatrix} 1 & 0 & 3 \\ 5 & 1 & 0 \\ 0 & 0 & 7 \\ 4 & 8 & 0 \end{pmatrix} \]

By abuse of language, a (constrained) \(t \)-matching of \(B_A \) will be called a (constrained) \(t \)-matching of \(A \).
Constrained matchings in a bipartite graph

Structural controllability of networked systems

Minimum rank of a loop directed graph

Conclusion
Consider the networked system described by the equation:

\[\dot{x}(t) = Ax(t) + Bu(t), \]

where

- the vector \(x^T(t) = (x_1(t), \ldots, x_N(t)) \) captures the state of the system with \(N \) nodes at time \(t \)
- the \(N \times N \) matrix \(A \) describes the interaction strengths between the components of the system
- the \(N \times M \) matrix \(B \) identifies the nodes controlled by an outside controller
- the system is controlled by the vector \(u(t) \) imposed by the controller.
Goal: Identify the minimum number of nodes (the driver nodes) whose control is sufficient to control the whole system.
Goal: Identify the minimum number of nodes (the driver nodes) whose control is sufficient to control the whole system.

Theorem

The system

\[\dot{x}(t) = Ax(t) + Bu(t) \]

is **controllable** if and only if the controllability matrix

\[C = (B, AB, A^2B, ..., A^{N-1}B) \]

is full rank.
Goal: Identify the minimum number of nodes (the driver nodes) whose control is sufficient to control the whole system.

Theorem

The system

\[\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t) \]

is controllable if and only if the controllability matrix

\[C = (B, AB, A^2B, ..., A^{N-1}B) \]

is full rank.

Problem: for most real networks, the interaction strengths (the matrix A) are unknown or approximately known.
Goal: Identify the minimum number of nodes (the driver nodes) whose control is sufficient to control the whole system.

Theorem
The system
\[\dot{x}(t) = Ax(t) + Bu(t) \]

is controllable if and only if the controllability matrix

\[C = (B, AB, A^2B, \ldots, A^{N-1}B) \]

is full rank.

Problem: for most real networks, the interaction strengths (the matrix A) are unknown or approximately known.

⇒ structural controllability
Definition

- A pattern matrix A is a matrix whose each entry is either a zero or a star.
Definition

- A pattern matrix A is a matrix whose each entry is either a zero or a star.

- A real matrix A is a realization of the pattern matrix A if A can be obtained by replacing all nonzero entries of A by stars. In that case, we denote $A \in A$.

\[
A = \begin{pmatrix}
\star & 0 & \star \\
\star & \star & 0 \\
0 & 0 & \star \\
\star & \star & 0
\end{pmatrix}
\quad A = \begin{pmatrix}
1 & 0 & 3 \\
5 & 1 & 0 \\
0 & 0 & 7 \\
4 & 8 & 0
\end{pmatrix}
\]
Given an input node set S, pattern $B(S)$ is such that only the nodes in S are controlled by an outside controller.

Example: $N = 4, S = \{2, 4\}$,

$$B(S) = \begin{pmatrix} 0 & 0 \\ \star & 0 \\ 0 & 0 \\ 0 & \star \end{pmatrix}.$$
Definition

- A pair \((A, B(S))\) is weakly structurally controllable if there is a controllable realization \((A, B)\).
Definition

- A pair \((A, B(S))\) is **weakly structurally controllable** if there is a controllable realization \((A, B)\).
- A pair \((A, B(S))\) is **strongly structurally controllable** if ALL realizations \((A, B)\) are controllable.
Definition

- A pair \((A, B(S))\) is weakly structurally controllable if there is a controllable realization \((A, B)\).

- A pair \((A, B(S))\) is strongly structurally controllable if ALL realizations \((A, B)\) are controllable.

Goal: given the pattern \(A\), finding a node subset \(S_1\) (resp. \(S_2\)) of minimum size such that the pair \((A, B(S_1))\) (resp. \((A, B(S_2))\)) is weakly (resp. strongly) structurally controllable.
Definition

- A pair \((A, B(S))\) is \textit{weakly structurally controllable} if there is a controllable realization \((A, B)\).

- A pair \((A, B(S))\) is \textit{strongly structurally controllable} if ALL realizations \((A, B)\) are controllable.

Goal: given the pattern \(A\), finding a node subset \(S_1\) (resp. \(S_2\)) of minimum size such that the pair \((A, B(S_1))\) (resp. \((A, B(S_2))\)) is weakly (resp. strongly) structurally controllable.

Given a networked system described by a matrix \(A \in \mathbb{A}\), \(S_1\) and \(S_2\) provide respectively a lower and an upper bound on the minimum number of driver nodes.
Notation
Let A be a $N \times N$ pattern matrix and $S \subset \{1, \ldots, N\}$. Denote $A(S\mid\cdot)$ the pattern matrix obtained from A by deleting the rows indexed by S.

Notation
Given a square pattern matrix A, denote A_\times the matrix pattern obtained from A by setting stars on its diagonal.

Definition
An undamped pattern is a pattern with only zeros along the diagonal.
Theorem (Chapman et al, 2012)

In the case of an undamped pattern \mathbf{A}, the pair $(\mathbf{A}, \mathcal{B}(S))$ is strongly s-controllable from a m-input set S iff $\mathbf{A}(S|.)$ and $\mathbf{A}_\times(S|.)$ have both a constrained $(N - m)$-matching.
Theorem (Chapman et al, 2012)

In the case of an undamped pattern \(\mathbf{A} \), the pair \((\mathbf{A}, \mathbf{B}(S))\) is strongly \(s \)-controllable from a \(m \)-input set \(S \) iff \(\mathbf{A}(S|.) \) and \(\mathbf{A} \times (S|.) \) have both a constrained \((N - m) \)-matching.

Problem: computing a maximum constrained matching in a bipartite graph is NP-hard.
Theorem (Chapman et al, 2012)

In the case of an undamped pattern A, the pair $(A, B(S))$ is strongly s-controllable from a m-input set S iff $A(S|.)$ and $A \times (S|.)$ have both a constrained $(N - m)$-matching.

Problem: computing a maximum constrained matching in a bipartite graph is NP-hard.

Challenge: approximate the size of S_2 providing the strong structural controllability.
Constrained matchings in a bipartite graph

Structural controllability of networked systems

Minimum rank of a loop directed graph

Conclusion
Let G be a directed graph allowing loops with N nodes.

The graph G defines a family of real matrices:

$$Q(G) = \{ A \in \mathbb{R}^{N \times N} : a_{ij} \neq 0 \text{ iff } (i, j) \text{ is an edge in } G \}.$$

The minimum rank of G is the minimum possible rank for a matrix in $Q(G)$, that is:

$$mr(G) = \min \{ \text{rank}(A) : A \in Q(G) \}.$$
The zero forcing number of a loop directed graph

A color change rule on G: suppose that any node of G is either black or white. If a node j is the only white out-neighbor of node i, then change the color of j to black.

The color change rule is repeatedly applied to each node until no color change is possible.
The zero forcing number of a loop directed graph

A color change rule on G: suppose that any node of G is either black or white. If a node j is the only white out-neighbor of node i, then change the color of j to black.

The color change rule is repeatedly applied to each node until no color change is possible.
The zero forcing number of a loop directed graph

A color change rule on G: suppose that any node of G is either black or white. If a node j is the only white out-neighbor of node i, then change the color of j to black.

The color change rule is repeatedly applied to each node until no color change is possible.
The zero forcing number of a loop directed graph

A color change rule on G: suppose that any node of G is either black or white. If a node j is the only white out-neighbor of node i, then change the color of j to black.

The color change rule is repeatedly applied to each node until no color change is possible.
The zero forcing number of a loop directed graph

A color change rule on G: suppose that any node of G is either black or white. If a node j is the only white out-neighbor of node i, then change the color of j to black.

The color change rule is repeatedly applied to each node until no color change is possible.
Definition

The zero forcing number $Z(G)$ of G is defined to be the minimum number of nodes which have to be initially black so that after applying the color change rule all the nodes of G are black.
Definition

The zero forcing number $Z(G)$ of G is defined to be the minimum number of nodes which have to be initially black so that after applying the color change rule all the nodes of G are black.

Its zero forcing number $Z(G)$ equals 2.
Definition
The zero forcing number $Z(G)$ of G is defined to be the minimum number of nodes which have to be initially black so that after applying the color change rule all the nodes of G are black.

Its zero forcing number $Z(G)$ equals 2.

Theorem
For any loop directed graph G,

$$|G| - Z(G) \leq mr(G).$$

In particular cases of loop directed graphs, equality holds.
Theorem

Computing the zero forcing number of any loop directed graph is equivalent to computing a maximum constrained matching in the associated bipartite graph.
Theorem
Computing the zero forcing number of any loop directed graph is equivalent to computing a maximum constrained matching in the associated bipartite graph.

Corollary
Computing the zero forcing number of any loop directed graph is NP-hard.
Theorem
Computing the zero forcing number of any loop directed graph is equivalent to computing a maximum constrained matching in the associated bipartite graph.

Corollary
Computing the zero forcing number of any loop directed graph is NP-hard.

Wanted: a good approximation of the zero forcing number for any loop directed graph.
Constrained matchings in a bipartite graph

Structural controllability of networked systems

Minimum rank of a loop directed graph

Conclusion
Conclusion

- We have seen two applications of the constrained matchings in a bipartite graph:
 - the strong structural controllability of networked systems
 - the minimum rank of a loop directed graph
- computing a maximum constrained matching in a bipartite graph as well as its size is NP-hard
- a good approximation of the size of a maximum constrained matching?
Thank you for your attention!