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Let B = (V ,V ′,E ) be a bipartite graph.

A t-matching is a set of t edges such that no two edges have a
common node.

{1, 3′}, {2, 2′}, {3, 4′} is a
3-matching.

The nodes 1, 2, 3, 2′, 3′, 4′

are called matched nodes,
whereas 4, 1′ are un-
matched nodes.
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A t-matching is a set of t edges such that no two edges have a
common node.

A t-matching is a constrained t-matching if it is the only
t-matching between the matched nodes.

A (constrained) t-matching is maximum if there is no (constrained)
s-matching with s > t.
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Directed graph and bipartite graph

Let G be a directed graph with nodes 1, ...,N. The bipartite graph
associated with G is BG = (V ,V ′,E ) with:

• V = {1, ...,N} and V ′ = {1′, ...,N ′}

• {i , j ′} ∈ E if and only if (j , i) is an edge in G .
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More generally,

A =









1 0 3
5 1 0
0 0 7
4 8 0









BA

By abuse of language, a (constrained) t-matching of BA will be
called a (constrained) t-matching of A.
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Consider the networked system described by the equation:

ẋ(t) = Ax(t) + Bu(t),

where

- the vector xT (t) = (x1(t), ..., xN (t)) captures the state of the
system with N nodes at time t

- the N × N matrix A describes the interaction strengths between
the components of the system

- the N × M matrix B identifies the nodes controlled by an outside
controller

- the system is controlled by the vector u(t) imposed by the
controller.
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Goal: Identify the minimum number of nodes (the driver nodes)
whose control is sufficient to control the whole system.
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Goal: Identify the minimum number of nodes (the driver nodes)
whose control is sufficient to control the whole system.

Theorem
The system

ẋ(t) = Ax(t) + Bu(t)

is controllable if and only if the controllability matrix

C = (B ,AB ,A2B , ...,AN−1B)

is full rank.

Problem: for most real networks, the interaction strengths (the
matrix A) are unknown or approximately known.

⇒ structural controllability
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Definition

- A pattern matrix A is a matrix whose each entry is either a zero

or a star.
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Definition

- A pattern matrix A is a matrix whose each entry is either a zero

or a star.

- A real matrix A is a realization of the pattern matrix A if A can

be obtained by replacing all nonzero entries of A by stars. In that

case, we denote A ∈ A.

A =









⋆ 0 ⋆

⋆ ⋆ 0
0 0 ⋆

⋆ ⋆ 0









A =









1 0 3
5 1 0
0 0 7
4 8 0
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Given an input node set S , pattern B(S) is such that only the
nodes in S are controlled by an outside controller.

Example: N = 4,S = {2, 4},

B(S) =









0 0
⋆ 0
0 0
0 ⋆









.
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controllable realization (A,B).
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Definition

- A pair (A,B(S)) is weakly structurally controllable if there is a

controllable realization (A,B).

- A pair (A,B(S)) is strongly structurally controllable if ALL

realizations (A,B) are controllable.

Goal: given the pattern A, finding a node subset S1 (resp. S2) of
minimum size such that the pair (A,B(S1)) (resp. (A,B(S2))) is
weakly (resp. strongly) structurally controllable.

Given a networked system described by a matrix A ∈ A, S1 and S2

provide respectively a lower and an upper bound on the minimum
number of driver nodes.
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Notation
Let A be a N × N pattern matrix and S ⊂ {1, ...,N}.
Denote A(S |.) the pattern matrix obtained from A by deleting the

rows indexed by S.

Notation
Given a square pattern matrix A, denote A× the matrix pattern

obtained from A by setting stars on its diagonal.

Definition
An undamped pattern is a pattern with only zeros along the

diagonal.
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Theorem (Chapman et al, 2012)

In the case of an undamped pattern A, the pair (A,B(S)) is

strongly s-controllable from a m-input set S iff A(S |.) and A×(S |.)
have both a constrained (N − m)-matching.
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Theorem (Chapman et al, 2012)

In the case of an undamped pattern A, the pair (A,B(S)) is

strongly s-controllable from a m-input set S iff A(S |.) and A×(S |.)
have both a constrained (N − m)-matching.

Problem: computing a maximum constrained matching in a
bipartite graph is NP-hard.

Challenge: approximate the size of S2 providing the strong
structural controllability.
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Let G be a directed graph allowing loops with N nodes.

The graph G defines a family of real matrices:

Q(G ) = {A ∈ R
N×N : aij 6= 0 iff (i , j) is an edge in G}.

The minimum rank of G is the minimum possible rank for a matrix
in Q(G ), that is:

mr(G ) = min{rank(A) : A ∈ Q(G )}.
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The zero forcing number of a loop directed graph

A color change rule on G : suppose that any node of G is either
black or white. If a node j is the only white out-neighbor of node i ,
then change the color of j to black.

The color change rule is repeatedly applied to each node until no
color change is possible.
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Definition
The zero forcing number Z(G ) of G is defined to be the minimum

number of nodes which have to be initially black so that after

applying the color change rule all the nodes of G are black.
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Definition
The zero forcing number Z(G ) of G is defined to be the minimum

number of nodes which have to be initially black so that after

applying the color change rule all the nodes of G are black.

Its zero forcing number
Z (G ) equals 2.

Theorem
For any loop directed graph G,

|G | − Z (G ) ≤ mr(G ).

In particular cases of loop directed graphs, equality holds.
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Theorem
Computing the zero forcing number of any loop directed graph is

equivalent to computing a maximum constrained matching in the

associated bipartite graph.
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Theorem
Computing the zero forcing number of any loop directed graph is

equivalent to computing a maximum constrained matching in the

associated bipartite graph.

Corollary

Computing the zero forcing number of any loop directed graph is

NP-hard.

Wanted: a good approximation of the zero forcing number for any
loop directed graph
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Conclusion

- We have seen two applications of the constrained matchings in a
bipartite graph:

• the strong structural controllability of networked systems
• the minimum rank of a loop directed graph

- computing a maximum constrained matching in a bipartite graph
as well as its size is NP-hard

- a good approximation of the size of a maximum constrained
matching ?
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Thank you for your attention!
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