Structural controllability, minimum rank and constrained matchings

Maguy Trefois* Airlie Chapman[†] Jean-Charles Delvenne*

* Université catholique de Louvain, Louvain-La-Neuve, Belgium [†] University of Washington, Seattle, USA

Benelux Meeting, 27 March 2013

Goal of the presentation

Outline

Constrained matchings in a bipartite graph

Structural controllability of networked systems

Minimum rank of a loop directed graph

Conclusion

Constrained matchings in a bipartite graph

Structural controllability of networked systems

Minimum rank of a loop directed graph

Conclusion

Let B = (V, V', E) be a bipartite graph.

A *t*-matching is a set of t edges such that no two edges have a common node.

Let B = (V, V', E) be a bipartite graph.

A *t*-matching is a set of t edges such that no two edges have a common node.

 $\{1,3'\},\{2,2'\},\{3,4'\}$ is a 3-matching.

Let B = (V, V', E) be a bipartite graph.

A *t*-matching is a set of t edges such that no two edges have a common node.

 $\{1,3'\},\{2,2'\},\{3,4'\}$ is a 3-matching.

The nodes 1, 2, 3, 2', 3', 4'are called matched nodes, whereas 4, 1' are unmatched nodes. A *t*-matching is a constrained *t*-matching if it is the only *t*-matching between the matched nodes.

 $\{1,3'\},\{2,2'\},\{3,4'\}$ is a NOT a constrained matching.

A *t*-matching is a constrained *t*-matching if it is the only *t*-matching between the matched nodes.

 $\{1,3'\},\{2,2'\},\{3,4'\}$ is a NOT a constrained matching.

A *t*-matching is a constrained *t*-matching if it is the only *t*-matching between the matched nodes.

 $\{1,3'\},\{3,2'\}$ is a constrained matching.

A *t*-matching is a set of t edges such that no two edges have a common node.

A *t*-matching is a constrained *t*-matching if it is the only *t*-matching between the matched nodes.

A (constrained) *t*-matching is maximum if there is no (constrained) *s*-matching with s > t.

Directed graph and bipartite graph

Let G be a directed graph with nodes 1, ..., N. The bipartite graph associated with G is $B_G = (V, V', E)$ with:

- $V = \{1, ..., N\}$ and $V' = \{1', ..., N'\}$
- $\{i, j'\} \in E$ if and only if (j, i) is an edge in G.

Directed graph and bipartite graph

Let G be a directed graph with nodes 1, ..., N. The bipartite graph associated with G is $B_G = (V, V', E)$ with:

- $V = \{1, ..., N\}$ and $V' = \{1', ..., N'\}$
- $\{i, j'\} \in E$ if and only if (j, i) is an edge in G.

More generally,

By abuse of language, a (constrained) *t*-matching of B_A will be called a (constrained) *t*-matching of A.

Constrained matchings in a bipartite graph

Structural controllability of networked systems

Minimum rank of a loop directed graph

Conclusion

Consider the networked system described by the equation:

$$\dot{\mathsf{x}}(t) = A\mathsf{x}(t) + B\mathsf{u}(t),$$

where

- the vector $\mathbf{x}^{T}(t) = (x_{1}(t), ..., x_{N}(t))$ captures the state of the system with N nodes at time t
- the $N \times N$ matrix A describes the interaction strengths between the components of the system
- the $N \times M$ matrix B identifies the nodes controlled by an outside controller
- the system is controlled by the vector $\mathbf{u}(t)$ imposed by the controller.

Theorem The system

$$\dot{x}(t) = Ax(t) + Bu(t)$$

is controllable if and only if the controllability matrix

$$C = (B, AB, A^2B, ..., A^{N-1}B)$$

is full rank.

Theorem The system

$$\dot{\boldsymbol{x}}(t) = A\boldsymbol{x}(t) + B\boldsymbol{u}(t)$$

is controllable if and only if the controllability matrix

$$C = (B, AB, A^2B, ..., A^{N-1}B)$$

is full rank.

Problem: for most real networks, the interaction strengths (the matrix *A*) are unknown or approximately known.

Theorem The system

$$\dot{\boldsymbol{x}}(t) = A\boldsymbol{x}(t) + B\boldsymbol{u}(t)$$

is controllable if and only if the controllability matrix

$$C = (B, AB, A^2B, ..., A^{N-1}B)$$

is full rank.

Problem: for most real networks, the interaction strengths (the matrix A) are unknown or approximately known.

 \Rightarrow structural controllability

- A pattern matrix **A** is a matrix whose each entry is either a zero or a star.

- A pattern matrix **A** is a matrix whose each entry is either a zero or a star.
- A real matrix A is a realization of the pattern matrix A if A can be obtained by replacing all nonzero entries of A by stars. In that case, we denote $A \in A$.

$$\mathbf{A} = \begin{pmatrix} \star & 0 & \star \\ \star & \star & 0 \\ 0 & 0 & \star \\ \star & \star & 0 \end{pmatrix} \qquad \qquad \mathbf{A} = \begin{pmatrix} 1 & 0 & 3 \\ 5 & 1 & 0 \\ 0 & 0 & 7 \\ 4 & 8 & 0 \end{pmatrix}$$

Given an input node set S, pattern B(S) is such that only the nodes in S are controlled by an outside controller.

Example: $N = 4, S = \{2, 4\}$,

$$\mathsf{B}(S) = \left(\begin{array}{cc} 0 & 0 \\ \star & 0 \\ 0 & 0 \\ 0 & \star \end{array} \right).$$

- A pair (**A**, **B**(S)) is weakly structurally controllable if there is a controllable realization (A, B).

- A pair (**A**, **B**(S)) is weakly structurally controllable if there is a controllable realization (A, B).
- A pair (**A**, **B**(S)) is strongly structurally controllable if ALL realizations (A, B) are controllable.

- A pair (**A**, **B**(S)) is weakly structurally controllable if there is a controllable realization (A, B).
- A pair (**A**, **B**(S)) is strongly structurally controllable if ALL realizations (A, B) are controllable.

Goal: given the pattern **A**, finding a node subset S_1 (resp. S_2) of minimum size such that the pair (**A**, **B**(S_1)) (resp. (**A**, **B**(S_2))) is weakly (resp. strongly) structurally controllable.

- A pair (**A**, **B**(S)) is weakly structurally controllable if there is a controllable realization (A, B).
- A pair (**A**, **B**(S)) is strongly structurally controllable if ALL realizations (A, B) are controllable.

Goal: given the pattern A, finding a node subset S_1 (resp. S_2) of minimum size such that the pair $(A, B(S_1))$ (resp. $(A, B(S_2))$) is weakly (resp. strongly) structurally controllable.

Given a networked system described by a matrix $A \in \mathbf{A}$, S_1 and S_2 provide respectively a lower and an upper bound on the minimum number of driver nodes.

Notation

Let **A** be a $N \times N$ pattern matrix and $S \subset \{1, ..., N\}$. Denote A(S|.) the pattern matrix obtained from **A** by deleting the rows indexed by S.

Notation

Given a square pattern matrix A, denote A_{\times} the matrix pattern obtained from A by setting stars on its diagonal.

Definition

An undamped pattern is a pattern with only zeros along the diagonal.

Theorem (Chapman et al, 2012)

In the case of an undamped pattern A, the pair (A, B(S)) is strongly s-controllable from a m-input set S iff A(S|.) and $A_{\times}(S|.)$ have both a constrained (N - m)-matching.

Theorem (Chapman et al, 2012)

In the case of an undamped pattern A, the pair (A, B(S)) is strongly s-controllable from a m-input set S iff A(S|.) and $A_{\times}(S|.)$ have both a constrained (N - m)-matching.

Problem: computing a maximum constrained matching in a bipartite graph is NP-hard.

Theorem (Chapman et al, 2012)

In the case of an undamped pattern A, the pair (A, B(S)) is strongly s-controllable from a m-input set S iff A(S|.) and $A_{\times}(S|.)$ have both a constrained (N - m)-matching.

Problem: computing a maximum constrained matching in a bipartite graph is NP-hard.

Challenge: approximate the size of S_2 providing the strong structural controllability.

Constrained matchings in a bipartite graph

Structural controllability of networked systems

Minimum rank of a loop directed graph

Conclusion

Let G be a directed graph allowing loops with N nodes.

The graph G defines a family of real matrices:

$$\mathcal{Q}(G) = \{A \in \mathbb{R}^{N \times N} : a_{ij} \neq 0 \text{ iff } (i,j) \text{ is an edge in } G\}.$$

The minimum rank of G is the minimum possible rank for a matrix in Q(G), that is:

$$mr(G) = \min\{\operatorname{rank}(A) : A \in \mathcal{Q}(G)\}.$$

A color change rule on G: suppose that any node of G is either black or white. If a node j is the only white out-neighbor of node i, then change the color of j to black.

A color change rule on G: suppose that any node of G is either black or white. If a node j is the only white out-neighbor of node i, then change the color of j to black.

A color change rule on G: suppose that any node of G is either black or white. If a node j is the only white out-neighbor of node i, then change the color of j to black.

A color change rule on G: suppose that any node of G is either black or white. If a node j is the only white out-neighbor of node i, then change the color of j to black.

A color change rule on G: suppose that any node of G is either black or white. If a node j is the only white out-neighbor of node i, then change the color of j to black.

The zero forcing number Z(G) of G is defined to be the minimum number of nodes which have to be initially black so that after applying the color change rule all the nodes of G are black.

The zero forcing number Z(G) of G is defined to be the minimum number of nodes which have to be initially black so that after applying the color change rule all the nodes of G are black.

Its zero forcing number Z(G) equals 2.

The zero forcing number Z(G) of G is defined to be the minimum number of nodes which have to be initially black so that after applying the color change rule all the nodes of G are black.

Its zero forcing number Z(G) equals 2.

Theorem

For any loop directed graph G,

$$|G|-Z(G)\leq mr(G).$$

In particular cases of loop directed graphs, equality holds.

Theorem

Computing the zero forcing number of any loop directed graph is equivalent to computing a maximum constrained matching in the associated bipartite graph.

Theorem

Computing the zero forcing number of any loop directed graph is equivalent to computing a maximum constrained matching in the associated bipartite graph.

Corollary

Computing the zero forcing number of any loop directed graph is NP-hard.

Theorem

Computing the zero forcing number of any loop directed graph is equivalent to computing a maximum constrained matching in the associated bipartite graph.

Corollary

Computing the zero forcing number of any loop directed graph is NP-hard.

Wanted: a good approximation of the zero forcing number for any loop directed graph

Constrained matchings in a bipartite graph

Structural controllability of networked systems

Minimum rank of a loop directed graph

Conclusion

Conclusion

- We have seen two applications of the constrained matchings in a bipartite graph:
 - the strong structural controllability of networked systems
 - the minimum rank of a loop directed graph
- computing a maximum constrained matching in a bipartite graph as well as its size is NP-hard
- a good approximation of the size of a maximum constrained matching ?

Thank you for your attention!