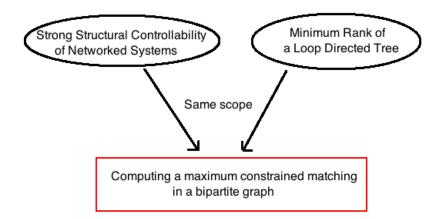
Structural Controllability of Networked Systems, Minimum Rank Problem of a Graph and Maximum Constrained Matchings

Maguy Trefois\* Airlie Chapman<sup>†</sup> Jean-Charles Delvenne\*

\* Université catholique de Louvain, Louvain-La-Neuve, Belgium <sup>†</sup> University of Washington, Seattle, USA

KTH, 21 January 2013

# Goal of the presentation



# Outline

Constrained matchings in a bipartite graph

Structural controllability of networked systems

Minimum rank of a loop directed graph

Conclusion and references

## Constrained matchings in a bipartite graph

Structural controllability of networked systems

Minimum rank of a loop directed graph

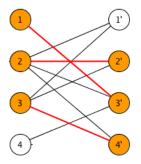
Conclusion and references

Let B = (V, V', E) be a bipartite graph.

A *t*-matching is a set of t edges such that no two edges have a common node.

Let B = (V, V', E) be a bipartite graph.

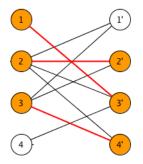
A *t*-matching is a set of t edges such that no two edges have a common node.



 $\{1,3'\},\{2,2'\},\{3,4'\}$  is a 3-matching.

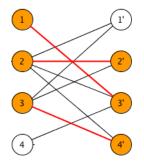
Let B = (V, V', E) be a bipartite graph.

A *t*-matching is a set of t edges such that no two edges have a common node.



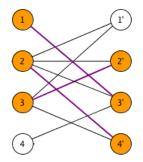
 $\{1,3'\},\{2,2'\},\{3,4'\}$  is a 3-matching.

The nodes 1, 2, 3, 2', 3', 4'are called matched nodes, whereas 4, 1' are unmatched nodes. A *t*-matching is a constrained *t*-matching if it is the only *t*-matching between the matched nodes.



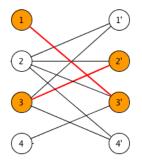
 $\{1,3'\},\{2,2'\},\{3,4'\}$  is a NOT a constrained matching.

A *t*-matching is a constrained *t*-matching if it is the only *t*-matching between the matched nodes.



 $\{1,3'\},\{2,2'\},\{3,4'\}$  is a NOT a constrained matching.

A *t*-matching is a constrained *t*-matching if it is the only *t*-matching between the matched nodes.



 $\{1,3'\},\{3,2'\}$  is a constrained matching.

A *t*-matching is a set of t edges such that no two edges have a common node.

A *t*-matching is a constrained *t*-matching if it is the only *t*-matching between the matched nodes.

A (constrained) *t*-matching is maximum if there is no (constrained) *s*-matching with s > t.

#### Directed graph and bipartite graph

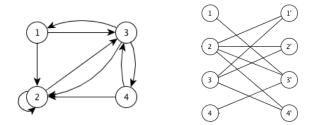
Let G be a directed graph with nodes 1, ..., N. The bipartite graph associated with G is  $B_G = (V, V', E)$  with:

- $V = \{1, ..., N\}$  and  $V' = \{1', ..., N'\}$
- $\{i, j'\} \in E$  if and only if (j, i) is an edge in G.

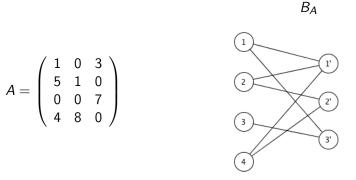
#### Directed graph and bipartite graph

Let G be a directed graph with nodes 1, ..., N. The bipartite graph associated with G is  $B_G = (V, V', E)$  with:

- $V = \{1, ..., N\}$  and  $V' = \{1', ..., N'\}$
- $\{i, j'\} \in E$  if and only if (j, i) is an edge in G.



#### More generally,



By abuse of language, a (constrained) *t*-matching of  $B_A$  will be called a (constrained) *t*-matching of A.

Constrained matchings in a bipartite graph

Structural controllability of networked systems

Minimum rank of a loop directed graph

Conclusion and references

Consider the networked system described by the equation:

$$\dot{\mathsf{x}}(t) = A\mathsf{x}(t) + B\mathsf{u}(t),$$

where

- the vector  $\mathbf{x}^{T}(t) = (x_{1}(t), ..., x_{N}(t))$  captures the state of the system with N nodes at time t
- the  $N \times N$  matrix A describes the interaction strengths between the components of the system
- the  $N \times M$  matrix B identifies the nodes controlled by an outside controller
- the system is controlled by the vector  $\mathbf{u}(t)$  imposed by the controller.

Theorem The system

$$\dot{x}(t) = Ax(t) + Bu(t)$$

is controllable if and only if the controllability matrix

$$C = (B, AB, A^2B, ..., A^{N-1}B)$$

is full rank.

Theorem The system

$$\dot{\boldsymbol{x}}(t) = A\boldsymbol{x}(t) + B\boldsymbol{u}(t)$$

is controllable if and only if the controllability matrix

$$C = (B, AB, A^2B, ..., A^{N-1}B)$$

is full rank.

**Problem:** for most real networks, the interaction strengths (the matrix *A*) are unknown or approximately known.

Theorem The system

$$\dot{\boldsymbol{x}}(t) = A\boldsymbol{x}(t) + B\boldsymbol{u}(t)$$

is controllable if and only if the controllability matrix

$$C = (B, AB, A^2B, ..., A^{N-1}B)$$

is full rank.

**Problem:** for most real networks, the interaction strengths (the matrix A) are unknown or approximately known.

 $\Rightarrow$  structural controllability

- A pattern matrix **A** is a matrix whose each entry is either a zero or a star.

- A pattern matrix **A** is a matrix whose each entry is either a zero or a star.
- A real matrix A is a realization of the pattern matrix A if A can be obtained by replacing all nonzero entries of A by stars. In that case, we denote  $A \in A$ .

$$\mathbf{A} = \begin{pmatrix} \star & 0 & \star \\ \star & \star & 0 \\ 0 & 0 & \star \\ \star & \star & 0 \end{pmatrix} \qquad \qquad \mathbf{A} = \begin{pmatrix} 1 & 0 & 3 \\ 5 & 1 & 0 \\ 0 & 0 & 7 \\ 4 & 8 & 0 \end{pmatrix}$$

Given an input node set  $S = \{i_1, ..., i_m\}$   $(m \le N)$ , pattern B(S) is such that only the nodes in S are controlled by an outside controller.

**Example**:  $N = 4, S = \{2, 4\},\$ 

$$\mathbf{B}(S) = \begin{pmatrix} 0 & 0 \\ \star & 0 \\ 0 & 0 \\ 0 & \star \end{pmatrix}.$$

- A pair (**A**, **B**(S)) is weakly structurally controllable if there is a controllable realization (A, B).

- A pair (**A**, **B**(S)) is weakly structurally controllable if there is a controllable realization (A, B).
- A pair (**A**, **B**(S)) is strongly structurally controllable if ALL realizations (A, B) are controllable.

- A pair (**A**, **B**(S)) is weakly structurally controllable if there is a controllable realization (A, B).
- A pair (**A**, **B**(S)) is strongly structurally controllable if ALL realizations (A, B) are controllable.

**Goal:** given the pattern **A**, finding a node subset  $S_1$  (resp.  $S_2$ ) of minimum size such that the pair (**A**, **B**( $S_1$ )) (resp. (**A**, **B**( $S_2$ ))) is weakly (resp. strongly) structurally controllable.

- A pair (**A**, **B**(S)) is weakly structurally controllable if there is a controllable realization (A, B).
- A pair (**A**, **B**(S)) is strongly structurally controllable if ALL realizations (A, B) are controllable.

**Goal:** given the pattern A, finding a node subset  $S_1$  (resp.  $S_2$ ) of minimum size such that the pair  $(A, B(S_1))$  (resp.  $(A, B(S_2))$ ) is weakly (resp. strongly) structurally controllable.

Given a networked system described by a matrix  $A \in \mathbf{A}$ ,  $S_1$  and  $S_2$  provide respectively a lower and an upper bound on the minimum number of driver nodes.

Let **A** be a  $N \times N$  pattern matrix and  $S \subset \{1, ..., N\}$ . Denote A(S|.) the pattern matrix obtained from **A** by deleting the rows indexed by S.

## Theorem (Liu et al, 2011)

The pair (A, B(S)) is weakly s-controllable from a m-input set S iff A(S|.) has a (N - m)-matching.

A maximum matching in a bipartite graph can be found in  $\mathcal{O}(\sqrt{N}|E|)$  time.

Given a square pattern matrix A, denote  $A_{\times}$  the matrix pattern obtained from A by setting stars on its diagonal.

Given a square pattern matrix A, denote  $A_{\times}$  the matrix pattern obtained from A by setting stars on its diagonal.

Definition

An undamped pattern is a pattern with only zeros along the diagonal.

Given a square pattern matrix A, denote  $A_{\times}$  the matrix pattern obtained from A by setting stars on its diagonal.

## Definition

An undamped pattern is a pattern with only zeros along the diagonal.

## Theorem (Chapman et al, 2012)

In the case of an undamped pattern A, the pair (A, B(S)) is strongly s-controllable from a m-input set S iff A(S|.) and  $A_{\times}(S|.)$ have both a constrained (N - m)-matching.

Given a square pattern matrix A, denote  $A_{\times}$  the matrix pattern obtained from A by setting stars on its diagonal.

## Definition

An undamped pattern is a pattern with only zeros along the diagonal.

## Theorem (Chapman et al, 2012)

In the case of an undamped pattern A, the pair (A, B(S)) is strongly s-controllable from a m-input set S iff A(S|.) and  $A_{\times}(S|.)$ have both a constrained (N - m)-matching.

**Problem:** computing a maximum constrained matching in a bipartite graph is NP-hard.

Given a square pattern matrix A, denote  $A_{\times}$  the matrix pattern obtained from A by setting stars on its diagonal.

## Definition

An undamped pattern is a pattern with only zeros along the diagonal.

## Theorem (Chapman et al, 2012)

In the case of an undamped pattern A, the pair (A, B(S)) is strongly s-controllable from a m-input set S iff A(S|.) and  $A_{\times}(S|.)$ have both a constrained (N - m)-matching.

**Problem:** computing a maximum constrained matching in a bipartite graph is NP-hard.

**Challenge:** approximate the size of  $S_2$  providing the strong structural controllability.

Constrained matchings in a bipartite graph

Structural controllability of networked systems

Minimum rank of a loop directed graph

Conclusion and references

### Motivation

- The adjacency matrix is the most important tool in graph theory
- We are often interested in the rank of the adjacency matrix:
  - Open problem: to characterize the graphs whose adjacency matrix is singular
  - The nullity of a bipartite graph is of interest in chemistry
  - Progress in characterizing the nullity of a general graph is still needed

#### The Inverse Eigenvalue Problem of a Graph

Consider a simple undirected graph G and we define the matrix set:

$$\mathcal{Q}(G) = \{A \in \mathbb{R}^{N imes N} : A = A^T, ext{for any } i 
eq j, a_{ij} 
eq 0 ext{ iff } \{i, j\} \in E\}.$$

#### The Inverse Eigenvalue Problem of a Graph

Consider a simple undirected graph G and we define the matrix set:

$$\mathcal{Q}(G) = \{A \in \mathbb{R}^{N imes N} : A = A^T, ext{for any } i 
eq j, a_{ij} 
eq 0 ext{ iff } \{i, j\} \in E\}.$$

**Question:** Given a sequence  $[\mu_1, ..., \mu_N]$  of real numbers, is there a matrix  $A \in \mathcal{Q}(G)$  whose spectrum is  $[\mu_1, ..., \mu_N]$ ?

#### The Inverse Eigenvalue Problem of a Graph

Consider a simple undirected graph G and we define the matrix set:

$$\mathcal{Q}(G) = \{A \in \mathbb{R}^{N imes N} : A = A^T, ext{for any } i 
eq j, a_{ij} 
eq 0 ext{ iff } \{i, j\} \in E\}.$$

**Question:** Given a sequence  $[\mu_1, ..., \mu_N]$  of real numbers, is there a matrix  $A \in \mathcal{Q}(G)$  whose spectrum is  $[\mu_1, ..., \mu_N]$ ?

**First step:** The maximum possible multiplicity of a number  $\mu$  as an eigenvalue of a matrix in Q(G) is:

$$|G|-mr(G),$$

where mr(G) denotes the minimum rank of G.

Let G be a directed graph allowing loops with N nodes.

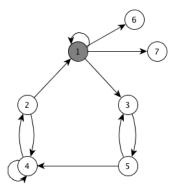
The graph G defines a family of real matrices:

$$\mathcal{Q}_d(G) = \{A \in \mathbb{R}^{N \times N} : a_{ij} \neq 0 \text{ iff } (i,j) \text{ is an edge in } G\}.$$

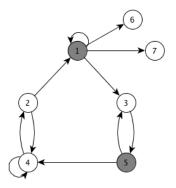
The minimum rank of G is the minimum possible rank for a matrix in  $Q_d(G)$ , that is:

$$mr(G) = \min\{\operatorname{rank}(A) : A \in \mathcal{Q}_d(G)\}.$$

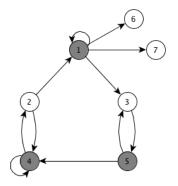
A color change rule on G: suppose that any node of G is either black or white. If a node j is the only white out-neighbor of node i, then change the color of j to black.



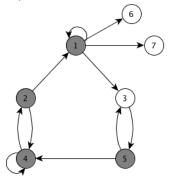
A color change rule on G: suppose that any node of G is either black or white. If a node j is the only white out-neighbor of node i, then change the color of j to black.



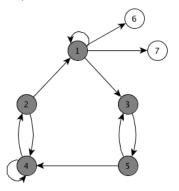
A color change rule on G: suppose that any node of G is either black or white. If a node j is the only white out-neighbor of node i, then change the color of j to black.



A color change rule on G: suppose that any node of G is either black or white. If a node j is the only white out-neighbor of node i, then change the color of j to black.

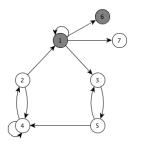


A color change rule on G: suppose that any node of G is either black or white. If a node j is the only white out-neighbor of node i, then change the color of j to black.



The zero forcing number Z(G) of G is defined to be the minimum number of nodes which have to be initially black so that after applying the color change rule all the nodes of G are black.

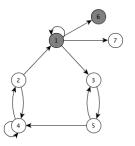
The zero forcing number Z(G) of G is defined to be the minimum number of nodes which have to be initially black so that after applying the color change rule all the nodes of G are black.



Its zero forcing number Z(G) equals 2.

{1,6} is called a minimum
zero forcing set.

The zero forcing number Z(G) of G is defined to be the minimum number of nodes which have to be initially black so that after applying the color change rule all the nodes of G are black.



Its zero forcing number Z(G) equals 2.

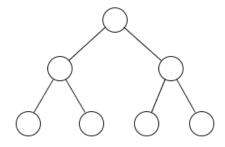
{1,6} is called a minimum
zero forcing set.

#### Theorem

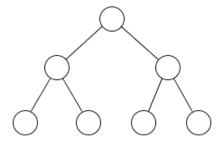
For any loop directed graph G,

$$|G|-Z(G) \leq mr(G).$$

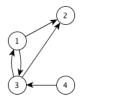
A tree is a connected undirected graph without cycle.



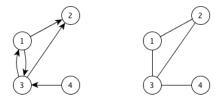
A tree is a connected undirected graph without cycle.



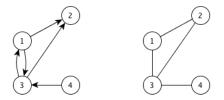
What is a directed tree ?



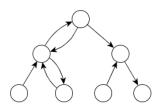




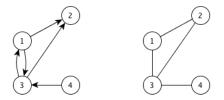
A directed tree is a directed graph such that its associated undirected graph is a tree.



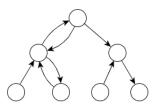
A directed tree is a directed graph such that its associated undirected graph is a tree.



is a directed tree.



A directed tree is a directed graph such that its associated undirected graph is a tree.



is a directed tree.

A loop directed tree is a directed tree allowing loops.

## Theorem For any loop directed graph G,

$$|G|-Z(G)\leq mr(G).$$

## Theorem For any loop directed graph G,

$$|G|-Z(G)\leq mr(G).$$

Theorem If T is a loop directed tree,

$$|T|-Z(T)=mr(T).$$

#### Theorem For any loop directed graph G,

$$|G|-Z(G)\leq mr(G).$$

Theorem If T is a loop directed tree,

$$|T|-Z(T)=mr(T).$$

 $\Rightarrow$  How compute Z(T), Z(G)?

Let G be a loop directed graph.

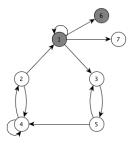
- Suppose that any node of G is either black or white. When the color change rule is applied to node i to change the color of node j, we say that i forces j, denoted  $i \rightarrow j$ .

Let G be a loop directed graph.

- Suppose that any node of G is either black or white. When the color change rule is applied to node i to change the color of node j, we say that i forces j, denoted  $i \rightarrow j$ .
- Given a minimum zero forcing set of G, we can list the forces in order in which they were performed to color the vertices of G in black. This list is called a chronological list of forces.

Let G be a loop directed graph.

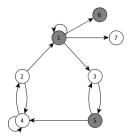
- Suppose that any node of G is either black or white. When the color change rule is applied to node i to change the color of node j, we say that i forces j, denoted  $i \rightarrow j$ .
- Given a minimum zero forcing set of G, we can list the forces in order in which they were performed to color the vertices of G in black. This list is called a chronological list of forces.



A min zero forcing set:  $\{1, 6\}.$ 

Let G be a loop directed graph.

- Suppose that any node of G is either black or white. When the color change rule is applied to node i to change the color of node j, we say that i forces j, denoted  $i \rightarrow j$ .
- Given a minimum zero forcing set of G, we can list the forces in order in which they were performed to color the vertices of G in black. This list is called a chronological list of forces.



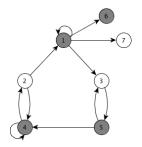
A min zero forcing set:  $\{1,6\}.$ 

A chronological list:

3 
ightarrow 5

Let G be a loop directed graph.

- Suppose that any node of G is either black or white. When the color change rule is applied to node i to change the color of node j, we say that i forces j, denoted  $i \rightarrow j$ .
- Given a minimum zero forcing set of G, we can list the forces in order in which they were performed to color the vertices of G in black. This list is called a chronological list of forces.



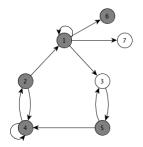
A min zero forcing set:  $\{1,6\}.$ 

A chronological list:

 $3 \rightarrow 5, 2 \rightarrow 4$ 

Let G be a loop directed graph.

- Suppose that any node of G is either black or white. When the color change rule is applied to node i to change the color of node j, we say that i forces j, denoted  $i \rightarrow j$ .
- Given a minimum zero forcing set of G, we can list the forces in order in which they were performed to color the vertices of G in black. This list is called a chronological list of forces.



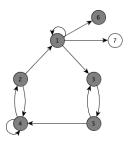
A min zero forcing set:  $\{1,6\}.$ 

A chronological list:

 $3 \rightarrow 5, 2 \rightarrow 4, 4 \rightarrow 2$ 

Let G be a loop directed graph.

- Suppose that any node of G is either black or white. When the color change rule is applied to node i to change the color of node j, we say that i forces j, denoted  $i \rightarrow j$ .
- Given a minimum zero forcing set of G, we can list the forces in order in which they were performed to color the vertices of G in black. This list is called a chronological list of forces.



A min zero forcing set:  $\{1,6\}.$ 

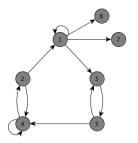
A chronological list:

 $3\rightarrow 5, 2\rightarrow 4, 4\rightarrow 2,$ 

 $\mathbf{5} \to \mathbf{3}$ 

Let G be a loop directed graph.

- Suppose that any node of G is either black or white. When the color change rule is applied to node i to change the color of node j, we say that i forces j, denoted  $i \rightarrow j$ .
- Given a minimum zero forcing set of G, we can list the forces in order in which they were performed to color the vertices of G in black. This list is called a chronological list of forces.



A min zero forcing set:  $\{1,6\}.$ 

A chronological list:

 $3 \rightarrow 5, 2 \rightarrow 4, 4 \rightarrow 2,$ 

 $5 \rightarrow 3, 1 \rightarrow 7$ 

#### Theorem

Let G be a loop directed graph and  $B_G$  the bipartite graph associated with G. Then, a node subset of G is a minimum zero forcing set of G with a chronological list of forces

$$j_1 \rightarrow i_1, j_2 \rightarrow i_2, ..., j_t \rightarrow i_t$$

if and only if

$$\{i_1, j_1'\}, \{i_2, j_2'\}, ..., \{i_t, j_t'\}$$

is a maximum constrained matching in  $B_G$ .

#### Theorem

Let G be a loop directed graph and  $B_G$  the bipartite graph associated with G. Then, a node subset of G is a minimum zero forcing set of G with a chronological list of forces

$$j_1 \rightarrow i_1, j_2 \rightarrow i_2, ..., j_t \rightarrow i_t$$

if and only if

$$\{i_1, j_1'\}, \{i_2, j_2'\}, ..., \{i_t, j_t'\}$$

is a maximum constrained matching in  $B_G$ .

# Corollary

Computing the zero forcing number of any loop directed graph is NP-hard.

A loop oriented tree is a loop directed tree with no antiparallel edges:

for any  $i \neq j$ , if  $(i,j) \in E$ , then  $(j,i) \notin E$ 

A loop oriented tree is a loop directed tree with no antiparallel edges:

for any 
$$i \neq j$$
, if  $(i,j) \in E$ , then  $(j,i) \notin E$ 

## Proposition (Elimination process)

Let **A** be a pattern matrix having row s (or column t) that has exactly one star entry  $a_{st}$ . Then,

$$mr(\mathbf{A}) = mr(\mathbf{A}(s|t)) + 1.$$

A loop oriented tree is a loop directed tree with no antiparallel edges:

for any 
$$i \neq j$$
, if  $(i,j) \in E$ , then  $(j,i) \notin E$ 

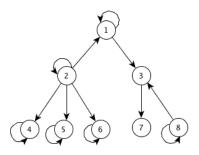
## Proposition (Elimination process)

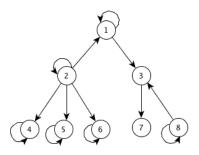
Let **A** be a pattern matrix having row s (or column t) that has exactly one star entry  $a_{st}$ . Then,

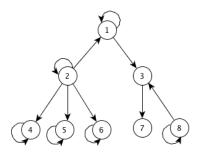
$$mr(\mathbf{A}) = mr(\mathbf{A}(s|t)) + 1.$$

#### Theorem

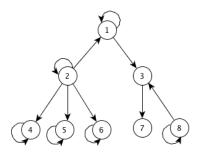
The minimum rank of any loop oriented tree can be computed in linear time thanks to the elimination process.



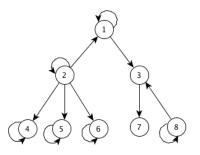




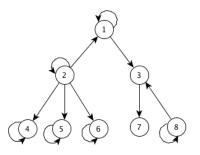
$$mr(T) = 1 + mr \begin{pmatrix} \star & 0 & \star & 0 & 0 & 0 & 0 \\ \star & \star & 0 & \star & \star & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \star & 0 \\ 0 & 0 & 0 & \star & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \star & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \star \end{pmatrix}$$



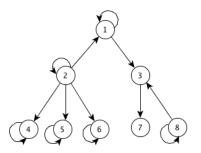
$$mr(T) = 1 + mr \begin{pmatrix} \star & 0 & \star & 0 & 0 & 0 & 0 \\ \star & \star & 0 & \star & \star & 0 & 0 \\ 0 & 0 & 0 & 0 & \star & 0 & 0 \\ 0 & 0 & 0 & \star & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \star & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \star & 0 \\ 0 & 0 & \star & 0 & 0 & 0 & \star \end{pmatrix}$$



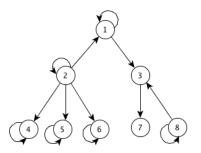
$$mr(T) = 2 + mr \begin{pmatrix} \star & 0 & \star & 0 & 0 & 0 \\ \star & \star & 0 & \star & \star & 0 \\ 0 & 0 & 0 & \star & 0 & 0 \\ 0 & 0 & 0 & 0 & \star & 0 \\ 0 & 0 & \star & 0 & 0 & \star \end{pmatrix}$$



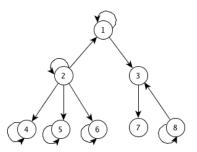
$$mr(T) = 2 + mr \begin{pmatrix} \star & 0 & \star & 0 & 0 & 0 \\ \star & \star & 0 & \star & \star & 0 \\ 0 & 0 & 0 & \star & 0 & 0 \\ 0 & 0 & 0 & 0 & \star & 0 \\ 0 & 0 & 0 & 0 & 0 & \star & 0 \\ 0 & 0 & \star & 0 & 0 & \star & \end{pmatrix}$$



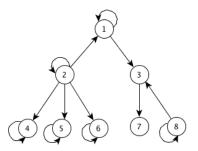
$$mr(T) = 3 + mr \left( \begin{array}{cccc} \star & 0 & \star & 0 & 0 \\ \star & \star & 0 & \star & 0 \\ 0 & 0 & 0 & \star & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \star & 0 & \star \end{array} \right)$$



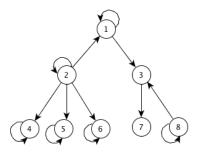
$$mr(T) = 3 + mr \left( \begin{array}{cccc} \star & 0 & \star & 0 & 0 \\ \star & \star & 0 & \star & 0 \\ 0 & 0 & 0 & \star & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \star & 0 & \star \end{array} \right)$$



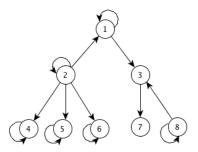
$$mr(T) = 4 + mr\left(\begin{array}{cccc} \star & 0 & \star & 0\\ \star & \star & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & \star & \star\end{array}\right)$$



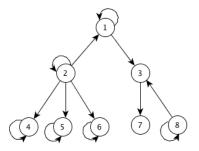
$$mr(T) = 4 + mr\left(\begin{array}{cccc} \star & 0 & \star & 0\\ \star & \star & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & \star & \star\end{array}\right)$$



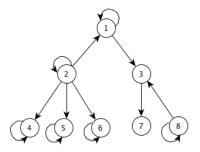
$$mr(T) = 5 + mr\left(\begin{array}{ccc} \star & \star & 0\\ 0 & 0 & 0\\ 0 & \star & \star\end{array}\right)$$



$$mr(T) = 5 + mr\left(\begin{array}{ccc} \star & \star & 0\\ 0 & 0 & 0\\ 0 & \star & \star\end{array}\right)$$



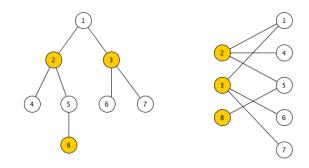
$$mr(T) = 6 + mr\left(\begin{array}{cc} 0 & 0 \\ \star & \star \end{array}\right)$$



$$mr(T) = 7$$

A rooted (undirected) tree  $T_u$  is a bipartite graph  $(V_e, V_o, E)$  where:

- $V_e$  is the node subset of  $T_u$  with an even height
- $V_o$  is the node subset of  $T_u$  with an odd height
- E is the edge set of  $T_u$ .



Let  $T_u$  be a rooted tree. Then, there is a loop oriented tree T such that the bipartite graph  $B_T$  associated with T is  $T_u$  with eventual additional isolated nodes in  $B_T$ .

Let  $T_u$  be a rooted tree. Then, there is a loop oriented tree T such that the bipartite graph  $B_T$  associated with T is  $T_u$  with eventual additional isolated nodes in  $B_T$ .

### Theorem

Let T be a loop oriented tree. Then, the bipartite graph  $B_T$  associated with T is a forest ( = disjoint union of trees).

Let  $T_u$  be a rooted tree. Then, there is a loop oriented tree T such that the bipartite graph  $B_T$  associated with T is  $T_u$  with eventual additional isolated nodes in  $B_T$ .

### Theorem

Let T be a loop oriented tree. Then, the bipartite graph  $B_T$  associated with T is a forest ( = disjoint union of trees).

#### Theorem

Let  $T_u$  be an (undirected) tree. M is a maximum matching if and only if it is a maximum constrained matching.

Let  $T_u$  be a rooted tree. Then, there is a loop oriented tree T such that the bipartite graph  $B_T$  associated with T is  $T_u$  with eventual additional isolated nodes in  $B_T$ .

## Theorem

Let T be a loop oriented tree. Then, the bipartite graph  $B_T$  associated with T is a forest ( = disjoint union of trees).

#### Theorem

Let  $T_u$  be an (undirected) tree. M is a maximum matching if and only if it is a maximum constrained matching.

A maximum matching in an (undirected) tree can be computed in linear time.

Constrained matchings in a bipartite graph

Structural controllability of networked systems

Minimum rank of a loop directed graph

Conclusion and references

# Conclusion

- We have seen two applications of the constrained matchings in a bipartite graph:
  - the strong structural controllability of networked systems
  - the minimum rank of a loop directed tree
- computing a maximum constrained matching in a bipartite graph as well as its size is NP-hard
- good approximation of the size of a maximum constrained matching ?
- what about the case where the bipartite graph is defined from a loop directed tree ?

# References

- Constrained Matchings
  - M.C. Golumbic, T. Hirst, M. Lewenstein, *Uniquely Restricted Matchings*, in Algorithmica, 31(2001), no. 2, pp. 139-154
- Structural Controllability of networked systems
  - Liu, Slotine, Barabasi, *Controllability of complex networks*, Nature, vol. 473, no. 7346, pp. 167-173, May 2011
  - A. Chapman, M. Mesbahi, *Strong structural controllability of networked dynamics*, submitted.
- Minimum Rank Problem
  - S. Fallat, L. Hogben, *The minimum Rank of Symmetric Matrices Described by a Graph: A survey*, in Linear Algebra Appl., 426 (2007), pp. 558-582.
  - M. Trefois, J.C. Delvenne, *Zero Forcing Sets, Constrained Matchings and Minimum Rank*, submitted.