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Constrained matchings in a bipartite graph
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A t-matching is a constrained t-matching if it is the only
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A t-matching is a set of t edges such that no two edges have a
common node.

A t-matching is a constrained t-matching if it is the only
t-matching between the matched nodes.

A (constrained) t-matching is maximum if there is no (constrained)
s-matching with s > t.



Directed graph and bipartite graph

Let G be a directed graph with nodes 1, ..., N. The bipartite graph
associated with G is Bg = (V, V', E) with:

e V={1,..,N}and V' ={1',.. N}

e {i,j'} € Eif and only if (j, /) is an edge in G.
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Let G be a directed graph with nodes 1, ..., N. The bipartite graph
associated with G is Bg = (V, V', E) with:

e V={1,..,N}and V' ={1',.. N}
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More generally,
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By abuse of language, a (constrained) t-matching of B will be
called a (constrained) t-matching of A.



Structural controllability of networked systems



Consider the networked system described by the equation:

x(t) = Ax(t) + Bu(t),

where

the vector x " (t) = (x1(t), ..., xn(t)) captures the state of the
system with N nodes at time t

the N x N matrix A describes the interaction strengths between
the components of the system

the N x M matrix B identifies the nodes controlled by an outside
controller

the system is controlled by the vector u(t) imposed by the
controller.



Goal: Identify the minimum number of nodes (the driver nodes)
whose control is sufficient to control the whole system.
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Theorem
The system
x(t) = Ax(t) + Bu(t)

is controllable if and only if the controllability matrix
C =(B,AB,A’B, ..., AN-1B)

is full rank.

Problem: for most real networks, the interaction strengths (the
matrix A) are unknown or approximately known.

= structural controllability



Definition

- A pattern matrix A is a matrix whose each entry is either a zero
or a star.



Definition
- A pattern matrix A is a matrix whose each entry is either a zero
or a star.

- A real matrix A is a realization of the pattern matrix A if A can
be obtained by replacing all nonzero entries of A by stars. In that
case, we denote A € A.
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Given an input node set S = {i,...,im} (m < N), pattern B(S) is
such that only the nodes in S are controlled by an outside
controller.

Example: N =4,5 = {2,4},

B(S) =

O O X O
> O O O
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Definition

- A pair (A, B(S)) is weakly structurally controllable if there is a
controllable realization (A, B).

- A pair (A, B(S)) is strongly structurally controllable if ALL
realizations (A, B) are controllable.

Goal: given the pattern A, finding a node subset S; (resp. Sz) of
minimum size such that the pair (A, B(51)) (resp. (A, B(S2))) is
weakly (resp. strongly) structurally controllable.

Given a networked system described by a matrix A€ A, S; and S,
provide respectively a lower and an upper bound on the minimum
number of driver nodes.



Notation
Let A be a N x N pattern matrix and S C {1, ..., N}.
Denote A(S|.) the pattern matrix obtained from A by deleting the

rows indexed by S.

Theorem (Liu et al, 2011)
The pair (A, B(S)) is weakly s-controllable from a m-input set S iff
A(S|.) has a (N — m)-matching.

A maximum matching in a bipartite graph can be found in

O(V'N|E|) time.
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Notation
Given a square pattern matrix A, denote A, the matrix pattern
obtained from A by setting stars on its diagonal.

Definition
An undamped pattern is a pattern with only zeros along the
diagonal.

Theorem (Chapman et al, 2012)

In the case of an undamped pattern A, the pair (A, B(S)) is
strongly s-controllable from a m-input set S iff A(S|.) and A« (S].)
have both a constrained (N — m)-matching.

Problem: computing a maximum constrained matching in a
bipartite graph is NP-hard.

Challenge: approximate the size of S, providing the strong
structural controllability.



Minimum rank of a loop directed graph



Motivation

e The adjacency matrix is the most important tool in graph
theory

e We are often interested in the rank of the adjacency matrix:

- Open problem: to characterize the graphs whose adjacency
matrix is singular

- The nullity of a bipartite graph is of interest in chemistry

- Progress in characterizing the nullity of a general graph is still
needed



The Inverse Eigenvalue Problem of a Graph

Consider a simple undirected graph G and we define the matrix set:

Q(G) = {AcRV*N . A= AT forany i +#j,a; #0iff {i,j} € E}.
Iy
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The Inverse Eigenvalue Problem of a Graph
Consider a simple undirected graph G and we define the matrix set:
Q(G) = {AcRN*N . A= AT for any i # j,a; # 0 iff {i,j} € E}.

Question: Given a sequence [u1, ..., un] of real numbers, is there a
matrix A € Q(G) whose spectrum is [u1, ..., un] 7

First step: The maximum possible multiplicity of a number y as
an eigenvalue of a matrix in Q(G) is:

G| = mr(G),

where mr(G) denotes the minimum rank of G.



Let G be a directed graph allowing loops with N nodes.
The graph G defines a family of real matrices:
Qu(G) = {Ac RNV . 5 £ 0 iff (i,)) is an edge in G}.

The minimum rank of G is the minimum possible rank for a matrix

in Q4(G), that is:
mr(G) = min{rank(A) : A€ Q4(G)}.



The zero forcing number of a loop directed graph

A color change rule on G: suppose that any node of G is either
black or white. If a node j is the only white out-neighbor of node i,
then change the color of j to black.

The color change rule is repeatedly applied to each node until no
color change is possible.
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Definition

The zero forcing number Z(G) of G is defined to be the minimum
number of nodes which have to be initially black so that after
applying the color change rule all the nodes of G are black.

Its zero forcing number
Z(G) equals 2.

{1,6} is called a minimum
zero forcing set.

Theorem
For any loop directed graph G,

|G| — Z(G) < mr(G).
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undirected graph is a tree.

is a directed tree.

O

A loop directed tree is a directed tree allowing loops.
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Theorem
For any loop directed graph G,

|G| — Z(G) < mr(G).

Theorem
If T is a loop directed tree,

|T|—Z(T)=mr(T).

= How compute Z(T), Z(G)?
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Definition

Let G be a loop directed graph.

- Suppose that any node of G is either black or white. When the
color change rule is applied to node i to change the color of node
j, we say that i forces j, denoted | — j.

- Given a minimum zero forcing set of G, we can list the forces in
order in which they were performed to color the vertices of G in
black. This list is called a chronological list of forces.

A min zero forcing set:

(1,6},

A chronological list:

©
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Definition

Let G be a loop directed graph.

- Suppose that any node of G is either black or white. When the
color change rule is applied to node i to change the color of node
J, we say that i forces j, denoted i — .

- Given a minimum zero forcing set of G, we can list the forces in
order in which they were performed to color the vertices of G in
black. This list is called a chronological list of forces.

A min zero forcing set:

{1,6}.

A chronological list:

3—52—44—2

5—+31—>7



Theorem

Let G be a loop directed graph and B¢ the bipartite graph
associated with G. Then, a node subset of G is a minimum zero
forcing set of G with a chronological list of forces

J1 = 0t = oy jt —> it

if and only if
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Theorem

Let G be a loop directed graph and B¢ the bipartite graph
associated with G. Then, a node subset of G is a minimum zero
forcing set of G with a chronological list of forces

J1 = 0t = oy jt —> it

if and only if
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is a maximum constrained matching in Bg.

Corollary

Computing the zero forcing number of any loop directed graph is
NP-hard.
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Definition
A loop oriented tree is a loop directed tree with no antiparallel
edges:

for any i # j, if (i,j) € E, then (j,i) ¢ E

Proposition (Elimination process)

Let A be a pattern matrix having row s (or column t) that has
exactly one star entry as;. Then,

mr(A) = mr(A(s|t)) + 1.
Theorem

The minimum rank of any loop oriented tree can be computed in
linear time thanks to the elimination process.
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A rooted (undirected) tree T, is a bipartite graph (Ve, Vo, E)
where:

- Ve is the node subset of T, with an even height
-V, is the node subset of T, with an odd height
- E is the edge set of T,,.
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Theorem

Let T, be a rooted tree. Then, there is a loop oriented tree T such
that the bipartite graph Bt associated with T is T, with eventual
additional isolated nodes in Br.

Theorem
Let T be a loop oriented tree. Then, the bipartite graph Bt
associated with T is a forest ( = disjoint union of trees).

Theorem
Let T, be an (undirected) tree. M is a maximum matching if and
only if it is a maximum constrained matching.

A maximum matching in an (undirected) tree can be computed in
linear time.
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Conclusion

We have seen two applications of the constrained matchings in a
bipartite graph:

e the strong structural controllability of networked systems

e the minimum rank of a loop directed tree
computing a maximum constrained matching in a bipartite graph
as well as its size is NP-hard

good approximation of the size of a maximum constrained
matching ?

what about the case where the bipartite graph is defined from a
loop directed tree 7
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