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Framework (1)

Networked system:
Dynamics:

ẋ(t) = Ax(t) + B(S)u(t),

where

A =





0.1 0 2.4
2 0 −1.5
0 1 0





For example, take S = {3} and B(S) =
[

0 0 1
]T

.

Since the controllability matrix C =
[

B(S) AB(S) A2B(S)
]

is
full rank, this system (A,B(S)) is controllable.
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Framework (2)

Networked system: Dynamics:

ẋ(t) = Ax(t) + B(S)u(t),

where

A =





⋆ 0 ⋆

⋆ 0 ⋆

0 ⋆ 0





A star ⋆ can be any nonzero real value.

For any realization A of A, is the system (A,B(S)) controllable ?

For example, take S = {3}.

No, if all the weights equal 1, the controllability matrix is not full
rank.
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Framework (3)

Given:

- A directed graph G = (V ,E ) with no idea of the weights

- A node subset S ⊂ V

The given graph G defines the matrix set:

Q(G ) := {A ∈ R
n×n| for any i , j , aij 6= 0 ⇔ (j , i) ∈ E}.

Question (strong structural controllability):

For any A ∈ Q(G ), is the system (A,B(S)) controllable ?

Goal of the talk: presenting a combinatorial tool allowing to answer
this question.
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Color change rule on a loop graph

A loop graph = graph allowing loops

- Initial coloring: black nodes and white nodes

- Color change rule: if node i has exactly one white out-neighbor j ,
j becomes black.

- Apply the rule repeatedly on each node of G until no more color
change is possible.
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Color change rule on a loop graph

A loop graph = graph allowing loops

Chronological list of forces:
3 → 5

- Initial coloring: black nodes and white nodes

- Color change rule: if node i has exactly one white out-neighbor j ,
j becomes black.

- Apply the rule repeatedly on each node of G until no more color
change is possible.
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Color change rule on a loop graph

A loop graph = graph allowing loops

Chronological list of forces:
3 → 5
2 → 4

- Initial coloring: black nodes and white nodes

- Color change rule: if node i has exactly one white out-neighbor j ,
j becomes black.

- Apply the rule repeatedly on each node of G until no more color
change is possible.
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Color change rule on a loop graph

A loop graph = graph allowing loops

Chronological list of forces:
3 → 5
2 → 4
4 → 2

- Initial coloring: black nodes and white nodes

- Color change rule: if node i has exactly one white out-neighbor j ,
j becomes black.

- Apply the rule repeatedly on each node of G until no more color
change is possible.
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Color change rule on a loop graph

A loop graph = graph allowing loops

Chronological list of forces:
3 → 5
2 → 4
4 → 2
5 → 3

- Initial coloring: black nodes and white nodes

- Color change rule: if node i has exactly one white out-neighbor j ,
j becomes black.

- Apply the rule repeatedly on each node of G until no more color
change is possible.
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Definition (Barioli, 2009)

- A loop directed graph G with black and white nodes.

- S the set of initially black nodes in G.

If after the color change rule, all the nodes of G are black, then S
is a zero forcing set of G.

In the example, S = {1} is not a zero forcing set, unlike S = {1, 6}.
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Given:

- A loop directed graph G = (V ,E ) with no idea of the weights

- A node subset S ⊂ V

The given graph G defines the matrix set:

Q(G ) := {A ∈ R
n×n| for any i , j , aij 6= 0 ⇔ (j , i) ∈ E}.

Definition
System (G ,S) is said strongly (structurally) S-controllable if for
any A ∈ Q(G ), the system (A,B(S)) is controllable.

In the literature, use of constraint matchings in a bipartite graph
defined from G .
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G× = G with a loop on each node

Theorem (Trefois, Delvenne, 2014)

- a loop directed graph G

- a node subset S

System (G ,S) is strongly S-controllable if and only if

- S is a zero forcing set in G and

- S is a zero forcing set in G× with a chronological list of forces
with no force of the form i → i , (i , i) ∈ E (G ).
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System (G ,S) is strongly S-controllable if and only if

- S is a zero forcing set in G and

- S is a zero forcing set in G× with a chronological list of forces
with no force of the form i → i , (i , i) ∈ E .

ẋ(t) = Ax(t) + B(S)u(t),

A =





⋆ 0 ⋆

⋆ 0 ⋆

0 ⋆ 0





For any realization A of A, is the system (A,B(S)) controllable
with S = {3} ?

No, S = {3} is not a zero forcing set in G .
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System (G ,S) is strongly S-controllable if and only if

- S is a zero forcing set in G and

- S is a zero forcing set in G× with a chronological list of forces
with no force of the form i → i , (i , i) ∈ E (G ).

And with S = {1} ? Yes,

- S = {1} is a zero forcing set in G

- S is also a zero forcing set in G× with chronological list of forces:

1 → 2, 3 → 3
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Intermediate conclusion: given G on n nodes and S ,

- is the system (G ,S) strongly S-controllable ? answer in time
O(n2)

- tool: the definition of zero forcing set in a loop graph

New question: given G , find S of minimum size such that (G ,S) is
strongly S-controllable...

In the next:

- answer for particular systems

- tool: zero forcing sets in a simple graph
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Color change rule on a simple graph

A simple graph = graph that prohibits loops

- Initial coloring: black nodes and white nodes

- Color change rule: if node i is black and has exactly one white
out-neighbor j , j becomes black.

- Apply the rule repeatedly on each node of G until no more color
change is possible.
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Color change rule on a simple graph

A simple graph = graph that prohibits loops

Chronological list of forces:
1 → 2

- Initial coloring: black nodes and white nodes

- Color change rule: if node i is black and has exactly one white
out-neighbor j , j becomes black.

- Apply the rule repeatedly on each node of G until no more color
change is possible.
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Color change rule on a simple graph

A simple graph = graph that prohibits loops

Chronological list of forces:
1 → 2
2 → 4

- Initial coloring: black nodes and white nodes

- Color change rule: if node i is black and has exactly one white
out-neighbor j , j becomes black.

- Apply the rule repeatedly on each node of G until no more color
change is possible.
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Definition (AIM minimum rank, 2008)

- A simple graph G with black and white nodes.

- S the set of initially black nodes in G.

If after the color change rule, all the nodes of G are black, then S
is a zero forcing set of G.

When graph without loops, always specify if it is considered as a
simple or as a loop graph.
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Self-damped system: loop directed graph with a loop on each node.

System (G ,S) is strongly S-controllable if and only if

- S is a zero forcing set in G and

- S is a zero forcing set in G× with a chronological list of forces
with no force of the form i → i , (i , i) ∈ E (G ).

Corollary (Trefois, Delvenne, 2014)

- a self-damped system G

- a node subset S

System (G ,S) is strongly S-controllable if and only if S is a zero
forcing set in the simple graph Gs .
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- a self-damped system G

- a node subset S

System (G ,S) is strongly S-controllable if and only if S is a zero
forcing set in the simple graph Gs .

finding S of minimum size for strong controllability of G

=

finding a minimum-size zero forcing set S in Gs (NP-hard)

Theorem (Trefois, Delvenne, 2014)

G a self-damped system on n nodes with a tree structure.
Then, one can compute, in time O(n2), a set S of minimum size
such that (G ,S) is strongly S-controllable.
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Our framework:




⋆ ⋆ 0
⋆ 0 0
⋆ ⋆ 0





Q(G ) = {A ∈ R
3×3 : for any i , j , aij 6= 0 ⇔ (j , i) ∈ E (G )}

Another framework (Monshizadeh, Zhang, Camlibel, 2013):





? ⋆ 0
⋆ ? 0
⋆ ⋆ ?





Q(Gs) = {A ∈ R
3×3 : for any i 6= j , aij 6= 0 ⇔ (j , i) ∈ E (G )}

⇒ Q(G ) ⊆ Q(Gs)
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Q(G ) ⊆ Q(Gs)

Theorem (Trefois, Delvenne, 2014)

System (G ,S) is strongly S-controllable if and only if

- S is a zero forcing set in G and

- S is a zero forcing set in G× with a chronological list of forces
with no force of the form i → i , (i , i) ∈ E (G ).

Theorem (Monshizadeh, Zhang, Camlibel, 2013)

System (Gs ,S) is strongly S-controllable if and only if S is a zero
forcing set in Gs .
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S = {1} is

- a zero forcing set in G and

- a zero forcing set in G× with list of forces 3 → 3, 1 → 2.

⇒ (G ,S) is strongly S - controllable.

S = {1} is NOT a zero forcing set in Gs .

⇒ (Gs ,S) is not strongly S - controllable.
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We have presented:

- the strong structural controllability of a networked system

- the notion of zero forcing set in a loop/simple graph

- the role of the zero forcing sets in the study of the strong
structural controllability of a system



26

References

- M. Trefois, J.-C. Delvenne, Zero forcing number, constraint
matchings and strong structural controllability, submitted 2014.
arXiv:1405.6222

- N. Monshizadeh, S. Zhang, M.K. Camlibel, Zero forcing sets and
controllability of dynamical systems defined on graphs, accepted
for publication in IEEE Transaction on Automatic Control.

- D. Burgarth, D. D’Alessandro, L. Hogben, S. Severini, M. Young,
Zero forcing, linear and quantum controllability for systems
evolving on networks, IEEE Trans. on Automatic Control 58,
2349 (2013).

Take home one message:

The zero forcing sets seem to play an important role in the study of
the dynamics of networked systems.
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