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Abstract

The root causes of various neurological disorders are not identified yet. While
there is a consensus that alterations in the central nervous system must be
involved in these disorders, the exact nature and location of these alterations is
often unknown. When those properties are discovered, a novel biomarker may
be defined, enabling early and objective diagnoses of the disease.

In this context, brain imaging is often used to characterize brain tissues
non-invasively and in vivo. In particular, recent developments in diffusion-
weighted imaging have led to the advent of models of the brain microstructure.
These models provide an unprecedented insight into the complex organization
of cellular structures in the brain. They are therefore of strong interest in
population studies to characterize neurological disorders.

Conducting population studies from models of the brain microstructure,
however, raises numerous challenges that pertain to the required image acquisi-
tion, the estimation, registration and statistical analysis of those models. This
thesis addresses these challenges and defines a comprehensive framework that
harnesses multi-fascicle models in population studies of the brain microstructure.
In particular, this framework includes methods to estimate multi-fascicle models
from widely available clinical data, to reliably select an appropriate model of the
brain microstructure, to register multi-fascicle models and to perform statistical
analyses of microstructural properties. This framework is tested in population
studies where it unravels alterations of the brain microstructure associated with
autism.

The presented framework opens opportunities for new investigations of the
brain microstructure in normal development and in disease and injury. It paves
the way to the definition of microstructure-based biomarkers of neurological
disorders.
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Chapter 1

Introduction

The incidence of Autism Spectrum Disorders (ASD), a neurological disease
affecting thousands of children across the globe, continues to increase at an
alarming rate [112, 16], rising from 4 per 10,000 in the 60’s to almost 1 in
100 children nowadays [97]. Whether the cause of this increase is a better
ascertainment, changes in diagnostic criteria or increased incidence remains
unclear [16]. However, with almost 1% of the child population affected, autism
has become a major challenge of public health. Many children with this troubling
diagnosis suffer from significant developmental delays, learning disabilities, and
communication impairments. ASD places severe emotional stress upon the
family as well as a staggering financial burden upon the entire social service
network and health care system. With an estimated total annual cost of $35
billion to assist individuals with autism over their lifetimes [39], there is now
intense pressure upon the medical research community to develop more accurate
methods of diagnosing this devastating illness in its earliest stages, monitoring
its progression, and assessing response-to-therapy. Early intervention is critical
to achieving better outcomes for these children, especially with respect to quality
of life.

In radiology, we generally rely upon biomarkers that point to a particular
disease state based on what is observed on magnetic resonance imaging (MRI)
—the modality most commonly used to explore the brain. In current radiologic
practice, however, no such imaging biomarker for ASD exists. The diagnosis of
autism is thus based primarily on subjective measures of signs and symptoms
(e.g. general affect, social interactions, communication and learning styles).
Subjective assessments may be unreliable and dissenting diagnoses are not
uncommon. Further, definitive diagnoses of ASD are rarely made in children
younger than two year old; and given the importance of early intervention, this
poses a particular challenge for health care providers. We are thus strongly
motivated to identify an objective, imaging-based biomarker that would enable
the early diagnosis of ASD in the youngest children (perhaps even near-term
infants), leading to significantly improved patient outcomes.
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The inability of conventional MRI to find reliable biomarkers of autism spec-
trum disorders may stem from its focus on regional abnormalities in the brain.
Regional abnormalities include altered cortical thickness and the the presence of
focal lesions or tubers. Contradictory conclusions in the characterization of the
cortical thickness in patients with autism have been found, with some studies re-
porting increased cortical thickness [48] and another reporting decreased cortical
thickness [47] in autism. The location and load of tubers and lesions in patients
with tuberous sclerosis complex, a genetic disease with a comorbidity of autism
of about 50% [54], was also shown to be unrelated to cognitive impairment or
autism [84, 52, 141] (Fig. 1.1). Our motivational study presented in the next

(a) (b)

Figure 1.1: Features from conventional MRI fail to predict the patient
outcome in tuberous sclerosis. (a) and (b) are both conventional MRI of patients
with tuberous sclerosis complex. Both patients have subcortical tubers (arrows) of
comparable size and distribution, but the patient in (a) has severe autism, no active
seizure disorder and is nonverbal, while patient (b) has mild motor and language
delays, no autism and refractory seizures.

section shows that autism may be associated with aberrations in connectivity
between regions rather than abnormalities in the regions themselves. This
study motivates the investigation of the brain microstructure that underpins
connectivity. The study of the brain microstructure in vivo raises mathematical,
computational and clinical challenges. This thesis addresses these challenges and
proposes a comprehensive framework to investigate microstructural properties
of the brain. This framework covers the various steps of studies of the brain
microstructure, from the acquisition of images with an MRI scanner to the
statistical analysis of these microstructure images.
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1.1 Common Patterns of Disconnection in Autism

In the last decade, the disconnection syndrome model of autism has been
proposed as a neurobiological basis of behavioral features presented in patients
with autism [23, 42, 69, 92]. This model posits that autism is caused by the
inability for patients to integrate information from distant regions in the brain.
This integration is required to bind together various pieces of information into
a more global concept, a cognitive ability called central coherence [38]. For
instance, a child with autism may not understand why a face looks angry
because his brain visual center does not communicate properly with his brain
emotional center.

Despite the broad acceptance of the disconnection syndrome model, method-
ological challenges have cast doubts on its validity. On the one hand, recent
researches have shown that head motion during functional magnetic resonance
imaging (fMRI) makes long-range connections appear weaker and short-range
connections appear stronger [87]. This artifactual pattern of connectivity is
identical to that observed in fMRI scans of children with autism who typically
move more in the scanner [34]. This finding therefore prompts the question of
the validity of the disconnection syndrome model. On the other hand, clinical
and etiological heterogeneity of autism (i.e. differences in the causes of autism
and its outcome for the patient) complicates the detection and characterization
of neurobiological mechanisms common to all autism spectrum disorders. In
particular, autism may be syndromic (i.e. caused by a specific genetic disorder
and thus identified by a syndrome) or non-syndromic. To advance the under-
standing of common neurobiological mechanisms in ASD, these mechanisms
should be present in subjects with ASD regardless of an underlying neurogenetic
abnormality. This is at odds with most researches on autism which focus on
non-syndromic ASD.

In a recent study, we investigated whether common patterns of disconnection
appear in the brain of children with ASD, regardless of etiology [85, 124]. We
included, in a population study, patients with non-syndromic autism and children
whose autism is caused by Tuberous Sclerosis Complex (TSC), a genetic disease
with a high penetrance of autism (Fig. 1.2A). To avoid artifactual findings
related to head motion in fMRI, we studied functional connectivity from electro-
encephalography (EEG) using 19 electrodes in a 10-20 system of electrode
placement (Fig. 1.2B). The common post-processing pipeline of EEG includes
manual removal of artifacts by experts to guarantee motion-free recordings.
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The population was composed of 43 children with TSC (14 with ASD and
29 without ASD), 16 children with non-syndromic ASD and 46 healthy controls.
Groups were identified by two indicator variable: TSC (indicating whether the
individual has TSC) and ASD (indicating whether the individual has ASD). The
brain was modeled as a network whose nodes are the electrodes and whose edges
are the coherence between EEG signals (Fig. 1.2C). Coherence measures the
strength of the connection in a particular frequency band. Both conventional and
graph-theoretical measures were used to characterize and compare the functional
networks [95]. Conventional measures included (i) the mean coherence, (ii) the
ratio of long-range (Euclidean distance between electrodes larger than 3 in the
grid of Fig. 1.2B) over short-range (Euclidean distance of two) connectivity,
and (iii) the ratio of the mean coherence of all corresponding inter-hemispheric
electrode pairs over all non-midline intrahemispheric electrode pairs. Graph-
theoretical measures included the clustering coefficient, the average path length,
the global efficiency and the resilience [95]. The resilience was measured as the
fraction of global efficiency remaining when the Nrem nodes with highest degree
centrality are removed from the network (1 ≤ Nrem ≤ 5).

For each measure, a two-way analysis of covariance (ANCOVA) was used to
assess whether significant differences associated with TSD and/or ASD were
observed. The ANCOVA is a conventional method to include some sources of
stochastic variability in the analysis. The subjects’ age was use as a covariate
of the analysis so that the generalized linear model reads:

y = ȳ + βASDASD + βTSCTSC + βageage,

for every measure y given the population average ȳ. Analyses were conducted
in the theta band, the lower and the upper alpha bands.

The results indicate that traits of TSC and ASD are mostly reflected in the
lower alpha band (Fig. 1.3). In this band, TSC is associated with a significantly
decreased mean connectivity (p < 0.005), a significantly decreased clustering
coefficient (p < 0.002), a significantly increased average path length (p < 0.008)
and a significantly decreased global efficiency (p < 0.009). ASD is associated
with a significantly lower long-over-short-range connectivity ratio (p < 0.0002)
and a significantly increased resilience (p < 0.05 for Nrem = 1, 3, 4, 5 and
p = 0.06 for Nrem = 2). More importantly, these findings were associated with
the condition as a whole (TSC or ASD) and not with a specific subgroup of
the population (e.g. only children with syndromic ASD). This observation was
tested by performing post-hoc t-tests, testing whether significant differences
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occur between the subgroups of a condition. No significant subgroup difference
was found for the findings detailed above (p > 0.05).

These results indicate that autism spectrum disorders, regardless of etiology,
share common patterns of disconnection. Since these results were based on an
EEG study, they are not affected by head motion (which is detected and removed
from EEG signals). This study thus provides evidence that common mechanisms
occur in autism spectrum disorders. These mechanisms may therefore lead
to the definition of one or several biomarkers. EEG, however, only provides
a characterization of the brain at a coarse spatial resolution. This resolution
does not allow for accurate localization of brain abnormalities. Increasing
the number of electrodes would not indefinitely improve the spatial resolution
due to volume conduction of electrical signals and because the skull spatially
smoothes the signals. While EEG is thus unlikely to be specific enough to
provide reliable biomarkers of autism spectrum disorders, it can guide the search
for such biomarkers.
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Figure 1.2: Functional networks in autism. (A) In the two-way representation
of our population, groups are identified by the subject being diagnosed with or without
Tuberous Sclerosis Complex (TSC) and/or with or without Autism Spectrum Disorder
(ASD). This structure allows an independent attribution of effects specific to TSC
and ASD. (B) Electrode locations from the international 10-20 system of electrode
placement are used as nodes in the network. (C) Illustrations of the functional networks
of a control subject, a TSC patient, a non-syndromic autistic patient, and a TSC
patient diagnosed with autism. Colors on the connection terminations correspond
to the colors in (B) and the darkness of the line correlate with the strength of the
connection.



1.1. Common Patterns of Disconnection in Autism 27

Mean Coherence

0.
15

0.
25

Inter over Intra 
 Hemispheric Ratio

0.
85

1
1.
15

Long over Short 
 Range Ratio

0.
9

1
1.
1

Average Path Length

1.
3

1.
4

1.
5

1.
6

1.
7

Clustering Coefficient

0.
25

0.
35

Global Efficiency

0.
5

0.
6

0.
7

0.
8

0.
9

Control
ASD
TSC+ASD
TSC

***

***

**

** ** **

(A) (C)

(D) (E) (F)

(B)

−0.04

µpop

+0.04

Resilience

*

Figure 1.3: Results of the population study of functional networks in
autism spectrum disorders (ASD) and tuberous sclerosis complex (TSC).
TSC is associated with decreased mean coherence (A), increased average path length
(D), decreased clustering coefficient (E) and decreased global efficiency (F). ASD is
associated with increased resilience (B) shown for Nrem = 3 and decreased long over
short range connectivity ratio (C). Remarkably, differences were associated with a
condition (TSC or ASD) rather than a specific subgroup.
? : p < 0.05, ?? : p < 0.005, ? ? ? : p < 0.001
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Figure 1.4: Components and organization of the brain microstructure.
The brain microstructure is composed of different compartments. Each compartment
impose different barriers to the diffusion of water molecules present within them. (a)
A piece of the visual cortex of a mouse imaged with an electron microscope showing
the heterogeneity of microstructural compartments and a comparatively large blood
vessel (in red). (b) A zoomed-in version of (a) showing a single neuron in blue with
its myelin sheath in yellow. (c) Each voxel of the electron microscopy image contains
thousands of water molecules. Water molecules contain two hydrogen atoms, the
protons of which contribute to the magnetic resonance signal.

1.2 In Vivo Analysis of the Brain Microstructure

Brain connectivity is supported by the architecture of its neurons and their
axons. Axons are projections of the neurons and act as the cables of the brain
transmitting the electrical impulse generated by the neuron’s body (the soma).
This transmission is supported by a network of blood vessels that provides the
necessary nutrients and oxygen, and by glial cells that maintain homeostasis and
provide protections for the neurons. Oligodendrocytes are glial cells that wrap
around the axons to form the myelin sheath that increases the propagation speed
of electrical impulses along the fibers. The brain microstructure is the complex
organization of all these compartments: the neurons and their dendrites and
axon, the glial cells, the vascular capillary bed and the lattice of extracellular
space [13] (Fig. 1.4).

Axons have various sizes, directions and degrees of myelination (Fig. 1.4b).
The volume of extracellular space also varies across the brain. Despite this
heterogeneity of cellular compartments, the organization of the microstructure is
not random and several key properties of the microstructure present detectable
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patterns at the millimeter scale. For instance, the corpus callosum is a region
of the brain located near the midline, in which densely packed fibers connect
the left and right hemispheres of the brain. The microstructure in the corpus
callosum therefore contains aligned axons and a small volume of extracellular
space. These patterns and properties can be measured with brain imaging at
the millimeter scale.

All microstructural environments contain water molecules that move (diffuse)
according to a Brownian motion. One cubic millimeter of tissue can contain
billions of billions (∼ 1019) of water molecules (Fig. 1.4c). These water molecules
contain two hydrogen atoms whose protons generate the magnetic resonance
signal (Fig. 1.4d). Motion of water molecules are detected by diffusion-weighted
magnetic resonance imaging, or diffusion-weighted imaging (DWI) for short.

DWI provides indirect measurements of the microstructure by characteriz-
ing how water molecules diffuse in the brain. The underlying microstructural
properties can be inferred by fitting a model to the DWI data. Various mi-
crostructural models have recently been proposed and are reviewed in the next
chapter. Regardless of the selected model, numerous challenges arise from
their introduction to study the brain microstructure. These challenges relate
to the acquisition, estimation and exploitation of microstructural models for
population studies.

Models of the brain microstructure are described by several parameters
at each voxel. Their optimization therefore requires several scalar diffusion-
weighted images to be acquired with various parameters. The duration of DWI is
therefore typically much longer than that of conventional MRI and increases with
the complexity of the model at hand. Most children with ASD have difficulty in
following instructions and remaining still in the MRI scanner. Patient motion
creates artifacts in the resulting images that may ultimately jeopardize the use
of these images to estimate the parameters of a microstructural model. To
minimize patient motion, sedation and anesthesia are often used, substantially
increasing the cost of the procedure and the risk to the patient. To offset the
persistent limitation of patient motion without resorting to anesthesia, fast
imaging of the brain microstructure is thus needed.

Once DWI have been acquired, the microstructural model needs to be
estimated. An appropriate model needs to be selected and, for the selected model,
the number of compartments needs to be determined. These compartments are
described by a number of parameters whose value is to be optimized.

Finally, images of the brain microstructure contain, within each voxel, an
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entire model of the local diffusion instead of a single scalar value (as in conven-
tional MRI). Basic tasks commonly performed on MRI (such as interpolating,
averaging or spatially aligning images) require methodological advances to be
performed on microstructural images. Solving these tasks is a requirement
to exploit microstructural images in population studies. Population studies
also require microstructural properties to be compared between groups. The
definition of a system for statistical microstructure analysis is therefore needed.

1.3 Contributions of this Thesis

As we will present in the next section, microstructural images are commonly
represented as multi-fascicle models in which the diffusions of different popu-
lations of water molecules have their own parametric representation. In this
thesis, we present a framework to conduct population studies from multi-fascicle
models of the brain microstructure. The main contributions of this thesis are:

1. A mathematical framework for the registration and analysis of multi-
fascicle models. This framework provides definitions of simple operators
such as averaging, interpolation and smoothing for multi-fascicle models.
It also provides a robust similarity metric between multi-fascicle models to
spatially align them. This framework enables the construction of an atlas
of the brain microstructure on which multi-fascicle models of subjects can
be aligned to assess group differences [125, 123, 127].

2. Formulation of the selection of the appropriate model as the minimiza-
tion of the generalization error. This formulation enables the reliable
identification of an appropriate model and estimation of the number of
compartments, by avoiding data overfitting [100].

3. Estimation of multi-fascicle models from single-shell diffusion imaging that
is both fast and widely available. We first demonstrate that this estimation
is an ill-posed problem and we explore the geometry of the manifold of all
equivalent models. We then propose an efficient method to regularize the
problem by including prior knowledge from scans of other subjects into a
maximum a posteriori formulation of the problem [129, 126].

The contributions of this thesis are illustrated in the specific context of detecting
relevant group differences in autism spectrum disorders and tuberous sclerosis
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complex. The proposed framework, however, can be exploited in various other
neurological and psychiatric contexts.

1.4 Thesis Outline

To conduct a population study of the brain microstructure, one typically proceeds
as follows:

1. Acquire diffusion-weighted images (DWI) in each subject

2. Estimate a microstructural model from the DWI of each subject

3. Spatially align (register) all microstructural models to an atlas

4. Statistically analyze microstructural properties in the atlas reference
frame.

These steps require novel assets and capabilities which correspond to the
contributions of this thesis (Fig. 1.5). The outline of this thesis starts with the
most fundamental assets and capabilities and progressively builds upon new
assets to develop the framework.

Chapter 2 reviews the background material needed for the developments of
this thesis, including diffusion-weighted imaging, diffusion tensor imaging and
its limitations, and microstructural models. Chapter 3 defines the mathemati-
cal framework that enables registration and analysis of multi-fascicle models.
Chapter 4 formulates the selection of an appropriate microstructural model as
the minimization of the generalization error. Chapter 5 defines a method to
estimate multi-fascicle models that requires few diffusion-weighted images at a
single non-zero b-value. Chapter 6 explores prospective developments in the
field of microstructure analysis that go beyond the characterization of multiple
fascicles.
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Figure 1.5: Workflow of population studies of the brain microstructure
and contributions of this thesis. The steps to conduct population studies of the
brain microstructure are: acquisition, estimation, registration and statistical analysis.
These steps require some assets (blue) and capabilities (in green) that we contribute
in this thesis. Arrow X → Y encodes the relation "Y requires X". The thesis outline
starts with requirements and progressively describes new assets and capabilities.



Chapter 2

Background

In vivo studies of the brain microstructure are based on acquisition of diffusion
weighted images from which a model is estimated. In this chapter, we first
explain the basics of diffusion-weighted magnetic resonance imaging. We then
describe the most commonly used model of the diffusion signal, called diffusion
tensor imaging, and outline its limitations. Finally, we summarize the recent
developments made in modeling the diffusion signal.

2.1 Diffusion-Weighted Imaging

Diffusion-weighted imaging (DWI) allows the characterization and quantitative
measurement of the diffusion of water molecules in tissues. It enables the
distinction between unrestricted diffusion of protons and restricted diffusion of
protons, based on the random motion of water molecules in tissue [26].

2.1.1 Physical Basis

In pure water, there is no barrier to the diffusion of water molecules and the
diffusion is referred to as unrestricted. In contrast, in the brain, local restriction
to water diffusion such as caused by the presence of densely organized white
matter fiber bundles (also known as fascicles), gives rise to restricted diffusion.
Furthermore, when the diffusion has a directional preference (such as in white
matter fascicles where diffusion is less constrained in the direction of the
fascicles), it is referred to as anisotropic whereas a diffusion with no directional
preference is coined isotropic. The degree of anisotropy and restriction depends
on the microstructure present in the voxel. In highly organized structures
(e.g. white matter fascicles), diffusion will be highly anisotropic and, in the
direction orthogonal to fascicles, highly restricted, as molecules will diffuse
preferably along the path of least resistance (e.g. along the axon within the
myelin sheath). In less coherent structures (e.g. in a tuber consisting of
poorly organized collection of cells), the diffusion will be almost isotropic and
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moderately restricted. In the cerebrospinal fluid (CSF), the diffusion will be
unrestricted and isotropic.

In an MRI scanner, protons’ spins are initially aligned with the strong
magnetic field produced by the magnet. Applying a short magnetic pulse
changes this orientation and protons’ spins start to precess (much like a spinning
humming top deviates from its central axis). This precession generates an
electromagnetic signal detectable by an electric coil. The rate of precession
depends on the strength of the magnetic field. By applying a magnetic field that
varies along a certain direction (adding a so-called field gradient pulse to the
magnetic field), we can label the spins by different precession rates according
to their position along the gradient direction. This variation in precession
rates results in an interference between the precessing spins, leading to a signal
attenuation. Applying the opposite field gradient pulse would refocus the spins
and counterbalance the signal attenuation, only if the protons did not move
between the two pulses. However, due to motion, protons’ spins are imperfectly
refocused and the signal attenuation cannot be completely compensated for.
The amount of remaining signal attenuation is related to the amount of motion
that occurs in the gradient direction. Measuring the signal attenuation therefore
measures the diffusion of protons (or water molecules that contain them). This
is the physical basis of diffusion-weighted imaging.

2.1.2 B-value, Echo Time and Acquisition Time

The diffusion-weighted MRI signal in an homogenous medium is given by the
Stejskal-Tanner equation [119]:

S = S0e
−TET2 e−γ

2δ2(∆− δ3 )‖g‖2D, (2.1)

where S0 is the signal obtained if no signal attenuation occurred, D is the
diffusion coefficient, γ is the gyromagnetic ratio that depends on the tissue, T2

is the time constant for spin-spin relaxation that also depends on the tissue,
‖g‖ is the strength of the gradient pulse, TE is the echo time, δ is the duration
of the field gradient pulse and ∆ is the separation in time between two pulses.
The latter three parameters (TE , δ and ∆) are chosen for the acquisition
and must be such that TE > 2∆ > 2δ. The gradient pulse is developed by
three coils generating a field in three orthogonal directions. Each coil can
generate a field of a magnitude up to gmax, so that the maximum magnitude
of the three-dimensional gradient pulse g is

√
3gmax and is obtained when the
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three coils produce their maximum field. We let bnominal = γ2δ2(∆− δ/3)g2
max

and b = bnominal‖g‖2/g2
max that we denote the nominal and effective b-values

respectively [102]. We have 0 ≤ b ≤ 3bnominal.
Diffusion-weighted images (DWI) are scalar images that contain, at each

voxel, the value of the signal S for a given effective b-value and a given gradient
direction ĝ. In heterogeneous microstructures, multiple DWI are typically
acquired with various gradient pulse directions ĝ and various effective b-values.
The gradient field is generated by three electromagnetic coils in the three
cartesian directions. Each coil can create a field of a maximum amplitude gmax

that is a scanner constraint. Due to this constraint, increasing the b-value
is typically done by increasing δ and/or ∆. Increasing δ and/or ∆, in turn,
increases the echo time TE . The increase in echo time has two adverse effects: it
increases the acquisition time of the images and it decreases the signal-to-noise
ratio (SNR) of the DWI due to the factor e

−TE
T2 in (2.1). Too low an SNR

can be compensated for by averaging multiple DWI acquired with the same
parameters. Averaging N DWI results in an SNR increased by a factor

√
N .

Acquiring N images takes N times longer so that both adverse effects related
to increased TE result in larger increases in acquisition time.

To illustrate the extent of this effect, let us imagine that we need to triple
the nominal b-value. Since the nominal b-value is proportional to δ2(∆− δ/3),
this can be achieved by multiplying δ and ∆ by a factor of 31/3 = 1.44. Let us
assume that the corresponding TE also increases by a factor 1.44, going from
100 ms to 144 ms. For a typical T2 in the white matter of 80 ms [139], the
SNR resulting from this increase in TE is only 58% of the initial SNR. This
decrease in SNR can be compensated for by acquiring three times as many
images (1/0.582). Since each image takes approximately 1.44 times longer to
be acquired (due to increase in TE), the whole process results in an imaging
time that is 4.33 longer than the initial imaging time. In other words, a scan
that initially takes 6 minutes would take over 25 minutes if the b-value needs
to be multiplied by 3 by increasing δ and ∆. While asking for children —and
children with autism in particular— to remain still for 6 minutes is challenging,
asking them not to move for 25 minutes is typically futile.

Recently, a novel acquisition scheme, namely cube and sphere (CUSP)
imaging, has been proposed to acquire DWI at multiple b-values without
increasing the TE [102]. The essence of CUSP is to increase the effective b-
value without increasing the nominal b-value, by increasing the strength of the
gradient field, ‖g‖. The maximum squared gradient magnitude is 3g2

max. This
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maximum amplitude can only be achieved for gradients located at the eight
corners of the cube in the space of gradients g: g = (±gmax,±gmax,±gmax).
All the gradients lying on this cube have an effective b-value between bnominal

and 3bnominal and, in each direction g, the magnitude of the gradient field is
maximized for a given TE . CUSP combines gradients on the cube and gradient
on the enclosed sphere (also called shell) described by ‖g‖ = gmax. The latter all
have gradient field strength equal to gmax yielding b-values equal to bnominal. By
increasing the b-value without increasing the TE , CUSP enables the acquisition
of DWI at multiple b-values in clinically achievable times.

Models of the brain microstructure relate the diffusion signal S to the
gradient direction ĝ and the effective b-value b. In the sequel, to align our
notations with those commonly used in the literature, the term b-value refers
to the effective b-value and the gradient directions ĝ is simply denoted g (with
the actual squared norm of the magnetic gradient included in the b-value). The

factor e−
TE
T2 is also implied so that S0 actually refers to S0e

−TET2 . With these
notations, the equation (2.1) for isotropic diffusion reads:

S = S0e
−bD. (2.2)

Increasing the number of acquired DWI by increasing the number of directions
g and the number of b-values enables better characterization of the brain
microstructure, by providing more data points to estimate the parameters
of the model S(b, g). This increase always comes at the expense of longer
acquisition times that may not be practical in a clinical setting. In Chapter 5,
we will propose a method to accurately estimate microstructural models with
few acquisitions at a single b-value.

2.2 Diffusion Tensor Imaging and its Limitations

Diffusion Tensor Imaging (DTI) is the first and most widely used model of
the diffusion signal in tissues [20]. It enables the definition of scalar measures
that can then be used to detect group differences in population studies. DTI,
however, is affected by various weaknesses which limit their use and mislead
conclusions from population studies.

2.2.1 Tensor Model

DTI models the average diffusion direction and strength at each voxel with a
tensor, which can be thought of as an ellipsoid (Fig. 2.1a). This ellipsoid is



2.2. Diffusion Tensor Imaging and its Limitations 37

λ2

λ1

λ3

(a) (b) (c)

Figure 2.1: Ellipsoid representation of the diffusion tensor model. (a)
Diffusion tensor imaging can be represented as an ellipsoid that consists of three axes
of diffusion and the corresponding diffusivities (here λ1, λ2 and λ3). The shape of the
ellipsoids provides information about the type of diffusion present in the voxel. (b) An
isotropic diffusion leads to a spherical tensor. (c) Diffusion that is highly restricted in
two directions and favored in one direction will present as an elongated tensor with
very small second and third diffusivities.

characterized by a principal direction along which diffusion is the strongest. In
the two orthogonal directions, diffusion is more restricted and its magnitude is
given by the width of the ellipsoid in those directions. A total of six parameters
are required to fully define the ellipsoid: three parameters for the widths and
length (these are also called diffusivities), two parameters to define the direction
of strongest diffusivity and one parameter to define the rotation of the ellipsoid
around its principal axis. The shape of the ellipsoid provides information on the
nature of the diffusion occurring in the corresponding voxel. Isotropic diffusion
(as that occurring in free water) gives rise to a spherical tensor (Fig. 2.1b),
and its diffusivities are equal in all directions. Highly anisotropic diffusion
gives rise to long and thin ellipsoids (Fig. 2.1c), indicating that the diffusion is
highly favored along a principal direction and highly restricted in the other two
directions.

Mathematically, ellipsoids are represented as 3 × 3 symmetric positive-
definite matrices that we denote D. Diffusivities correspond to the eigenvalues
of this matrix and are denoted λ1 ≥ λ2 ≥ λ3 (Fig. 2.1a). The directions
along which the diffusivity is equal to λi is the i-th eigenvector of D and is
denoted êi. For a general gradient direction ĝ (a 3-dimensional vector with unit
norm), the diffusion coefficient is ĝTDĝ and we can verify that êTi Dêi = λi. A
generalization of (2.2) that accounts for the anisotropy of the diffusion coefficient
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is therefore:
S(b, g) = S0e

−bgTDg. (2.3)

Under the assumption that δ is negligible compared to ∆ (narrow pulse approx-
imation), the diffusion signal can be directly related to the diffusion process
by the inverse Fourier transform [28]. Specifically, the probability density of
protons to undergo a displacement r in a time ∆ is

p∆(r) = S−1
0 (2π)−3

∫
R3
|S∆(q)|e−iqrdq,

where q = γδ‖g‖ĝ and S∆(q) = S(b = ‖q‖2∆, g = q̂). Under this interpretation,
the multivariate Gaussian function of (2.3) implies that the diffusion of water
molecules follows a Gaussian process whose covariance matrix is D (since the
Fourier transform of a multivariate Gaussian is a multivariate Gaussian with a
covariance matrix equal to the precision matrix of the initial Gaussian). The
ellipsoids represented by D in this interpretation correspond to a surface of
equal probability to find a proton that was initially located at the center of
the ellipsoid. The narrow pulse approximation is often violated because the
separation ∆ between pulses tends to be minimized (∆ ≈ δ) to minimize TE
and thereby maximize the SNR [65]. The inverse Fourier transform of the
diffusion signal thus only provides intuitions (and not measurements) about the
underlying diffusion process.

2.2.2 DTI-Based Measures

DTI-based measures quantify the shape of the ellipsoids in diffusion tensor
imaging. Two main measures are commonly used: the mean diffusivity (MD)
and the fractional anisotropy (FA). The mean diffusivity is the average diffusion
in all three directions. In terms of the tensor formalism, it is defined as:

MD =
λ1 + λ2 + λ3

3
=

1
3
TrD.

The mean diffusivity is an intrinsic property of tissues. For example, the MD of
demyelinated white matter is increased as there is more extracellular water and
a weaker biological barrier to diffusion [116]. The fractional anisotropy (FA)
reflects the degree of asymmetry between diffusivities in all three directions.
If the diffusion is completely isotropic (Fig. 2.1b), then FA is equal to zero.
Conversely, if the diffusion is extremely anisotropic (water molecules can only
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diffuse in one direction and not in the other two directions), then FA is equal
to one. In terms of the tensor formalism, the FA is defined as:

FA =

√
3
2

√
(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2√

λ2
1 + λ2

2 + λ2
3

.

Diffusion within the white matter axons is restricted to the longitudinal axis by
cell membranes and by the the myelin sheath which form a biological barrier,
resulting in a high FA. When neurons or myelin sheaths are damaged, the
FA decreases: there is less preferential directionality of diffusion because the
fluid can move freely along various axes. MD and FA can be altered by any
pathological process that modifies tissue integrity and leads to an attenuation
of structural barriers to water motion.

The FA and MD are computed in each voxel individually, yielding scalar
images of the measure (Fig. 2.2b-c). An alternative way of displaying DTI is
to color-code the FA by the principal direction of the tensor. A tensor aligned
with the left-right axis of the brain gets a red color, one that is oriented along
the anterior-posterior axis gets a green color, and a tensor aligned with the
superior-inferior axis gets a blue color. Tensors that are in between these axis
receive a color that is a weighted sum of these principal colors. The value of
the color (in a hue-saturation-value encoding) encodes the FA so that voxels
with low FA are dark and values with high FA are bright (Fig. 2.2d).
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Figure 2.2: Diffusion tensor imaging (DTI) and DTI-based measures. (a)
Conventional, structural MRI. (b) Mean diffusivity (MD) image showing that MD
is especially large in the corpus callosum and in corticospinal tracts. (c) Fractional
anisotropy (FA) image shows where, in the brain, diffusion is more (white) or less
(black) anisotropic. FA in the white matter is high due to the presence of highly
structured white matter fascicles. By contrast, gray matter presents in axons with
various directions, resulting in a lower FA. (d) FA can be colored based on the
directions of the fascicle in each voxel: red means the fascicle is oriented left to right,
green represents fascicles that are oriented along the anterior-posterior axis and blue
represents the superior-inferior axis.
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Figure 2.3: Single tensor and multi-fascicle models. (a-c) Unlike assumptions
of the diffusion tensor models, fascicles in the voxels may have more than one prefer-
ential direction. Diffusion tensor imaging model assumes that the diffusion is either
purely unrestricted or purely restricted within a single fascicle. This assumption is
violated in regions where fascicles cross, such as (b) the corona radiata. In those
regions, tensors are abnormally inflated to capture the signal arising from (c) each
fascicle, resulting in a lower fractional anisotropy that may be misleadingly interpreted.
By contrast, (d-f) multi-fascicle models represent each fascicle independently and are,
therefore, able to characterize regions with crossing fascicles.

2.2.3 Processing Diffusion Tensors

The processing of diffusion tensors (averaging, interpolating, smoothing, regu-
larizing, etc.) is challenging because any operations must yield positive definite
matrices. This constraint is not respected by Euclidean metrics, i.e. perform-
ing element-wise operations on the entries of the matrices. For instance, the
element-wise subtraction of two tensors may lead to null or negative eigenvalues.

Furthermore, the determinant of a diffusion tensor, which is related to the
volume of the confidence region of finding a water molecule that has diffused, is
not preserved by Euclidean processing. The Euclidean average of two tensors
may lead to a tensor with a higher determinant than those of both initial tensors,
an effect known as the swelling effect [8].

For these reasons, tensors are typically processed in the log-Euclidean
domain, which is an interesting and efficient alternative to the Euclidean
processing [7, 8, 106]. Processing tensors in the log-Euclidean domain simply
consists in computing operations on the matrix logarithm of the tensors and
subsequently computing the matrix exponential of the result. As an illustration,
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the logarithmic version of the average of N tensors Di is:

µD = exp

(
1
N

N∑
i=1

logDi

)
.

The matrix exponential is defined as the Taylor series of the exponential function
applied to the matrix. The logarithm, logDi, of a matrix Di is defined as
the matrix whose exponential is Di. The logarithm (logDi) has the same
eigenvectors as Di and eigenvalues that are equal to the scalar logarithm of the
eigenvalues of Di. Interestingly, the determinant of the log-Euclidean average
of N tensors is exactly equal to the scalar geometric mean of the determinants
of the original tensors [8].

The log-Euclidean processing of diffusion tensors does not, however, preserve
anisotropy. The FA of the log-Euclidean average of diffusion tensors, for instance,
may be lower than the FA of all original tensors. Another processing scheme
has recently been proposed to circumvent this problem, based on the processing
of spectral-quaternion [31].

2.2.4 Limitations of the DTI Model

The diffusion tensor model relies on the assumption that all the water molecules
in one voxel follow the same diffusion process and are equally constrained
by the brain tissues. We have already seen in Section 1.2 that microscopic
observations of the brain microstructure contradict these assumptions (because
of the heterogeneity of axonal diameters, orientations, degree of myelination and
tortuosity, and the presence of an extra-axonal matrix). The utmost limitations
of the DTI model, however, are related to two macroscopic effects: the presence
of heterogeneous fascicle orientations and the partial volume effect [131].

a) Heterogeneous Fascicle Orientations

The DTI model assumes that, at each voxel, the diffusion is Gaussian with
either no preferential direction (isotropic diffusion) or one preferential direction.
This assumption is reasonable only when all axons in the voxel are contained
into one fascicle with a specific orientation. However, owing to the presence
of complex fascicle organization, heterogeneous fascicle orientations can be
present in one voxel. In the corona radiata, for instance, corticospinal tracts
(tracts connecting the cortex to the spinal cord) cross fascicles of the corpus
callosum (the horizontal tracts that connect the left and right hemispheres)
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(Fig. 2.3a-c). Another example are the pyramidal projections that give rise to
fanning fascicles (i.e., fascicles that follow different directions from an original
point at which they are aligned) [131]. Recent studies estimate the prevalence of
those heterogeneities to range between 60 and 90% of voxels in the white matter
at typical DWI resolution [55]. When fascicles are crossing, interpretation of
the DTI-based measures (MD and FA) may be misleading [136]. For instance,
in the presence of two crossing fascicles, a single overly wide tensor would be
estimated resulting in a decreased FA. This decreased FA is not related to a
property of the fascicle and, if interpreted this way, may incorrectly lead to the
assumption that the myelin is altered for that fascicle.

b) Partial Volume Effect

Voxels that are at the interface between different tissues (gray and white matter),
between adjacent fiber bundles or between a tissue and cerebrospinal fluid (CSF)
suffer another problem called partial voluming. The diffusion signal arising
from protons in the different compartments (CSF, gray or white matter) will be
averaged into a single value that is observed in DWI. Because DTI assumes that
the diffusion of water molecules is either purely unrestricted or purely restricted
within a single fascicle in the voxel, influences of different compartments will
conflate, resulting in an inflated tensor with a lower FA. As with heterogeneous
fascicle orientations, this decreased FA may be misleadingly interpreted as
altered myelin.

Even in voxels that are not at the interface between tissues, some fraction
of the water molecules will diffuse in the extra-axonal space (either within
other cells or in the extracellular lattice). Their diffusion process is different
from the diffusion within axons and results in a different diffusion signal. The
partial volume effect therefore also applies within a fascicle, between molecules
inside and outside axons. The partial volume effect is essentially a resolution
limitation. At an infinite resolution, the diffusion model would pertain to a
single water molecule and would be relatively simple compared to the models
of the brain microstructure that we describe below.

2.3 Models of the Brain Microstructure

To overcome the limitations of the diffusion tensor model, various models of the
brain microstructure have been proposed. We start by expressing a fundamental
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assumption that is used in most models of the brain microstructure. We then
discuss models that extend the tensor model for a single fascicle. We finally
describe multi-fascicle models.

2.3.1 Non-Exchangeability of Water Molecules

Most limitations of the diffusion tensor model amount to the presence of
populations of water molecules present in different compartments and having
different diffusion patterns. These compartments are typically not completely
impermeable and water molecules may transit from one compartment to another
at a certain exchange rate. However, if this exchange rate is slow (compared
to the diffusion time), a non-exchangeability assumption can be made. Under
this assumption, the fraction of water molecules in each compartment remains
constant throughout the diffusion process. The measured diffusion signal is
then simply the sum of the signals Si contributed by each population of water
molecules, weighted by the fraction fi of water molecules in each population:

S =
N∑
i=1

fiSi,

with
∑N
i=1 fi = 1. Since the non-attenuated signal S0 is the same for all

compartment (it does not depend on any diffusion process), we also have

S = S0

N∑
i=1

fiAi,

where Ai is the attenuation of the signal in the i-the compartment.

The validity of this non-exchangeability assumption depends on the actual
rate of exchange of water molecules between compartments [131]. As we will see
in the next two subsections, the scale of these compartments vary and, thereby,
so does their exchange rate. Macroscopic compartments consist in fascicles
and/or actual fractions of the voxel (in the case of partial voluming with other
tissues or CSF). Microscopic compartments consist in individual axons and
the surrounding extra-axonal space. The non-exchangeability assumption is
commonly made at every scale, mostly owing to the assumption that individual
axons are almost impermeable [14].
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2.3.2 Models of a Single Fascicle

Recent diffusion models of a single fascicle have been proposed to overcome
the limitations of DTI at the microscopic level. These imperfection can be
attributed to three main reasons: the presence of an extra-axonal space, the non-
Gaussianity of the diffusion process and the heterogeneity of axonal properties.

a) Modeling the Extra-Axonal Space

The brain does not only consist of axons. Outside the axons, in the extra-axonal
space, the diffusion of water molecules is different from that within the axons.
The measured diffusion signal receives contributions from all water molecules.
Therefore, the signal arising from water molecules in the extra-axonal space
ought to be modeled separately. Under the non-exchangeability assumption,
the diffusion model becomes:

S = S0(fintraAintra + fextraAextra), (2.4)

where fintra and fextra are the fractions of water molecules in the intra-axonal
and extra-axonal space, respectively (with fintra + fextra = 1), and Aintra and
Aextra are the corresponding signal attenuations.

Water molecules outside the axons are either in the extracellular matrix or
trapped in other cells (mostly glial cells). The diffusion of water molecules in
the extracellular space is hindered by the surrounding tissue microstructure
including cells, membranes, axons, etc. This diffusion is well modeled by a
diffusion tensor. Isotropic [76, 22, 102, 82, 80], cylindrically symmetric [2] or
full [14] tensors have been proposed in this context. The diffusion in glial cells
depends on the shape of the cell but is typically modeled as isotropic (either as
an isotropic tensor [102], as a sphere [118], as dots [5] or as a uniform spherical
distribution of infinitely anisotropic tensors, known as astrosticks [79]).

As an example, Pasternak et al. [80] use an isotropic tensor to model the
extracellular space and an anisotropic tensor to represent the diffusion in the
supposedly unique fascicle:

S = S0(fintrae−bg
TDintrag + fextrae

−bDextra),

and fix Dextra = 3× 10−3mm2/s as the diffusion of free water at body tempera-
ture (37◦C).



46 Chapter 2. Background

b) Modeling Non-Gaussian Diffusion

The assumption of Gaussian diffusivity of water molecules within axons has
been questioned [76, 12, 72, 14]. In most cases, however, the non-Gaussianity
of the diffusion signal has been explained by the presence of an extra-axonal
space [76] and therefore relates to the models described above. It remains
unclear whether any other source of non-Gaussian diffusivity can be detected
with clinical DWI acquisitions once a model of the extra-axonal space has been
included. In a recent study, we have argued to the contrary: from DWI acquired
in a clinical setting (with b ≤ 3000s/mm2), once the unrestricted diffusion in the
extra-axonal space is accounted for, the remaining signal is accurately modeled
as a Gaussian function and the whole signal is therefore well represented by a
mixture of Gaussian functions [99].

In non-clincial settings, where more acquisitions and higher b-values can
be achieved, non-Gaussian models of the intra-axonal diffusion have been
proposed [14, 5, 145]. These models posit that water molecules in the axons are
restricted in a cylinder rendering a free axial diffusion (parallel to the cylinder
axis) and a restricted radial diffusion. The radial diffusivity is modeled following
the early developments by Van Gelderen et al. [134], Neuman [74] and Codd
and Callaghan [29]. In the extra-axonal space, these models use one of the
models described above so that only Aintra in (2.4) is modified.

Due to their increased complexity, the cylindrical models of diffusion are
typically made at the expense of other assumptions on the diffusion signal.
The first and obvious assumption of cylindrical models is cylindrical diffusivity,
i.e. they assume that the diffusion is equal in all directions orthogonal to
the principal direction of diffusion. While this assumption may be reasonable,
constraints and mechanical tensions during morphogenesis may possibly lead
to asymmetrical axons as it is observed for other cells [51]. More importantly,
assumptions about the radial diffusivity and the axon diameter are also typically
made. For instance, the Composite Hindered And Restricted Model of Diffusion
(CHARMED) [14] fixes a priori both the distribution of axon diameters and
the radial diffusivity for the entire image. As for the cylindrical model of
Alexander et al. [2, 5], it assumes that all axons in one voxel have the same
diameter.
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c) Modeling the Heterogeneity of Axon Properties

Axons within a single fascicle have different properties (Fig. 1.4). They differ in
shape, orientation and degree of myelination. Different models have recently
attempted to take this heterogeneity into account. In the Neurite Orientation
Dispersion and Density Imaging (NODDI) model [146], the dispersion of axon
orientations is modeled by a Watson distribution of pre-defined sticks to model
intra-axonal diffusion. The account for the orientation dispersion thus comes
at the expense of losing all information about the fascicle-specific properties
(such as diffusion anisotropy, mean diffusivity, radial diffusivity , etc.) since
intra-axonal diffusivities are fixed a priori.

The AxCaliber model [11] extends the CHARMED model [14] to account for
the heterogeneity of axon diameters. A Gamma distribution is fitted to these
diameters. This extension adds to the complexity of the CHARMED model
and AxCaliber has therefore primarily been designed to describe the diffusion
in a two-dimensional plane perpendicular to the axons. This limitation does
not allow its use in whole brain population studies.

More recently, the DIstribution of Anisotropic MicrO-Structural eNviron-
ments in Diffusion (DIAMOND) model [98] has been introduced to account for
the heterogeneity of microstructural environments at different spatial scales.
DIAMOND extends the tensor model by replacing the matrix D by a matrix-
variate Gamma distribution over matrices D with a mean D0. The mean of
the matrix-variate Gamma distribution remains a tensor but the variability
around this mean represents the heterogeneity in microstructural properties.
DIAMOND therefore proposes a phenomenological, rather than biophysical,
model of the heterogeneity in axonal properties. Doing so enables DIAMOND
to simultaneously account for all sources of heterogeneity but requires further
assumptions when associating a detected alteration of the diffusion signal to a
specific feature of the microstructure [77].

2.3.3 Models of Multiple Fascicles

All the models described above relate to a single fascicle. Due to the limited
resolution of DWI, most voxels in the white matter and the grey matter contain
multiple fascicles with heterogenous directions [55]. Multi-fascicle models are
required to represent the diffusion signal arising from these fascicles. In theory,
any single-fascicle model can be extended to a multi-fascicle models by virtue
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of the non-exchangeability assumption. The diffusion model becomes:

S = S0

K∑
k=1

fkAk,

where fk and Ak are the fraction and signal attenuation in the k-th fascicle.
The different fascicles present in one voxel are independent so that a full
single-fascicle model needs to be estimated for each fascicle.

Owing to the increased number of parameters involved by multiplying the
number of fascicles, not all single-fascicle models can be practically generalized
to multi-fascicle models. A broad and widely used class of multi-fascicle models
is represented by multivariate Gaussian mixtures [59, 102, 105, 132, 137]. In
this class, the diffusion signal S is modeled as:

S(b, g) = S0

N∑
i=1

fie
−bgTDig. (2.5)

In this expression, the number N of compartments may be larger than the
number K of fascicles if each fascicle is itself represented by several compart-
ments. For instance, one compartment of hindered diffusion can be included
for each fascicle to represent the diffusion of extra-axonal water molecules in
the vicinity of the axons. A compartment of isotropic diffusion can also be
included to represent water molecules outside fascicles, in a partial volume of
CSF or in large glial cells. This multi-fascicle model meets the requirement
of providing a full independent model for each fascicle present in the voxel
(Fig. 2.3d-f). It enables the separate characterization of fascicle properties and
thereby the identification of group differences that affect a specific fascicle and
not the fascicles that cross it.

Generalization of the CHARMED model to two fascicles has also been
proposed [14] but the distribution of axonal radii is fixed and equal for both
fascicles in all voxels so that separate characterization of fascicles is not possible.
A multi-fascicle DIAMOND model has also been proposed, replacing matrix-
variate Gamma distributions by mixtures of Gamma [98]. This generalization
provides a full single-fascicle model of the diffusion signal and accounts for the
heterogeneity of microstructural environments in each fascicle independently.

In this thesis, we will focus on the Gaussian mixture models, due to their
wide use and their relevance to characterizing independent fascicles. Most of
the developed techniques can (and have been [27]) adapted to other types of
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models. In Chapter 6, we discuss, in more details, extensions to the multi-fascicle
DIAMOND model.

2.4 Population Studies of the Brain Microstructure

In this final section of the chapter dedicated to background material, we explain
how features of the diffusion model correlate with the brain microstructure
and its alterations. We then describe how population studies of the brain
microstructure are conducted.

(b) (c) (d) (f) (g)

Oligodendrocyte

Microglia

(a)

Astrocyte

Axon

Myelin

(e)

Figure 2.4: Main alterations of the brain microstructure. (a) Healthy myeli-
nated axon in the presence of a normal amount of glial cells, leading to a baseline
diffusion model. (b) Axonal injury leading to decreased axial diffusivity. (c) Demyeli-
nation resulting in increased radial diffusivity. (d) Axon loss leading to increased
fraction of isotropic diffusion and decreased longitudinal diffusivity. (e) Cytotoxic
edema leading to increased water molecules within astrocytes. (f) Neuroinflammation
leading to increased restricted isotropic diffusion. (g) Combination of axon and myelin
injury with neuroinflammatory response leading to a specific alteration of the diffusion
mixture model.

2.4.1 Diffusion Signal Correlates of Microstructure Alterations

Analyzing the parameters of the diffusion model of (2.5) provides insight into
alterations of the brain microstructure. The brain microstructure is essentially
composed of neurons (and their axons and dendrites), glial cells and an ex-
tracellular matrix. Three main types of glial cells are present in the brain:
(i) astroctytes that play different roles including the provision of nutrients to
the neurons, the maintenance of extracellular ion balance and the scarring
and repair damaged areas, (ii) oligodendrocytes that provide a protection and
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insulation to axons by creating the myelin sheath, and (iii) microglia that play
the role of active immune defense by engulfing and digesting cell debris.

These different components are illustrated in Fig. 2.4a in the baseline of a
healthy microstructure. In this section, we discuss the most common pathologies
of the brain microstructure: axon injury, demyelination, axon loss, edema and
neuroinflammation.

a) Axon Injury

Axonal injury (or axonal degeneration) in the absence of myelin degeneration
results in water molecules that are no more free to move along the direction of
the axon (Fig. 2.4b). This leads to a decrease in the diffusivity λ1 (corresponding
to ê1 aligned with the axon) of the tensor representing the water molecules
within the axon. This diffusivity is known as axial diffusivity. The radial
diffusivities (λ2 and λ3) remain unchanged because water molecules continue to
be restricted by the myelin sheath. This correlation between axonal injury and
axial diffusivity was proposed and validated in a study on a mouse model of
retinal ischemia [115]. This pathology causes an acute inner retinal degeneration
whose subsequent demyelination is delayed so that axonal injury can be observed
in the absence of demyelination.

b) Demyelination

Demyelination (also called dysmelination, myelin degradation or myelin injury)
in the absence of axonal injury results in water molecules in the myelin whose
radial diffusivity is less constrained because of the permeability of the damaged
myelin (Fig. 2.4c). This leads to increased radial diffusivities (λ2 and λ3) of the
tensor representing water molecules in the myelin sheath (typically the same
tensor as that used to represent the axons). The axial diffusivity λ1 remains
unchanged. This correlation between demyelination and radial diffusivity was
proposed and validated in a study of shiverer mice, an animal model of demyeli-
nation [116]. Demyelination occurs in various brain diseases including Canavan
disease, a genetic degenerative disorder [61]. Demyelination deteriorates the
transmission of signals within the brain and may have consequences in sensation,
motion and cognition.
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c) Axonal Loss

Axonal loss is the complete loss of the whole or part of the axon. It results in an
increased fraction of water molecules that are free to diffuse in the extracellular
space (Fig. 2.4d). Axonal loss also results in a migration of microglia towards
the site of the lesion to engulf cell debris. Axonal loss leads to an increased
fraction of isotropic diffusion [137]. Its occurrence is frequent in traumatic brain
injury and chronic neurodegenerative diseases, among others [30]. The presence
of activated microglial cells around the lesion may lead to a metabolic cascade
potentially involving edema and neuroinflammation.

d) Cerebral Edema

Edema are abnormal accumulations of fluid in the extracellular or intracel-
lular space that may result from three separate pathophysiological processes:
cytotoxic edema, vasogenic edema and osmotic edema. In cytotoxic edema,
water molecules migrate from the extracellular space to accumulate inside cells
(neurons or astrocytes) [64]. These water molecules are driven by an influx
of cations (including Na+) due to increased cation permeability of the cell
membrane or the failure of active ion-pumps due to energy depletion [133]. The
accumulation of water molecules in cytotoxic edema leads to a cell swelling and
a corresponding reduction in the amount of water molecules diffusing in the
extracellular space (Fig. 2.4e). Cytotoxic edema resulting in cell swelling is
more prominent in astrocytes than in neurons [64]. The impact on the diffusion
model is an increased volumetric fraction of molecules undergoing restricted
anisotropic diffusion in the astrocytes and a corresponding decreased volumetric
fraction of water molecules diffusing in the extracellular space. These changes
in volumetric fraction may be accompanied by a modification of the parameters
related to the diffusion within astrocytes, due to their increased radius following
cell swelling. Cytotoxic edema occur, for instance, in ischemic stroke where a
lack of oxygen and glucose leads to the failure of ion-pumps [94].

In vasogenic edema, unlike cytotoxic edema, the blood-brain barrier (which
is a physiological separation between blood and the extracellular space) is
damaged due to injury or autodestructive mediators [133]. This breakdown
allows intravascular fluid to penetrate into the extracellular space. Consequently,
the volumetric fraction corresponding to the extracellular space in the diffusion
model increases. Vasogenic and cytotoxic edema both occur in traumatic brain
injury and may be lethal [133]. Vasogenic edema may also result from brain
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cancer due to the presence of glioma (cancerous glial cells) whose secretion of
specific proteins weakens the blood-brain barrier [50].

Finally, osmotic edema results from osmotic imbalance (that is the difference
in concentrations of various solutes or solvents) between the serum and the
brain. Osmotic imbalance creates a pressure gradient that results in penetration
of water into the brain. As with vasogenic edema, osmotic edema results in
an increased fraction of water molecules that diffuse in the extracellular space.
Osmotic edema have also been observed in cases of traumatic brain injury [142].

e) Neuroinflammation

Neuroinflammation may refer to the normal migration of microglia to a specific
part of the brain to engulf cellular debris or dead cells, in which case it is coined
acute neuroinflammation [120]. However, abnormal excessive neuroinflamma-
tory response may also occur, in which case the microglial cells exacerbate the
neurodestructive process [120]. We refer to this process as chronic neuroin-
flammation. The presence of microglial cells may potentially be detected by a
fraction of the signal being unattenuated since the diffusion of water molecules
trapped in microglia is highly restricted [5]. When microglial cells are activated
(differentiated into macrophages), they release cytotoxic metabolites [17] which,
in turn, may lead to cytotoxic edema and cell swelling [64]. The cytotoxic
metabolites released by activated microglia include small signaling proteins
called cytokines. Interestingly, recent studies have revealed an increased level
of cytokines in the plasma of children with autism supporting the hypoth-
esis that autism spectrum disorder may be caused, in part, by an immune
dysfunction [10].

f) Detecting and distinguishing microstructural pathologies

The multi-fascicle model of the brain microstructure in (2.5) may distinguish the
aforementioned alterations. For instance, an increased radial diffusivity without
decreased axial diffusivity points to the presence of demyelination. An increased
fraction of isotropic diffusivity points to the presence of a vasogenic or osmotic
edema. Axon and myelin alterations can be analyzed separately for each fascicle
present in one voxel. This property is of paramount importance in population
studies since specific altered fascicles may cross normal unaltered fiber bundles.
To fully account for all possible sources of microstructural alterations, a model
with sufficient granularity (reflected by the number N of compartments in (2.5))
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is required. Typically, one needs to trade-off the granularity of the model
with the available data, since higher granularities imply a higher number of
parameters to be estimated. A lower model granularity can be compensated
for by prior knowledge about the specific pathogenesis based on biopsies or
post-mortem histology. For instance, Pastrenak et al. suggested the presence of
a neuroinflammatory response in schizophrenia onset with a model consisting
of a single anisotropic tensor and an isotropic tensor accounting for all water
molecules in the extra-axonal space [82].

In etiologically complex diseases and conditions, a combination of microstruc-
ture alterations may occur. For instance, multiple sclerosis may be related to
an axonal injury and demyelination accompanied with a neuroinflammatory re-
sponse [137] (Fig. 2.4e). In other diseases, such as schizophrenia and Alzheimer’s
disease, the neurological basis are still unknown and different hypotheses have
been proposed. In Alzheimer’s disease, hypotheses of a neuroinflammatory
response [138] and hypotheses of a myelin breakdown [19] have been proposed.
In schizophrenia, both myelin alterations [60] and neuroinflammation [73] have
been proposed.

The neurological basis underpinning functional observations in autism spec-
trum disorders remains largely unknown. It is yet to be determined whether
axons and/or myelin abnormalities are involved or whether ASD results from an
autoimmune response leading to neuroinflammation [140, 135], or whether a com-
bination of these causes is involved. Population studies based on multi-fascicle
models have the potential to distinguish the different sources of microstructure
alterations, thereby providing answers to these critical questions.

2.4.2 Workflow of a Microstructure Population Study

To access the brain microstructure properties in a specific individual, DWI
first need to be acquired and a multi-fascicle model needs to be estimated. To
compare multi-fascicle models with each other and to detect group differences
that point to a specific alteration, multi-fascicle models need to be spatially
aligned. This spatial alignment step, also known as registration, is critical since
misalignment results in an artificial increased variability within the groups and
therefore reduces our capacity to detect group differences. By registering all
multi-fascicle models to each other, a multi-fascicle atlas can be constructed.
This atlas represents the microstructure in a standard average anatomy. It
enables the definition of standard fascicles along which microstructural properties
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can be defined. Finally, sound statistical analysis need to be performed to
characterize group differences. In particular, as explained in the previous
section, fascicle properties should be performed on a per-fascicle basis, while
comparisons of volumetric properties can be performed on a per-voxel basis.

The four steps of the workflow for population studies of the brain microstruc-
ture (acquisition, estimation registration, and statistical analysis) are depicted
in Fig. 1.5. In the next chapters, we will address the challenges that arise at
each step of this workflow, providing new assets and capabilities that, together,
yield a comprehensive and effective framework for population studies of the
brain microstructure.



Chapter 3

Registration and Analysis of
Multi-Fascicle Models

Multi-fascicle models are of great interest in population studies to characterize
and compare properties of the brain microstructure. Central to population
studies is the construction of an atlas and the registration of all subjects to
it. However, the appropriate definition of registration and atlasing methods
for multi-fascicle models have proven challenging. In this chapter, we pro-
pose a mathematical framework to register and analyze multi-fascicle models.
Specifically, we define novel operators to achieve interpolation, smoothing and
averaging of multi-fascicle models. We also define a novel similarity metric
to spatially align multi-fascicle models. Our framework enables simultaneous
comparisons of different microstructural properties that are confounded in con-
ventional DTI. The framework is validated on multi-fascicle models from 24
healthy subjects and 38 patients with tuberous sclerosis complex, 10 of whom
have autism. We demonstrate the use of the multi-fascicle model registration
and analysis framework in a population study of autism spectrum disorder.

3.1 Related Work

Conducting population studies based on multi-fascicle models (MFM) requires
the alignment of all models to a common coordinate system (the atlas). Reg-
istering and atlasing multi-tensor images are known to be challenging and
many studies attempt to perform population analyses without resorting to
them [89, 113, 25, 53]. In [89], a T2-weighted MRI of the subject is registered
to a DWI at b = 0 s/mm2 and correspondence between subjects is achieved by
segmenting the anatomy based on a T1-weighted atlas. In tract-based spatial
statistics (TBSS) [113], single-tensor images are estimated and FA images are
used to spatially align subjects. To interpret anisotropies in crossing fiber areas,
heuristics based on the mode and FA of the tensor are used. In crossing-fiber
TBSS [53], a ball-and-sticks model is estimated but spatial alignment is still
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Figure 3.1: Weighted combinations of multi-fascicle models. Computing
weighted combinations of multi-fascicle models amounts to computing the complete
mixture Mc and simplifying it in an EM scheme to obtain Ms. The E-step is a
clustering problem and the M-step consists in averaging log-tensors in each cluster.

based on single-tensor FA images. None of these approaches attempt to register
multi-tensor models directly.

Direct registration of multi-fascicle models is important since the latter
provide increased contrast in areas where T2-weighted images and FA images
are almost constant (as will be shown in Section 3.7.4). Furthermore, multi-
tensor image registration can be made invariant with respect to differences in FA
and MD, which is important when those properties need to be compared after
alignment. The challenges of registering and analyzing multi-fascicle models
stems from difficulties in processing multi-tensors. In particular, interpolating,
averaging, smoothing and defining robust similarity metrics for multi-fascicle
models cannot be directly extended from the single-tensor case. This is because
the j-th tensor in one voxel does not necessarily correspond to the same fascicle
as the j-th tensor in another voxel. Furthermore neighboring voxels may contain
different number of fascicles.

Interpolation and spatial smoothing are required in registration to apply
transforms and to prevent aliasing in multi-scale approaches. Building an atlas
further requires averaging MFM. From a mathematical perspective, interpolat-
ing, smoothing and averaging all amount to computing weighted combinations
of MFM. In this chapter, we propose a mathematical framework to compute
weighted combinations of MFM and a similarity metric to register them. These
developments enable registration and analysis of multi-fascicle models which
open new opportunities for population studies of microstructural properties.
These contributions are based on our recent publications [123, 125, 127].
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3.2 Weighted Combinations of Multi-Fascicle Models

Computing weighted combinations of multi-fascicle models is at the basis of
interpolation, smoothing and averaging. The linear combination of K mixture
models,Mk, with weights wk, each having N components (with fraction fkj and
tensor Dk

j leading to a signal Skj ) results in a mixture with KN components
that we call the complete model :

Mc =
K∑
k=1

wkMk =
K∑
k=1

wk

N∑
j=1

fkj S
k
j (g) (3.1)

≡
KN∑
i=1

f ci S
c
i (g) = Sc0

KN∑
i=1

f ci e
−bgTDc

ig. (3.2)

In most practical applications, increasing from N to KN the number of compo-
nents is not desirable. We therefore estimate a simplified model,Ms, with N
components which best approximates the complete model:

Ms =
N∑
j=1

fsj S
s
j (g) = Ss0

N∑
j=1

fsj e
−bgTDs

jg (3.3)

= arg min
Ms

D(Mc,Ms), (3.4)

where D(., .) is some discrepancy measure between the complete and simplified
models. This problem is known as mixture model simplification for which
efficient approaches have recently been proposed [18, 35, 125]. In [18], the
simplified mixture model is defined as that which minimizes the cumulative
differential relative entropy between the complete and simplified models:

D (Mc,Ms) =̂
N∑
j=1

∑
i:πi=j

f ciD
(
Sci (g)‖Ssj (g)

)
(3.5)

=
N∑
j=1

∑
i:πi=j

f ci

∫
R3
Sci (g) log

Sci (g)
Ssj (g)

dg.

The variables πi cluster the components Sci of the complete mixture into N
clusters each represented by a single component of the simplified mixture, Ssj ;
πi = j means that Sci is best represented by Ssj . Banerjee et al. [18] showed
that, as long as Sci (g) and Ssj (g) belong to the exponential family, Equations
(3.4) and (3.5) can be optimized in an expectation-maximization scheme for
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which both the E-step and the M-step can be solved in closed form (Fig. 3.1).
This makes the computation of weighted combinations of multi-fascicle models
tractable. Mixtures of distributions from the exponential family is a wide class
of mixtures which includes Gaussian mixtures [132], ball-and-sticks models [22],
composite hindered and restricted models [14], diffusion directions models [117],
Watson and Bingham distributions [146].

In the case of multi-tensor models, the E-step consists in optimizing for the
clustering variables πi assuming Ssj are known, based on the Burg divergence
B(., .) between covariances Σ = D−1:

πi = arg min
j

B
(
Σc
i ,Σ

s
j

)
= arg min

j

[
Tr
(
Σc
iΣ

s
j
−1
)
− log

∣∣∣Σc
iΣ

s
j
−1
∣∣∣] . (3.6)

The M-step then consists in optimizing the parameters of the simplified mixture
(that is Ds

j and fsj ) to minimize (3.5) providing that we know πi. Davis and
Dhillon [35] proved that this step amounts to computing the weighted average
of covariance matrices and fractions in each cluster:

Σs
j =

∑
i:πi=j

f ci Σ
c
i∑

i:πi=j
f ci

and fsj =
∑
i:πi=j

f ci . (3.7)

Alternating the E-step (3.6) and M-step (3.7) until convergence provides the
parameters (fsj and Ds

j) of the weighted combination of mixtures. Initialization
is required to control the local minimum to which EM will converge. We
initialize the clustering variables πi by spectral clustering using the cosine
similarity matrix between the primary eigenvector ei of each tensor Dc

i [110].
We found this initialization to be efficient in our experiments. However, since
the algorithm typically converges in a few steps, one may consider running it
multiple times with various initializations and selecting the result that yields
the lowest cumulative differential relative entropy.

One may be concerned about the swelling effect due to averaging covariance
matrices in (3.7). This motivates the definition of a log-Euclidean version of
the mixture model simplification described above, as it has been defined for
single-tensor interpolation [8]. This is achieved by replacing the covariance
matrices by their matrix logarithm before performing the EM. The update of
the covariance matrices now reads:

log Σs
j =

∑
i:πi=j

f ci log Σc
i∑

i:πi=j
f ci

.
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Since log Σ = logD−1 = − logD, the logarithmic version of the weighted
combination of multi-fascicle models is equivalent to its single-tensor counterpart
in voxels with only one tensor. This is not the case in the Euclidean version
since covariance matrices, rather than tensors, are averaged. A pseudocode of
the method is presented in Algorithm 1.

Importantly, due to the construction of a complete model, the framework
described above does not depend on the label i assigned to tensors in the
multi-tensor model and accounts for cases where the number of tensors differs
between voxels.

Algorithm 1 Weighted Combinations in one voxel

1: Input: K multi-fascicle modelsMk with weights wk and the number N
of fascicles in the output.

2: Output: A multi-fascicle model:
∑N
j=1 f

s
j e
−bgTDs

jg

3: for k in 1 to K do . Construct the complete modelMc

4: for j in 1 to N do
5: i← (k − 1)N + j

6: f ci ← wkf
k
j

7: Dc
i ←Dk

j

8: end for
9: end for

10: π ← Initialization({Dc
i , f

c
i }j≤NK) . Initialize clustering

11: while π has not converged do
12: for j in 1 to N do . M-Step
13: logDs

j ←
(∑

i:πi=j
f ci logDc

i

)/(∑
i:πi=j

f ci

)
14: fsj ←

∑
i:πi=j

f ci
15: end for
16: for i in 1 to KN do . E-Step
17: for j in 1 to N do
18: Bi(j)← Tr

(
Dc
i
−1Ds

j

)
− log

∣∣∣Dc
i
−1Ds

j

∣∣∣
19: end for
20: πi ← arg minlBi(l)
21: end for
22: end while
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3.3 A Similarity Metric for Multi-Fascicle Models

To register multi-fascicle models, a similarity metric between multi-tensor
images needs to be defined. Since registration is used for population studies,
the similarity metric must be invariant to inter-subject variability. In particular,
since mean diffusivity and fractional anisotropy are typically used as potential
biomarkers for diseases, the similarity metric must be invariant to changes in
FA and MD. This observation has lead Zhang et al. to define a single-tensor
similarity metric based on deviatoric tensors, making it invariant to changes in
MD [144], though not robust to other differences in diffusivity profiles. In this
section, we generalize the correlation coefficient widely used in scalar images
when intensities differ between subjects and we show that this similarity metric
is invariant under changes in FA and MD.

The correlation coefficient as a similarity metric for block matching is defined
as the scalar product between the normalized blocks. For voxels with values in
R, the blocks R and S defined over a domain Ω with |Ω| voxels are elements of
R× ...× R = R|Ω| and the correlation coefficient reads:

ρ(R,S) =
〈

R− µR
‖R− µR‖

,
S − µS
‖S − µS‖

〉
, (3.8)

where µ is the mean of the image values in the block and 〈., .〉 is the canonical
scalar product in R|Ω|. It is invariant if R is replaced by aR+ b.

For vector images with values in Rn, blocks are elements of Rn × ...×Rn =
(Rn)|Ω|. The correlation coefficient can be generalized to vector images by
redefining the means µR and µS as the projection of the block onto a block
T ∈ (Rn)|Ω| that has a constant value at each voxel, i.e. T (x) = t0 for all
x ∈ Ω [96]:

R− µR = R− 〈R, T 〉‖T‖2 T. (3.9)

The factor 〈R, T 〉 /‖T‖2 is a scalar that we call the scalar mean and is equal to
µR for scalar images. Equation (3.8) is therefore a particular case of (3.9) for
n = 1 and t0 = 1. This generalized correlation coefficient can be used in any
vector space endowed with an inner product. It is invariant if R is replaced by
aR+ bT where a and b are scalars and T is the chosen constant block.

Let us first generalize the correlation coefficient to single-tensor diffusion
images which will prove useful for the generalization to multi-tensor images.
Single-tensor blocks are elements of (S+

3 )|Ω|, where S+
3 is the space of 3 × 3
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symmetric positive definite matrices. It is typically more convenient to work
in the log-tensor space in which blocks are elements of (S3)|Ω|. This space
is endowed with the Frobenius inner product and the correlation coefficient
of (3.9) can be readily applied. Choosing t0 = I3 (the identity matrix),
the correlation coefficient is invariant under linear transformations of the log-
tensor eigenvalues: log λi → log λ′i = a log λi + log b due to the invariance
logD → logD′ = a logD + log bI3. It is instructive to observe what the
definition of the scalar mean becomes in this space with the Frobenius inner
product. We have:

µS3 =
〈logD,T 〉
‖T ‖2 (3.10)

=
∑
x∈Ω 〈logD(x), I3〉F∑

x∈Ω 〈I3, I3〉F
(3.11)

= log

(∏
x∈Ω

λ1(x)λ2(x)λ3(x)

) 1
3|Ω|

(3.12)

=̂ log
(
λGΩ
)
. (3.13)

The generalized scalar mean for blocks of single-tensors is therefore the logarithm
of the geometric mean λGΩ of diffusivities over the domain Ω.

Defining a scalar product in the space (SM)|Ω| of blocks of multi-tensors
seems impractical if not impossible. We further generalize the correlation
coefficient (3.9) by substituting the inner product 〈., .〉, by a more general
scalar mapping: m(., .) : S |Ω| × S |Ω| → R for any space S |Ω|. The generalized
correlation coefficient becomes:

ρ(R,S) = m

(
R−m(R, T )T

nm(R−m(R, T )T )
,

S −m(S, T )T
nm(S −m(S, T )T )

)
,

where nm(X)2 = m(X,X) is a generalization of the norm, and T is assumed
normalized (nm(T ) = 1).

This expression does not guarantee the invariance of the generalized cor-
relation coefficient (GCC) with respect to linear changes of the blocks: R →
R′ = aR+ bT . Furthermore, in order to remain interpretable, the GCC must
be symmetric, equal to one in case of perfect match and lower than one in any
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other case:

ρ(aR+ bT, S) = ρ(R,S) (3.14)

ρ(R,S) = ρ(S,R) (3.15)

ρ(R,R) = 1 (3.16)

|ρ(R,S)| ≤ 1. (3.17)

These constraints on ρ impose constraints on the scalar mapping m. One can
show that constraints (3.14-3.17) are satisfied if the following constraints are
respected by m (the proof is provided in Appendix A):

m(R+ bT, T ) = m(R, T ) + bm(T, T ) (3.18)

m(aR, S) = am(R,S) (3.19)

m(R,S) = m(S,R) (3.20)

|m(R,S)| ≤ nm(R)nm(S). (3.21)

The latter generalizes the Cauchy-Schwartz inequality. Being a scalar product
is a sufficient but unnecessary condition to respect these constraints. Therefore,
constraints (3.18-3.21) as well as the choice of a constant block T and suitable
basic operations (to define the multiplication by a scalar and the addition of the
constant block T ), stand together as a model to generate correlation coefficients
in potentially any space, even when an inner product cannot be defined.

In the case of multi-fascicle models, we further want the similarity met-
ric between two multi-tensor blocks M1(x) =

∑N
i=1 f

1
i (x)e−bg

TD1
i (x)g and

M2(x) =
∑N
i=1 f

2
i (x)e−bg

TD2
i (x)g to be equal to the single-tensor similarity

metric if the blocks contain only one tensor in each voxel. This can be achieved
if the scalar mapping is equal to the Frobenius inner product when all but one
fractions are equal to zero. We therefore add a fifth constraint on the scalar
mapping:

If f1
j = 1, f1

i 6=j = 0, f2
k = 1, f2

i 6=k = 0,

⇒ m(M1,M2) =
∑
x∈Ω

〈
logD1

j (x), logD2
k(x)

〉
F . (3.22)

We define the multiplication of multi-tensors by a scalar a as the multiplication
of all log-tensors by a and the addition of the constant block T as the addition
of t0 to all log-tensors. These definitions naturally generalize the single-tensor
case. A generalized scalar mapping m comes by computing pairwise scalar
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products between corresponding tensors. This requires to pair tensors between
the two blocks at each voxel. We introduce the following notation:

d(p,x) =
N∑
i=1

f1
i (x)f2

p(i)(x)
〈

logD1
i (x), logD2

p(i)(x)
〉
,

where p is the pairing function which associates one and only one tensor ofM1

to one and only one tensor ofM2. For N−fascicle models, there are N ! such
pairings. We define the scalar mapping for multi-tensor images as:

m(M1,M2) =
∑
x∈Ω

d
(

arg max
p

∣∣d(p,x)
∣∣,x). (3.23)

In practice, the values of d(p,x) for all N ! pairings p are computed and we
select the one with the highest absolute value. This scalar mapping satisfies
(3.18-3.22). The absolute value is required by Condition (3.22) for cases where
the Frobenius inner product between the tensors is negative. To better interpret
this generalized scalar mapping, it is instructive to assess how it generalizes the
concept of scalar means and norm to multi-fascicle models. The generalized
scalar mean is given by:

µSM =
m(M, T )
m(T, T )

=
∑
x∈Ω

∑N
i=1 fi(x) 1

N 〈logDi(x), I3〉F∑
x∈Ω

∑N
i=1

1
N2 〈I3, I3〉F

= log

(∏
x∈Ω

N∏
i=1

(
λ

(i)
1 (x)λ(i)

2 (x)λ(i)
3 (x)

) fi(x)
3|Ω|

)
. (3.24)

Remarkably, the generalized scalar mean for multi-fascicle model is the geometric
mean of the diffusivities within the block for which all fascicles contribute in
a ratio that is equal to their volumetric fraction fi in their voxel. As for the
generalized norm of multi-fascicle models, it is given by:

n2
m(M) = m(M,M) =

∑
x∈Ω

N∑
i=1

fi(x)2‖ logDi(x)‖2F, (3.25)

that is the sum of the Frobenius norms of each log-tensor, weighted by the
squared fractions. To demonstrate the latter expression, we need to show that
the absolute value of d in (3.23) is maximized if the pairing p pairs a fascicle
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(inM1 =M) with itself (inM2 =M). The proof is straightforward using the
Cauchy-Schwartz inequality on elements X = (f1 logD1, ..., fN logDN ) and
Yp = (fp(1) logDp(1), ..., fp(N) logDp(N)). Both the generalized scalar mean
and the generalized norm therefore have direct interpretations in terms of
multi-fascicle models.

More importantly, because the generalized correlation coefficient is invariant
under linear transformations (ρ(aR+bT, S) = ρ(R,S)), the proposed generalized
scalar mapping for multi-fascicle models leads to a GCC that is invariant under
linear transformations of the eigenvalues of each log-tensor. Indeed, for a
block R of multi-log-tensors whose k-th eigenvalue of the j-th log-tensor is
log λ(j)

k , aR + bT contains log-tensors with eigenvalues equal to a log λ(j)
k + b.

In other words, ρ for multi-fascicle models is invariant under the following
transformations (k = 1, 2, 3):

log λ(j)
k → a log λ(j)

k + log b, ∀a ∈ R and ∀b ∈ R+,

or, equivalently,

λ
(j)
k → b

(
λ

(j)
k

)a
, ∀a ∈ R and ∀b ∈ R+, (3.26)

for any fascicle j. In particular, this invariance property encompasses differences
in mean diffusivity (MD) for unchanged FA if a 6= 1 and b = 1. Similarly,
changes in FA with unchanged MD can be obtained by varying a and b in a
specific manner. Indeed, MD is preserved under changes of the eigenvalues
following Equation (3.26), if b(λa1 + λa2 + λa3) = λ1 + λ2 + λ3. For any given set
of eigenvalues and any given a, there exists a b that satisfies this relation. One
can therefore fix a to match the desired FA and subsequently fix b to respect
this MD-preserving relation (since b does not affect the FA). Finally, by varying
both a and b in an unconstrained manner, various changes in MD and FA can
be accounted for by the invariance property of the GCC.

This similarity metric therefore allows registration of subjects with locally
different diffusivity profiles. Importantly, because of the presence of the fractions
f1 and f2 in the scalar mapping, the GCC accounts for cases where the number
of tensors is different in different voxels (the corresponding fraction will simply
be set to zero).
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Multi-Fascicle 
Atlas

Single-Tensor 
Atlas

Figure 3.2: Atlas of the brain microstructure Single-tensor and multi-fascicle
atlases overlaid on the T1-weighted MRI atlas. The multi-fascicle atlas presents
tensors with higher fractional anisotropies than the single-tensor atlas. This is due
to the account of both the free water diffusion in the isotropic compartment and the
multiple fascicle present in the voxel. The highlighted regions represent the corona
radiata where projections of the corpus callosum cross corticospinal tracts, and a
region where the pyramidal tracts (vertical lines) and the medial cerebellar peduncle
(horizontal lines) cross.

3.4 Registration and Atlasing

With the framework developed in the previous section, we can now perform
population studies by constructing a multi-fascicle atlas and registering all
subjects to it.

Multi-fascicle models are estimated in the coordinate system of a T1-weighted
MRI of the same subject (see Section 3.7.1). The registration between multi-
fascicle models is initialized by affine registration of the T1-weighted MRI using
the Baladin method [78], yielding a transformation T 0.

The weighted combinations of multi-fascicle models and the GCC are intro-
duced in a robust multi-scale block matching registration algorithm developed
in [32]. A dense deformation field is estimated through the following steps:

· For each pyramid level p = 1, ..., P

· For each iteration i = 1, ..., N
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� Estimate sparse pairings C between R and F ◦ T i−1 by block-
matching

� Interpolate a dense correction field δT i from C using a Gaussian
kernel and weighted by the confidence in the matches as in [41].

� Reject a fixed amount of outliers from C based on their dissimi-
larity with the estimated δT i

� Estimate an outlier-free correction δT̃ i

� Compose the correction δT̃ i with the current estimate of the
transform T i = T i−1 ◦ δT̃ i

� Apply elastic regularization to the field T i

In our implementation, P = 4, N = 10, block sizes are 5 × 5 × 5, and the
outlier removal rate is 20%. The weighted combinations of multi-fascicle models
are used to interpolate multi-tensor images when applying the deformation or
constructing the multi-scale representation of the image. When warping tensor
images (and hence multi-tensor images), tensors need to be reoriented. This
reorientation is performed using the finite-strain rationale [6].

Registration is then used iteratively to build an atlas based on the method
developed in [45]. This method essentially alternates between aligning and aver-
aging images. To average multi-tensor images, we use the weighted combination
of multi-fascicle models described above. Ten iterations are used to build the
final atlas. The resulting atlas for single-tensor and multi-tensor images are
depicted in Fig. 3.2.

Based on the registration and atlasing methods, we can employ our novel
operators including interpolation and averaging of multi-fascicle models to
perform different statistical analyses of the brain microstructural properties.

3.5 Fascicle-Based Spatial Statistics

With all subjects aligned to the multi-fascicle atlas, we can compare properties
of the aligned tracts through fascicle-based spatial statistics (FBSS) (Fig. 3.3).
Tractography is performed once on the atlas using the multi-fascicle tractography
method described in [83, 63, 24] and adapted to include the multi-fascicle
interpolation. For each registered subject, the tensor most aligned with the
tract is selected and its property of interest (FA, MD, etc.) is computed. This
provides, for each subject, a vector of length n (the number of points on the
tract), representing the microstructural property along the fascicle.
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(a)

(b)

(c)

?

Figure 3.3: Fascicle-based spatial statistics (FBSS) proceeds in three steps.
(a) Fascicles (blue line) are drawn on the atlas with a sub-voxel resolution. The point
in the middle is at a non-grid location. (b) Multi-fascicle models are interpolated at
non-grid locations. (c) At each location along the fascicle, the tensor most aligned to
the fascicle is selected to compute the property of interest (FA, MD, etc.).

Point-by-point t-tests are carried out along the tract to compare its properties
between the two groups. This yields a vector t of n t-scores. Since the
smoothness of the tract property depends on the individual, the tract and the
resolution of the tractography, we use a non-parametric correction for multiple
comparisons based on cluster-based statistics [75]. This method assumes that
differences along the tract occur in clusters of adjacent points and proceeds as
follows:

1. Define a threshold t0 on the t-statistics.

2. Define a binary vector b of supra-threshold t-statistics:

b = (t > t0).

3. Detect the connected components C = {ci} in b.

4. For each connected component ci, compute its size si (number of points)
and its mass mi (sum of t-scores).
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5. Randomly permute Np times the subjects in the groups (i.e. randomly
reassign subjects to either groups) and perform Steps 1-4 for each per-
mutation. For each permutation k, record the maximum size skp and the
maximum mass mk

p among the detected clusters.

6. The recorded skp and mk
p describe the null distributions of the size and

mass of the clusters. Corrected for multiple comparisons, the p-values of
each connected component ci testing for its likelihood to be due to chance
alone are:

psi =
1

Np + 1

1 +
Np∑
k=1

δ(skp > si)


and pmi =

1
Np + 1

1 +
Np∑
k=1

δ(mk
p > mi)


for the size statistics and the mass statistics, respectively.

With FBSS, local fascicle segments where the two groups significantly differ can
be discovered. Several t−thresholds t0 are typically used to assess the robustness
of the findings. Higher t0 yield smaller clusters of stronger differences.

3.6 Isotropic Diffusion Analysis

Large isotropic fraction fiso indicates an excessive extracellular volume [80]
which is in turn a surrogate for the presence of edema or neuroinflammation [82].
Isotropic diffusion analysis (IDA), i.e. the statistical analysis of the isotropic
fraction, is thus of strong interest for population studies of disease involving
these pathologies. The isotropic fraction is non-Gaussian since it ranges between
0 and 1. We apply the logit transform to fiso prior to computing t-tests. This
transform brings the distribution of fiso closer to normality. Specifically, we
transform fiso-maps into liso-maps where:

liso = logit(fiso) = log
(

fiso
1− fiso

)
.

To prevent liso to take on infinite values when fiso = 0 or 1, we bound the latter
within [10−6, 1− 10−6]. We then carry cluster-based statistics on the liso-maps
with the cluster size and cluster masses as quantities of interest, as described
in [75].
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3.7 Validation Experiments

In this section, we validate the presented framework for multi-fascicle models.
We systematically compare our results with those obtained when multi-tensor
images are seen as a stack of single-tensor images on which multi-channel
approaches to registration and averaging can be applied.

3.7.1 In vivo data

In vivo DWI were acquired on a Siemens 3T Trio scanner with a 32 channel
head coil using the CUSP-45 gradient sequence [102]. This sequence includes 30
diffusion-encoding gradients on a shell at b = 1000s/mm2 and 15 extra gradients
in the enclosing cube of constant TE with b-values up to 3000s/mm2. Eddy
current distortion was minimized using a twice-refocused spin echo sequence [90].
Other acquisition parameters were set to FOV= 220mm, matrix= 128× 128,
number of slices=68, resolution = 1.7 × 1.7 × 2mm3. Data acquisition was
conducted using a protocol approved by the Institutional Review Board (IRB).
The DW images were aligned to the 1×1×1mm3 T1-weighted MRI with rigid
registration (using the mean b = 0 image as a moving image) and the gradients
were reoriented appropriately. This compensates for patient head motion and
for residual geometric distortions due to magnetic field inhomogeneity and eddy
current.

A multi-fascicle model with three tensors including an isotropic compartment
were estimated as in [102]. Images were acquired for 24 healthy controls and
38 patients with tuberous sclerosis complex (TSC): 10 diagnosed with autism
(TSC+ASD), 17 diagnosed without (TSC-ASD) and 11 too young for diagnosis
(see details in Appendix B).

3.7.2 Relabeling Invariance Study

Multi-fascicle models assign arbitrary labels i to tensors in Equation (2.5). The
framework must therefore be invariant under relabeling of tensors. In this
experiment, we randomly relabeled tensors 10 times for each of the 24 healthy
controls and performed registration between the result and the original image.
Using the proposed framework, the deformation fields obtained were exactly
the identity. By contrast, using the multi-channel registration, a significantly
non-zero deformation field resulted from the registration of relabeled multi-
fascicle models (Fig. 3.4). This result demonstrates the failure of multi-channel
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Figure 3.4: Results of the relabeling invariance study Average RMS error of
the deformation fields obtained by registering a multi-fascicle model with itself after
randomly relabeling tensors. Our framework is invariant under relabeling leading to
an error that is exactly zero. By contrast, multi-channel registration yields non-zero
deformation fields.

registration for multi-fascicle models. In what follows, tensors are labeled
based on their FA (D1 has the highest FA and DN the lowest) to allow a fair
comparison between the two approaches.

T �A T�1 � (T �A)A

Figure 3.5: Toy example of the T−1 ◦T experiment to estimate the interpo-
lation error. An original image A is transformed with T and the result is transformed
backward with T−1. The end result, T−1 ◦ (T ◦ A), is equal to the original image
corrupted by interpolation errors and can therefore be used to estimate the level of
interpolation errors.

3.7.3 T−1 ◦ T Study: Assessment of the Interpolation Error

For any transformation T , the composition T−1 ◦ T is equal to the identity.
Therefore, for any image A, T−1 ◦ T ◦ A = A. However, if we first compute
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Figure 3.6: The interpolation error is significantly smaller when the pro-
posed approach is used. Compared to the multi-channel alternative, the proposed
approach to compute linear combinations of multi-fascicle models is significantly better
for all four metrics and under all three transformations.

(T ◦A) and then apply T−1 to the result, we do not obtain exactly the original
image A due to interpolation error. Comparing the result Ã = T−1 ◦ (T ◦A) to
the original A thus provides estimates of the interpolation error, independently
from the similarity metric (Fig. 3.5).

We investigated the residual error of T−1◦T◦A to compare the interpolation
error of the proposed approach for linear combinations and the multi-channel
alternative. The experiment was conducted with three different affine trans-
formations T that were applied to the multi-fascicle models of the 24 healthy
controls: (1) a transformation that maps the DWI to the T1-weighted image,
(2) a translation by half a voxel in all directions, (3) a rotation of 45 degrees
around the vertical axis.

The result Ã is compared to the original multi-fascicle model A in terms of
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Figure 3.7: Examples of interpolation results obtained with the multi-
channel approach (left) and the proposed approach (right). Performing
interpolation for each tensor independently confounds fascicles resulting in an inflated
result. Weighted combination of multi-fascicle models introduced in our mathematical
framework clusters similar fascicles to avoid the inflation effect. (a-b) Results obtained
on synthetic data by interpolating the multi-fascicle models at the extremities. (c-d)
Results obtained on in vivo data by applying a linear transform to a multi-fascicle
model.

the following four similarity metric computed at each voxel:

∆2
FA =

N∑
i=1

fi + f̃i
2

(FA(Di)− FA(D̃i))2 (3.27)

∆2
MD =

N∑
i=1

fi + f̃i
2

(MD(Di)−MD(D̃i))2 (3.28)

Fro2 =
N∑
i=1

fi + f̃i
2
‖Di − D̃i‖2F (3.29)

∆Dir =
N∑
i=1

fi + f̃i
2

(1− |e1,i.ẽ1,i|) , (3.30)

where e1,i is the principal eigenvector of tensor Di with unit norm. The last
equation assesses how aligned the resulting tensors are to the original tensors.

The results, summarized in Fig. 3.6, demonstrate that the use of the proposed
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method decreases the interpolation error as compared to the multi-channel
alternative, for all similarity metrics and for all three transformations. On
average, this decrease varies in magnitude from 38% for ∆MD to 73% for ∆Dir.
One-tailed paired t-tests indicate that the decreases are significant in all cases
(p < 10−12). An example of interpolation obtained with both methods is
depicted in Fig. 3.7 and presents a portion of the corona radiata where fascicles
cross. In this region, the multi-channel approach confounds the fascicles and
fails to interpolate the multi-fascicle model.

3.7.4 Scan-Rescan Study: Evaluation of the Similarity Metric

In this section, we independently assess the accuracy of the similarity metric.
We exploited two sets of 45 DWI acquired on the same subject during the same
scanning session. The subject was required not to move and remained still
throughout the acquisition. The two sets of DWI are thus intrinsically aligned.
A multi-fascicle model as well as a single-tensor DTI were estimated from each
set. The two multi-fascicle models differ due to acquisition noise, artifacts, and
estimation errors. This scan-rescan experiment therefore provides a unique
opportunity to estimate the accuracy of the proposed similarity metric in a
realistic scenario.

A total of 495 landmarks were defined on a regular grid within the first
image (Fig. 3.8(a)). Landmarks were spaced 7 voxels apart in all directions.
Blocks of size 5× 5× 5 were defined around each landmark and correspondence
were sought in a neighborhood of size 21× 21× 21 in the second image. Since
there is no transformation between the two images, the true correspondence
xtrue is located at the center of the neighborhood. The accuracy of the best
match xmax (that maximizes the similarity C(x)) and the saliency of the true
match are:

Accuracy = ‖xmax − xtrue‖

Saliency =
C(xtrue)− C̄

σc
, (3.31)

where C̄ and σc are the mean and standard deviation of the similarity metric
within the neighborhood.

Results for these two indices were compared amongst four different metric (1)
the correlation coefficient applied to FA images (CFA), (2) the correlation coeffi-
cient generalized to single-tensor DTI (CDTI), (3) the multi-channel correlation
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Figure 3.8: Evaluation of the generalized correlation coefficient (GCC) as
a similarity metric for multi-fascicle models. The GCC for multi-fascicle models
outperforms other metrics in terms of registration accuracy, as assessed by a scan-
rescan experiment. (a) 495 regularly spaced landmarks are used for the experiment.
(b) Similarity maps in four neighborhoods (circles indicate true matches) showing that
GCC is the most specific metric. (c) In regions with no contrast in FA, the GCC is
able to find correct matches due to robust patterns observed in multi-fascicle models.
(d) The accuracy of the GCC is significantly better than all other metrics as seen by
the cumulative distribution function (CDF). (e) No significant difference in saliency
between the metrics are observed, except for a significantly higher saliency with CDTI.
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coefficient applied to multi-tensors (CMC) and the GCC for multi-fascicle models
(GCC). Fig. 3.8(b) depicts the similarity maps for four different neighborhoods
with each metric.

Neighborhood 1 in Fig. 3.8(b) illustrates the case of a specific white matter
landmark, for which all four metrics perform equally well. Neighborhood 2
illustrates a case of a specific white matter landmark located at the intersection
of crossing fascicles. In this case, both metrics based on multi-fascicle models
find the correct match. Matching based on FA has more spurious maxima and
matching based on DTI is offset because the single-tensor is a poor model of the
diffusion signal in this region. Finally, Neighborhoods 3 and 4 show landmarks
located at the boundary between the white and grey matter. In this area the
microstructure is more complex. Multi-fascicle models are required in these
regions to find a correct match. The multi-channel metric fails to detect the
correct correspondence if tensors are not properly paired (see Neighborhood 4).

Fig. 3.8(c) depicts the volumetric fraction (shown as a color image) in areas
where the FA displays no contrast. The fractions show a clear pattern of
alternation between isotropic diffusion (blue) and single (green) or multi-fascicle
(brown) orientation. These patterns are repeated in both the scan and the
rescan and therefore enable accurate matching.

Quantitatively, the GCC for multi-fascicle models significantly outperforms
all other metrics in terms of accuracy (one-tailed paired t-test: p < 10−8),
as depicted in Fig. 3.8(d) and summarized in Table 3.1. The average gain in
accuracy CFA is 45%. Importantly, the probability for the accuracy to be lower
or equal to 1, that is the fraction of landmarks for which the best match was
found in the direct neighborhood of the true match, is P (Accuracy ≤ 1) > 80%
for the GCC while it is lower than 70% for all other metrics. These results
suggest that the remaining registration error would likely be eliminated by
regularization and outlier removal in the registration algorithm. No significant

Table 3.1: Summary statistics of the target registration error in the scan-rescan
study

Metric Mean St. dev. P(Accuracy ≤ 1)
CFA 1.79 2.79 67.3%
CDTI 2.18 3.05 59.4%
CMC 3.34 4.18 47.5%
GCC 0.98 1.66 83.4%



76 Chapter 3. Registration and Analysis of Multi-Fascicle Models

difference was observed in terms of saliency except for a significantly larger
saliency for CDTI which may partially counterbalance its poorer accuracy in
registration.

*** *** *** *** *** *
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Figure 3.9: Our mathematical framework leads to higher registration ac-
curacies than the multi-channel alternative. The RMS errors (top) and its
variance (bottom) are significantly lower. Results are shown for 1,440 registrations
performed at various SNR for synthetic deformation fields (? : p < 0.05, ?? : p < 0.005,
? ? ? : p < 0.001).

3.7.5 Synthetic Fields Study

In this experiment, we compare the registration accuracies when synthetic de-
formation fields are applied to multi-fascicle models. Ten random log-Euclidean
polyaffine deformation fields are generated by drawing parameters from a Gaus-
sian with zero mean and 0.05 standard deviation for 27 regularly spaced affine
components (this results in a field with a mean magnitude of 6.9 voxels and
a maximum magnitude of 42 voxels) [122]. Each of the ten deformations are
applied to the 24 multi-fascicle models of the control subjects. Symmetric
matrices of Gaussian noise with zero mean and standard deviation at six dif-
ferent levels (0.1, 0.2, 0.3; and 0.5, 1.0, 1.5) were then added to the log of all
tensors in both the original and the transformed image, corresponding to SNR
of (30dB, 24dB, 21dB, 17dB, 11dB, 7dB). The original and the transformed
images were then registered and the resulting deformation field was compared
to the initial synthetic field in term of its root mean squared (RMS) error. All
1,440 registrations (24 subjects × 10 deformation fields × 6 noise levels) were
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Figure 3.10: Morphometry results show areas with a significant volume
deficit within the grey and white matter of TSC patients. (a) Multi-fascicle
registration and multi-channel registration reveal more differences than single-tensor
and the T1-weighted registrations. (b) The differences observed with multi-fascicle
registration are more consistent with the known anatomy than those observed with
multi-channel registration, as seen for example in the left and right internal capsules.

performed with both the proposed framework and the multi-channel alternative.
On average, the root mean squared (RMS) error of the deformation field is

17% higher when the multi-channel registration is used instead of the proposed
framework. A one-tailed paired t-test on the RMS for the transformation at each
SNR shows that the difference in RMS between the approaches is significant:
p < 10−5 for all SNR between 11dB and 30dB and p = 0.02 for SNR=7dB
(Fig. 3.9-Top). The variance of the RMS is also decreased by 45% on average. A
one-tailed F-test reveals that this decrease is significant for all SNR (p < 0.001)
except for SNR=24dB and 7dB (Fig. 3.9-Bottom). This experiment indicates
that even when tensors are labeled based of their FA, the proposed framework
outperforms the multi-channel alternative.

3.7.6 Morphometric Contrast Study

The deformation field obtained by registering a subject to an atlas provides
a measurement of the local morphometric difference between the subject and
a standard anatomy. The determinant of the Jacobian |J | of the deformation
fields at every voxel provides information about the amount of local volume
differences (|J | < 1 indicates a decreased volume and |J | > 1 indicates an
increased volume).
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Widespread volume deficits in the white and grey matter of patients with
TSC have been previously reported [91]. However, the amount of differences
detected depends on the accuracy of the registration because the statistical
power of the test depends on the registration accuracy [43]. Because of the
increased level of microstructure they represent, we expect multi-fascicle models
to reveal more morphometric differences than single-tensor models and scalar T1-
weighted MRI. To assess the statistical power of all modalities (T1, single-tensor
DTI and multi-fascicle models), we used the common voxel-based morphometry
method [9]: register all subjects to the atlas, compute the log-jacobian, smooth
it by a kernel of 8mm FWHM and correct for family-wise error rate at p = 0.05.

Results in Fig. 3.10(a) show that multi-fascicle models reveal more differences
than single-tensors and T1-weighted MRI, as expected. This is likely due to
an increased statistical power resulting from a higher registration accuracy
when the structure of the white matter is better represented. The number
of significant voxels does not differ between the proposed approach and the
multi-channel alternative. However, the spatial distribution of the volume
deficit findings (Fig. 3.10(b)) better follows the anatomy than the multi-channel
alternative as seen, for example, in the left and right internal capsules.

1

2

3

Figure 3.11: The dorsal language circuit is a set of white matter pathways
involved in language. The median tract was manually selected from those tracts
to perform fascicle-based spatial statistics (FBSS). Region 1 is the white matter in the
vicinity of Broca’s territory. Region 2 is the white matter in the vicinity of Geschwind’s
territory. Region 3 is the white matter in the vicinity of Wernicke’s territory.
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Figure 3.12: FBSS of multi-fascicle models reveal local differences in the
dorsal language circuit that single tensor DTI fails to detect. Curves show
the mean FA along the median tract of the dorsal language circuit in each group.
Shaded area along the curves represent two standard errors. Grey rectangles indicate
that the FA in that cluster is significantly different between the two groups. The
top row studies differences between patients with tuberous sclerosis complex (TSC)
and healthy controls. The bottom row further investigates differences between TSC
patients with (TSC+ASD) and without autism (TSC-ASD). Landmarks 1, 2 and 3
correspond to those in Fig. 3.11.

3.8 Applications to Population Studies

The designed framework enables population studies of various properties of the
brain microstructure. In this section, we propose two such population studies
related to fascicle properties in the dorsal language circuit and the isotropic
diffusion in the white matter.

3.8.1 FBSS of the Dorsal Language Circuit

FBSS can detect local abnormalities in white matter pathways, which helps
defining foci of neurological disorders. The dorsal language circuit is a set
of white matter fascicles involved in language (Fig. 3.11). In this section, we
investigate whether local decreases in FA along the dorsal language circuit can
be discovered by FBSS.
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Tractography of the dorsal language circuit was performed using the au-
tomatic seeding method of [121, 63]. A representative tract that captures
the geometry of the bundle was manually selected. One-tailed fascicle-based
spatial statistics was first performed between the 38 patients with TSC and
the 24 healthy controls to test whether TSC patients have lower FA along the
tract than healthy controls (Fig. 3.12-top row). Results found with both the
multi-fascicle approach and the multi-channel approach consistently show that
differences between TSC patients and healthy controls are widespread over
the tract. This is consistent with recent models of tuberous sclerosis complex
presented as a widespread decreased white matter microstructural integrity [83]
and a global loss of connectivity [85]. Analysis based on single-tensor images did
not reveal significant differences between the groups (except for a small cluster
near the dorsal end of the tract). This is probably due to DTI being unable
to distinguish the signal arising from each fascicle (one of them generating the
group difference) and from free diffusion.

One-tailed fascicle-based spatial statistics was also performed between
TSC+ASD and TSC-ASD patients to further understand the impact of autism
on the properties of fascicles in the language system (Fig. 3.12-bottom row). A
cluster of significantly lower FA was found in the middle of the tract, i.e. in the
white matter close to the Geschwind’s territory, a region that has previously
been associated with the interpretation of facial emotions [88]. Furthermore,
using the proposed framework for multi-fascicle registration and analysis, a
second cluster of significantly lower FA was found in the white matter close to
Broca’s area, a cortical region associated with speech production whose activity
was shown to be impaired in patients with autism spectrum disorder [33]. Again,
no local difference was observed based on single-tensor images.

Findings of lower FA in TSC+ASD compared to TSC-ASD were previously
reported in the literature [63, 83]. However, for the first time, our framework
enables the detection of local differences, improving our knowledge of alterations
in the brain microstructure related to autism spectrum disorder.

3.8.2 Isotropic Diffusion Analysis in Autism

Isotropic diffusion analysis allows whole-brain inspection of differences in
isotropic fraction fiso whose excess relates to the presence of neuroinflammation
and edema among others. To investigate in vivo whether autism spectrum
disorder may result from a neuroinflammatory response (as suggested by post-
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Figure 3.13: Multi-fascicle models reveal clusters of increased isotropic
fraction in autism, potentially indicating the presence of neuroinflamma-
tion. Clusters found with our framework (top) are larger and more coherent than
those obtained with the multi-channel alternative (results shown for t0=3).

mortem studies [135]), we performed isotropic diffusion analysis to compare the
TSC+ASD and TSC-ASD groups. Cluster-based statistics was performed at
four different thresholds: t0 = 2, 2.5, 3, and 3.5 to assess the robustness of the
findings with respect to the threshold used.

Consistently for all thresholds, clusters of significantly higher fiso were de-
tected in patients with autism (Fig. 3.13). Both the size and mass of these
clusters show significant departure from the null distribution (p < 0.05, Ta-
ble 3.2). The multi-channel approach also found significant clusters but these
were smaller in size and more sensitive to the choice of threshold (no signif-
icant cluster was found for t0 = 3.5). The location of the significant cluster
detected with both methods coincide and corresponds to part of the visual
system (Fig. 3.13).

These findings are consistent with recent studies of autism in children which
have demonstrated that appropriate maturation of visual system is crucial for
social cognition development [58]. Furthermore, while autism is believed to
potentially result from a neuroinflammatory process, in vivo evidence of such
neurological mechanism are missing. These results illustrate how the proposed
techniques for the analysis of multi-fascicle models can provide new insights
into the brain microstructure. The validation of the neuroinflammatory process
in autism would however require further studies including more subjects and
other imaging modalities (such as PET imaging and T2 mapping).
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3.9 Summary

Diffusion tensor imaging confounds the diffusion signal arising from different
compartments and may therefore not be reliable for population studies of the
brain microstructure. In particular, studies based on DTI cannot separate differ-
ences in properties of the fascicles due to demyelination or axonal injury, from
differences in extracellular volume fraction due to neuroinflammation, edema or
partial voluming with CSF. By representing the signal arising from different
compartments with distinct parameterizations, multi-fascicle models are able to
explain the origin of the observed differences. This property makes multi-fascicle
models of great interest for population studies of the brain microstructure.

The cornerstone of image-based population studies is the construction of an
atlas and the registration of all subjects to it. In this chapter, we introduced
a framework for registration and atlasing of multi-fascicle models. A mixture
model simplification method was introduced to compute weighted combinations
of multi-fascicle models, as used for interpolation, smoothing and averaging. As
a similarity metric, a generalized correlation coefficient was developed to be
invariant under linear transformations of the eigenvalues of each fascicle in the
log-domain, making it robust to inter-subject variability.

Once all subjects are aligned to the atlas, population studies can be carried
out to investigate microstructural properties in brain diseases. We introduce a
system of two statistical analyses of the brain microstructure: fascicle-based
spatial statistics (FBSS) and isotropic diffusion analysis (IDA). The former
allows discoveries of local differences in the microstructural properties of the
fascicle in a specific pathway. The latter allows detection of differences in
extracellular volume fraction which may relate to neuroinflammation and edema.
Together, these analyses allow for comprehensive investigation of the brain
microstructure. We illustrated its use in a population study of autism spectrum
disorder related to tuberous sclerosis complex and showed that the use of
multi-fascicle models in this context increases the sensitivity of the statistical
tests.





Chapter 4

Selection of the Appropriate Model

Chapter 2 presented various models that overcome the limitations of the
diffusion tensor model. The development of these models is an active field of
research and we urgently need a rationale to select between these models. This
selection requires to account for the data at hand and the most appropriate
model may depend on the amount and kind of available data.

The selection can be performed at the level of model category, where one
wants to select between different classes of models such as multi-tensor mod-
els [102], CHARMED [14], NODDI [146], DIAMOND [98], and combinations of
different restricted, hindered and unrestricted environments [79]. The selection
may also operate at the level of model granularity, where the number of fascicles
or compartments needs to be determined.

The identification of the appropriate model category and granularity has
proven challenging. In this context, different model selection approaches have
been proposed. Most approaches attempt to maximize the quality of fit while
penalizing complex models to avoid overfitting. However, the choice of a
penalization strategy and the trade-off between penalization and quality of
fit are rather arbitrary and produce highly variable results. In this chapter,
we propose to select the appropriate model at each voxel by assessing the
generalization error. This criterion naturally prevents overfitting by comparing
how the models predict new data not used to estimate the model. Since the
generalization error cannot be directly computed, we propose to estimate it by
the 632 bootstrap technique which has low bias and low variance. Results on
synthetic phantoms and in vivo data show that our approach performs better
than existing techniques, and is robust to the choice of a decision threshold.

4.1 Related Work

Assessing the appropriate diffusion model at each voxel is a model selection
problem. To date, most approaches select between diffusion models of different
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complexity by minimizing the fitting error. Because both the model estimation
and assessment is achieved on the same dataset, this strategy favors complex
models and may overfit the data. For this reason, the criterion usually integrates
a component penalizing complex models.

The most common criterion for the selection of diffusion models is the F -test.
Alexander et al. [4] compared the spherical harmonic expansion of the average
diffusion coefficient (ADC) truncated at different orders by means of a series
of ANOVA F-Tests. In this strategy, complex models are penalized by their
necessity to significantly decrease the fitting error when compared to simpler
models. Kreher et al. [59] used F -tests to select the appropriate number of
fascicles by observing the variance of the ADC. Scherrer and Warfield [102] used
a similar F -test strategy applied to the signal residuals rather than the ADC.

Besides the F -test, other approaches based on the quality of fit have been
proposed. Behrens et al. [21] used a Bayesian Automatic Relevance Deter-
mination (ARD) approach which starts with the most complex model and
gradually prune the unnecessary variables. However, this was shown inefficient
in tractography and required to manually force the number of fascicles [68]. A
recent Bayesian approach set a sparse prior on the volumetric fraction fi in
a maximum a posteriori estimation of the model to automatically select the
number of fascicles [147]. Neither of these approaches can be generalized to the
selection amongst a broad range of non nested models of different expressions
(e.g. to select between DIAMOND and a multi-fascicle model) since their
formulation implies setting priors on parameters of the same nature (e.g. the
volumetric fractions). The Bayesian Information Criterion (BIC), a weighted
sum of the fitting error and a penalizing term, has been suggested as well but
was shown to yield suboptimal results, even on synthetic data [105].

A more reliable and general paradigm to avoid overfitting when selecting
between models is to compare how each model performs for new data not
included in the model estimation. This relates to the generalization error.
Typically, a model not complex enough to represent a dataset will have a large
generalization error, and so will too complex a model which overfits the data.
Minimization of the generalization error has never been used to determine the
number of fascicles or, more generally, the complexity of the diffusion model at
each voxel. Leave-one-out cross-validation follows this paradigm. However, it
does not lead to a consistent estimate of the model [109] and its results are highly
variable. Other cross-validation methods, such asK-fold cross-validation, reduce
this variance at the expense of a higher bias. By contrast, the 632 bootstrap
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method proposed by Efron [36] reduces this variability while remaining almost
unbiased.

In this chapter, we use, for the first time, the 632 bootstrap (B632) method to
determine the number of fascicles present in each voxel from diffusion-weighted
images. We first introduce how the generalization error can be estimated
(Section 4.2) and we then illustrate how it can be used to select the number of
fascicles (Section 4.3).

4.2 Estimation of the Generalization Error

In this section, we present the generalization error minimization framework. We
start by explaining the fundamental difference between generalization error and
fitting error. We then introduce different methods to estimate the generalization
error, and explain why the 632 bootstrap should be used in this context.
We subsequently provide an expression to estimate the standard error of the
estimation of the generalization error.

4.2.1 Generalization Error and Fitting Error

Let z = {z1, ..., zn} with zi = (xi, yi) be the set of n observed data points, in
which xi are inputs to the model (e.g. the b-values b and gradient directions g
in diffusion images) and yi are outputs (e.g. the signal attenuation in diffusion
images). These data are used to build a generative model rz(x) that attempts
to predict the output y from an input x. This prediction rule is based on a finite
set z of observations and the hope is that the learnt model rz(x) generalizes well
to new data. Ideally, the optimal model would thus minimize the generalization
error, that is the error made on a new hypothetical data point z0 = (x0, y0).
The generalization error conditional on the observed data is :

Eg|z = Ez0∼F
[
|y0 − rz(x0)|2

∣∣z] , (4.1)

where E[.] is the statistical expectation and z0 ∼ F indicates that the expectation
is taken over the new data point that follows the (unknown) distribution F .
To account for the variability of the observed data points, the unconditional
generalization error can be defined as the expectation of (4.1) over all possible
values of z :

Eg,n = E
zi

iid∼F

{
Eg|z

}
= E

zi
iid∼F

{
Ez0∼F

[
|y0 − rz(x0)|2

∣∣z] }, (4.2)
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where the index n indicates that n samples were used to optimize the model rz.
The generalization errors (4.1) and (4.2) cannot be directly computed because
the distribution F is unknown. One simple solution would be to estimate F (z)
by the empirical distribution F̂ (z) = 1

n for all z ∈ z. For the conditional
generalization error (4.1), this yields the following estimate:

Êfit
g = Ez0∼F̂

[
|y0 − rz(x0)|2

∣∣z]
=

1
n

n∑
i=1

|yi − rz(xi)|2, (4.3)

that is the common fitting error. This estimate is a biased estimate of Eg
since the data z are used both to optimize the parameters of the model rz
and to estimate its error. In particular, in many modeling problem (including
multi-fascicle modeling), it is always possible to find a model that yields Êfit

g = 0
provided that it is complex enough. In the following sections, we will therefore
explore other estimates of Eg and comment on their bias and variance.

4.2.2 Cross-Validation Estimates

To circumvent the overfitting problem of Êfit
g , one could estimate the model

by omitting one data point in the training sample z and evaluating the model
prediction for this data point. This is the idea behind the leave-one-out cross-
validation (LOOCV) method. Let z|i be the training samples without zi. The
resulting estimate of the generalization error reads:

ÊCV
g =

1
n

n∑
i=1

|yi − rz|i(xi)|2. (4.4)

This is an unbiased estimator of the generalization error Eg,n−1. For large
n, the bias of ÊCV

g as an estimator of Eg,n is positive but low. Its variance,
however, is large, leading to high root mean squared errors, despite the low
bias [36].

The variance of the LOOCV can be decreased by keeping more than one
element out of the dataset at each iteration of model training and testing. This
approach, called K-fold cross-validation, results in unbiased estimates of Eg,n− n

K

which, however, present an increased bias for the estimation of Eg,n.
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4.2.3 632 Bootstrap

The bootstrap smoothing method can be used to lower the variance of the
cross-validation estimate [36]. This technique estimates Eg in (4.2) by providing
two different estimates for the distribution F . The point z0 is drawn from a
distribution F approximated by the empirical distribution F̂ . The distribution
F of z is then estimated from bootstrap samples z∗|i of the empirical distribution
F̂|i which excludes the sample zi drawn for the testing point z0. Formally, an
expression of the estimator comes by inverting the order of the expectations in
(4.2) and by subsequently replacing the distributions F by their estimates:

ÊBS
g =

1
n

n∑
i=1

EF̂|i

[
|yi − rz∗|i(xi)|

2
]
.

An equivalent expression of ÊBS
g that is closer to its implementation is:

ÊBS
g =

n∑
i=1

[
B∑
b=1

δ(N b
i )
∣∣∣yi − rz∗|i(xi)∣∣∣2

/
B∑
b=1

δ(N b
i )

]
, (4.5)

where N b
i is the number of times sample i is used in the training set of the bth

bootstrap replicate and δ(x) is the Dirac function. The factor δ(N b
i ) guarantees

that sample i can be used as a testing sample in bootstrap replicate b.
Much like cross-validation, the bootstrap estimate is biased because it relies

on fewer point than the number n of available samples. LOOCV uses (n− 1)
points and its bias is therefore limited. By contrast, ÊBS

g uses, on average,
[1− (1− 1

n )n]n points which is approximately equal to 0.632n for large n. This
makes the bias of ÊBS

g more critical. Efron [36] proposed to counterbalance the
positive bias of ÊBS

g by the negative bias of Êfit
g , introducing the 632 bootstrap

estimator:
Ê632
g = 0.368 Êfit

g + 0.632 ÊBS
g . (4.6)

The coefficients are heuristically defined so that the testing samples used to
estimate Ê632

g are at the same average distance from the training sample as
would be a random point drawn directly from F [36]. This estimator has
outperformed others in many applications, mostly when the signal-to-noise ratio
is low [70].

4.2.4 Standard Error of the Difference Estimator

If we had access to the generalization error for each model, its direct comparison
would enable to select the model with the lowest generalization error. The 632
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bootstrap expression is, however, a noisy estimate of the generalization error. A
lower 632 bootstrap estimate may be obtained for one model by chance alone.
This effect is especially concerning when models are nested (simpler models
are particular cases of more complex ones) since more complex models can
be arbitrarily close to simpler ones (for instance, a 3-fascicle model with one
volumetric fraction close to zero is very close to a 2-fascicle model). To reliably
select between the two models, we need to assess whether any improvement in
the generalization error is statistically significant.

Assessing the statistical significance of the difference in generalization error
estimates between a model A and a model B, ∆̂632

AB = Ê632
g,A− Ê632

g,B , requires the
standard error of this difference to be estimated. After rearranging the terms
of ∆̂632

AB , taking advantage of the linearity of the expectation, we have:

∆̂632
AB =

0.368
n

n∑
i=1

E
zi

iid∼ F̂

[∣∣yi − rAz (xi)
∣∣2 − ∣∣yi − rBz (xi)

∣∣2]
+

0.632
n

n∑
i=1

E
zi

iid∼ F̂|i

[∣∣∣yi − rAz∗|i(xi)∣∣∣2 − ∣∣∣yi − rBz∗|i(xi)∣∣∣2
]

,
0.368
n

n∑
i=1

∆̂fit
AB,i +

0.632
n

n∑
i=1

∆̂BS
AB,i

, 0.368 ∆̂fit
AB + 0.632 ∆̂BS

AB (4.7)

One could estimate the standard error of ∆̂BS
AB as [

∑
i(∆̂

BS
AB,i − ∆̂BS

AB)2/n2]1/2.
This would assume that the ∆̂BS

AB,i are independent, which is not the case. A bet-
ter estimate can be obtained by the delta-method-after-bootstrap approach [36].
This method is nonparametric and allows the computation of the standard error
for any statistics that (1) is smooth in the observed data z, (2) is invariant
under permutations of the points zi and, (3) only depends on the empirical
distribution F̂ . With this method, one can show that the standard error of
∆̂BS
AB can be estimated by:

ŜE
BS

=

"
nX
i=1

D̂2
i

#1/2

with D̂i =

„
2 +

1

n− 1

«
∆̂BS
AB,i − ∆̂BS

AB

n
+

PB
b=1(Nb

i − N̄i)q̄bPB
b=1 δ(N

b
i )

and q̄b =
nX
i=1

δ(Nb
i )

»˛̨̨
yi − rAz∗|i(xi)

˛̨̨2
−
˛̨̨
yi − rBz∗|i(xi)

˛̨̨2–
,

where N̄i is the average N b
i over all B bootstrap replicates. The same approach

cannot be used for the standard error of ∆̂fit
AB because it is a non-smooth
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function of the samples z. Efron [36] proposes to estimate the standard error
of ∆̂632

AB as:

ŜE
632 ≈ ∆̂632

AB

∆̂BS
AB

ŜE
BS
. (4.8)

To infer whether a model A is better than a model B, the estimate of the
difference between their generalization errors (4.7) can be compared to the
estimate of the standard error of this difference (4.8). This is the cornerstone
of the selection of the number of fascicles problem.

4.3 Application: Estimation of the Number of Fascicles

In this section, we illustrate how the 632 bootstrap estimation of the generaliza-
tion error can be used to identify the number of fascicles present in each voxel.
We validate the approach on synthetic and in vivo data.

4.3.1 Selection of the Number of Fascicles

In this section, we provide a method to select the number N of fascicles in the
multi-fascicle model by assessing the generalization error:

S(b, g) =
N∑
i=1

fiSi(b, g).

The main idea to identify the number of fascicles at each voxel is to progressively
increase the complexity of the model as long as a substantial decrease in the
generalization error can be achieved and to stop when the decrease is no more
significant or when the generalization error starts to increase. More specifically,
the steps for the selection of the number of fascicles are:

1. For each pair of consecutive models (model with m − 1 fascicles and
m fascicles), compute the difference of generalization error estimates
using (4.7). Let ∆m = ∆̂632

m−1,m be this difference. To use expression (4.5)
for this estimate, the bootstrap replicates must be identical for all models.

2. Compute the standard error sm of the estimate ∆m using (4.8).

3. Select the model with mopt fascicles such that:

mopt = inf
{
m
∣∣∆m − θB632sm ≥ 0,∆m+1 − θB632sm+1 < 0

}
, (4.9)
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Figure 4.1: Results of the synthetic phantom experiment show that esti-
mating the generalization error allows reliable selection of the number of
fascicles. (Left) Synthetic phantom used in our experiment, containing isotropic
areas (blue balls), 1-fascicle areas [A], 2-fascicle areas [B] and three fascicle areas [C].
(Right) The repartition of the prediction errors, as used in the 632 bootstrap estimator,
discriminates the three models, since more complex models may have higher prediction
errors. On the contrary, the fitting error, as used in the F -test model selection, always
decreases when the model complexity increases, due to overfitting.

where θB632 is the number of standard errors above which the difference
should be to be deemed significant. For this expression to hold, we set
s0 = ∆0 = ∆M = 0 and sM = 1, where M is the maximum number of
fascicles that we authorize for our models.

We could compare every model to every other one and extend the selection
rule (4.9) to express the need for a model to be significantly better than all the
simpler ones and not significantly worse than the more complex ones. In our
experiment, we did not observe a difference between the two rules. Rule (4.9)
has the advantage that it can be applied as the model complexity is progressively
increased, avoiding the need to optimize further complex models at voxels where
a simple model has already been selected.

4.3.2 Experimental Setup

Our proposed approach for the selection of the number of fascicles could be
used with any model of the diffusion signal. In this work, we considered a
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multi-fascicle model in which each fascicle is represented by a tensor and the
diffusion in the extra-axonal space is represented by an isotropic tensor. This
amounts to considering the following model for the formation of the diffusion
signal S for a b-value b and a gradient direction g:

S = S0

(
f0e
−bDiso +

m∑
i=1

fie
−bgTDig

)
,

where Diso = 3.0 × 10−3mm2/s is the diffusion of free water in the brain at
37oC and m is the number of fascicles of the model. Such model requires a DWI
acquisition that images multiple non-zero b-values [102, 126]. We employed
the CUSP gradient encoding scheme [102] composed of five b = 0 s/mm2, 30
DWI at b = 1000 s/mm2 and 30 DWI with gradients on the enclosing cube
with b-values between b = 1000 s/mm2 and b = 3000 s/mm2. The parameters
of each model were estimated using a maximum a posteriori approach (see
Chapter 5). We focused on model complexity ranging from m = 0 (isotropic
diffusion only) to m = 3 fascicles. We investigated the performance of our
B632 model selection approach with both synthetic phantoms and in vivo data.
We compared it to the F -test on the signal residuals [102], for which the null
hypothesis is that the fitting error of models with m − 1 and m fascicles are
equivalent by assessing the F -score:

Fm−1,m =
n− 1− |Mm|
|Mm| − |Mm−1|

SSEm−1 − SSEm
SSEm−1

> θF−test, (4.10)

where n is the number of data, θF−test is the F -score threshold above which the
null hypothesis is rejected, and |Mm| and SSEm are respectively the number of
parameters and the sum of squared errors (fitting error) for a model with m
fascicles. Various synthetic phantoms of size 15×15 were generated. The tensor
profileDi representing an individual fascicle was chosen to match typical in vivo
data (trace of 2.1×10−3mm2/s and FA of 0.8). We considered regions with 0, 1,
2 and 3 fascicles (Fig. 4.1). The simulated DWI were corrupted by various Rician-
noise levels. In vivo imaging was achieved on a healthy volunteer using a Siemens
3T Trio scanner with a 32-channel head coil and the following parameters :
FOV=220mm, 68 slices, matrix=128× 128, resolution=1.72× 1.7× 2 mm3.

4.3.3 Synthetic Phantom Experiments

Synthetic phantoms offer a ground truth against which results of the model
selection can be compared. We investigated the performance of the B632 and
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F -test approaches under four different SNR : 10dB, 20dB, 30dB and 50dB.
Both the B632 and the F -test approaches require determination of a threshold
(see (4.9) and (4.10)). We investigated the influence of θF−test by evaluating
the F -test model selection with 3 < θF−test < 150. Similarly, we evaluated the
influence of θB632 by computing the B632 model selection with 0 < θB632 < 13.
Note that θF−test is a threshold on the F -score while θB632 is the number of
standard errors above which a model m is considered better than a model m− 1
(see (4.9)). The maximum number of bootstrap replicates for B632 was set
to 150. We counted the number of errors between the ground truth and the
automatic model selection results and reported the error rate.

The overall minimum error (obtained when the threshold can be chosen
independently for different SNR) is consistently higher with the F -test (Fig. 4.2a)
than with B632 (Fig. 4.2b). The table in Fig. 4.2c summarizes those errors. In
practice, the SNR is unknown and so the choice of threshold cannot depend
on it. The overall minimum error rate are therefore lower bounds for what can
actually be achieved in practice. The increase in error rate compared to this
lower bound, due to the choice of a single threshold, is more dramatical with
the F -test than with B632 (Fig. 4.2c, bottom rows). In particular, at 10dB, the
error rate almost doubles compared to its lower bound with the F -test, while it
increases only by a few percents with B632.

Finally, the evolution of the error rate with the number of bootstrap replicates
assesses the stability of the estimate and allows the definition of a minimum
number of bootstrap replicates required to achieve good performances. Fig. 4.2d
shows that the error rate becomes stable after approximately 50 replicates.
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Figure 4.2: Evaluation on simulated data for various noise levels show that
selection based on the generalization error is more reliable and robust than
selection based on F-tests. (a) For the F -test, the dependence of the error rate
with the threshold θF−test shows that no single threshold can be used to achieve good
performance at all noise levels. (b) The error rate is less sensitive to the threshold
θB632 set on the generalization error estimate. (c) Number of errors out of the 225
voxels and error rate for optimal thresholds chosen independently for each SNR (top
rows) and jointly for all SNR (bottom rows). B632 leads to fewer error than the
F -test, in both scenarios. The difference is more striking when a single threshold is
used for all SNR. (d) The 632 bootstrap estimate reaches a close to optimal value
after about 50 replicates.
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With motion correction Without motion correction

632 
Bootstrap

F-Test

F-Score

3 fascicles

2 fascicles
1 fascicle
isotropic

Figure 4.3: Evaluation of the model section approaches on in vivo data.
Maps of the number of fascicles as detected with B632 and F -test for DWI with and
without motion correction. Motion correction mostly introduced interpolation since
no significant motion was present in this scan. B632 yields similar results in both
cases, while the F -test selection fails to detect areas of more than one fascicle. This
is due to the reduced perceived signal to noise ratio after motion correction, which
affects the result of the F -test, as shown by the map of the F -score for the comparison
between one and two-fascicle models.
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4.3.4 In Vivo Data: Robustness to Pre-Processing

The results on the synthetic phantom suggest that the F -test model selection
is not robust to changes in the characteristics of the image. In particular,
if a threshold is optimized for some SNR, it will yield suboptimal results at
another SNR. The acquisition of DWI is usually followed by several steps of
pre-processing before the diffusion model is estimated. Some of these steps aim
at improving the SNR. We may wonder whether the model selection is robust
to these pre-processing step.

As an illustration, we applied the model selection methods on an in vivo
acquisition before and after automatic motion correction based on coregistration
of all the DWI. The acquisition was not corrupted by any significant subject
motion, and therefore this step mostly introduces a smoothing due to the
interpolation when coregistering the images. Results in Fig. 4.3 show that the
F -test model selection is strongly affected by this preprocessing step. With
a threshold of θF−test = 15, the map of the number of fascicles after motion
correction does not resemble that before motion correction. In the latter, only
one-tensor models and isotropic diffusion models were selected, while two- and
three-tensor models are detected at many locations after motion correction.
To observe two- or three-tensor models in the second map, one would need to
decrease θF−test since the SNR is lower, which is consistent with the synthetic
results of Fig. 4.2(a). By contrast, for a constant θB632 = 8, the maps of the
number of fascicles detected with B632 are similar in both images and follow
the traits of the anatomy.

Interestingly, the B632 approach favors a three-tensor models throughout the
grey matter. Such a model is consistent with the known cortical anatomy where
vertical columns cross horizontally spreading axons. However, such structures
are probably too small and their geometry varies at too high a spatial frequency
to be detected by clinical diffusion MRI. The systematic detection of three
tensors in the cortex may, instead, be an artifact of the set of models being
considered. The model with zero tensor has an isotropic compartment with a
fixed diffusivity (that of unrestricted water at 37◦C). As such, it has no free
parameter. Diffusion of water molecules in the cortex may be approximately
isotropic but is not unrestricted because axons and neurons hinder their motion.
An appropriate model would probably be, in this case, an isotropic compartment
with a variable diffusivity. This model would have a single free parameter.
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(a) (b) 

Figure 4.4: Validation with cross-testing indicates that selection based on
the generalization error is, on average, significantly better than selection
based on the F-test. (a) Comparison of the F -test and B632 model selection
approaches using cross-testing. The map shows the difference between the testing
error when F -test or B632 are used. It shows that the testing error is significantly
larger when using the F-test. (b) Illustration that B632 and MFM estimation enables
reliable detection of the number of fascicles that matches the known anatomy. [A]
Body of the corpus callosum, [B] Crossing of the corpus callosum and the cortico-spinal
tracts and [C] Centrum semiovale which contains three fascicle orientations.

4.3.5 In Vivo Data: Cross-Testing Validation

Experiments based on in vivo data cannot rely on any ground truth to assess
the error rates of the methods. To objectively compare the performance of the
F -test and the B632 model selection approaches, we performed a cross-testing
analysis. This procedure consists in repeatedly splitting the dataset into an
estimation set and a testing set. In our experiments, we considered 70% of the
data for estimation and the remaining 30% for testing. Both the model selection
and estimation of the MFM parameters were carried out with the estimation set
while the testing set was used to assess the performance of the two approaches.
The threshold parameters were set to respectively θF−test = 15 and θB632 = 8.
The performance of the approaches was assessed by computing the mean-square
prediction error on the testing set. We repeated the estimation-testing process
30 times and computed the average testing error. Fig 4.4 shows that the testing
error with B632 is lower than with F -test. More precisely, a paired t-test on
the differences between the testing errors at each voxel shows that B632 is
significantly better than F -test (p < 10−12) with a mean improvement of 0.56.
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4.4 Summary and Discussion

The estimation of the generalization error allows a reliable selection of the
optimal model. Results on both synthetic and in vivo data show the improved
performance over model selection based on the F -test.

Validating the models by means of an external dataset, as done in Section
4.3.5, seems the most objective validation method. Arguably, the generalization
error is therefore what all model selection approaches attempt to minimize.
However, unlike the fitting error, the generalization error cannot be computed
and model selection criteria can be viewed as bypasses to this conceptual
limitation. In this interpretation, the fitting error is, itself, an estimate of the
generalization error. Complexity penalization can then be seen as heuristic
methods to correct for the high bias of this estimate. The 632 bootstrap estimate,
on the other hand, directly estimates the generalization error and is designed
to have low bias and variance.

Computing the fitting error is a lot faster than computing the 632 bootstrap
which requires several estimations of the model (one for each of the B bootstrap
replicates). For this reason, model selection and estimation using B632 is about
B times slower. Different approximations of the bootstrap estimates can be
used to decrease the computational time of the bootstrap estimates [111]. A
stopping criterion on the number of bootstrap replicates based on the current
estimate of the generalization error can also be used.





Chapter 5

Estimation of Multi-Fascicle
Models

When MRI need to be acquired in patients, acquisition time is a factor of
paramount importance, and even more so for children who have difficulties to
remain still in the scanner. Diffusion imaging, as we discussed in Chapter 2,
requires more time than conventional MRI because multiple DWI with different
gradient orientations need to be acquired. Reducing the number of acquisitions
to its bare minimum while having sufficient DWI to reliably estimate a multi-
fascicle model is therefore a challenge of prime importance.

Existing methods fail to estimate the parameters of multi-fascicle models
from conventional diffusion sequences with the desired accuracy. In this chapter,
we first demonstrate that, with conventional acquisitions at a single b-value,
there is a manifold of models that all produce the same diffusion signal and
thus cannot be identified. To regularize this problem, we propose to learn
a prior over the model parameters from data acquired at several b-values in
an external population of subjects. We show that this population-informed
prior enables, for the first time, accurate estimation of multi-fascicle models
from single non-zero b-value data typically acquired in clinical practice. The
approach is validated on synthetic and in vivo data of healthy subjects and
patients with autism. We apply it in population studies of the white matter
microstructure in autism spectrum disorders and show that the introduction
of a population-informed prior leads to reliable detection of group differences.
This approach enables novel investigations from large existing DWI datasets
both in normal development and in disease and injury.

5.1 Related Work

Estimating the parameters of a multi-fascicle model is known to be unstable [108].
It was originally thought that multi-tensor models can be estimated from DWI
acquired at a single non-zero b-value [3]. However, it was later shown that
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this is an ill-posed problem [59, 101, 102, 105], justifying why the estimation
of the model parameters appears unstable. Kreher et al. [59] estimate a
model with two anisotropic tensors and one isotropic tensor without accounting
for the ill-posedness problem, so that only pseudo tensors (whose eigenvalues
are undefined) are estimated. Furthermore, to increase the stability of their
numerical estimation, they assume that the two lowest eigenvalues of each
tensor are equal. These assumptions result in a model with 9 degrees of freedom
instead of the initial 15. This model does not allow measurements of diffusion
properties (such as the fractional anisotropy and the mean diffusivity) for each
fascicle, limiting its use in population studies of the brain microstructure.

Another approach to circumvent the ill-posedness problem is to fix a priori
either the volumetric fraction of each fascicle [66, 143] or the properties of
the fascicles [21, 105, 132]. In [132], the tensor eigenvalues are completely
fixed a priori so that only the directions need to be estimated. In [21, 105], a
ball-and-stick model is estimated. This model assumes that the fascicles are all
identical and that there is no diffusion in directions orthogonal to the fascicle
orientation (λ1 > 0 and λ2 = λ3 = 0). In [66] and [143], the volumetric fractions
are arbitrarily fixed to an equal value. Because the ill-posedness problem
affects both the volumetric fractions and the tensor eigenvalues, unreasonable
assumptions on any of those parameters necessarily impact the estimation of
the other parameters.

Assumptions about the volumetric fractions are arbitrary since the location
of the boundary between fiber bundles, or between the white and the grey
matter, are not known in advance and depend on the position of the subject in
the scanner, and on the image resolution. As for assumptions about the fascicle
properties, there is a long-standing body of evidence showing that fascicles differ
throughout the brain [62, 1] and across subjects due to normal development [40]
and disease [49, 148]. These changes in axon diameter, axon density and degree
of myelination have direct influences on diffusion properties of each fascicle.

Some researchers have proposed to rely on spatial priors to regularize the
estimation problem. Spatial priors assume that the multi-tensors in adjacent
voxels are not independent. Pasternak et al. proposed a piece-wise smoothness
constraint to regularize the estimation of a single-tensor model with a free-water
compartment [81, 80]. In [102], an anisotropic spatial prior is used to regularize
a two-tensor field. As we will see in Section 5.2.2, these spatial priors do not
solve the ill-posedness problem when estimating a general N -fascicle model from
single b-value data. More importantly, we will show in Section 5.5 that relying
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solely on spatial priors may mislead the conclusions drawn from population
studies.

To regularize the estimation problem while keeping all the degrees of freedom
of the model, Scherrer and Warfield proposed to acquire data at several b-
values [102]. To achieve high signal-to-noise ratio with multiple non-zero b-
values, they introduced a novel acquisition sequence that combines gradients on
a shell at the nominal b-value and gradients on the enclosing cube of constant TE
(reaching effective b-values up to three times the nominal b-value). Pasternak
et al. showed that even for a simpler model including only one anisotropic
tensor, inclusion of multiple non-zero b-values improves the accuracy of the
estimation [80].

However, many large diffusion imaging datasets have been acquired with
a single-shell HARDI acquisition sequence. For instance, the recent Pediatric
Imaging, Neurocognition, and Genetics Study (PING) includes diffusion images
from 1,400 children at b = 0 s/mm2 and b = 1000 s/mm2 [37]. Such large
datasets hold unprecedented promise to better understanding the relation
between the brain microstructure and the neuropsychological development in
children. The inability to estimate multi-fascicle models from single b-value
data, however, jeopardizes the potential of these data to reveal novel insight
into the brain microstructure. There is therefore a strong need for a method to
estimate multi-fascicle models from data acquired at a single non-zero b-value. A
method to estimate a general N -tensor model can be applied to many generative
models since most of them include, as part of the model, a multi-tensor of some
kind.

In this chapter, we propose a method to estimate a general N -fascicle
model from single-shell data. The ill-posedness is removed from the estimation
by leveraging prior knowledge from data acquired at multiple b-values in an
external population of subjects. Section 5.2 explores the geometry of the
ill-posed problem and explain why spatial priors alone do not regularize it.
Section 5.3 describes how data acquired in an external set of subjects can
be used to build a population-informed prior that regularizes the estimation
problem. Section 5.4 validates the proposed approach in synthetic and in vivo
data. Section 5.5 illustrates the use of the population-informed prior to conduct
population studies of the brain microstructure. Finally, Section 5.6 summarizes
the contributions and results of this section.
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Figure 5.1: Geometry of the manifolds of indistinguishable multi-fascicle
models. (a) At a given b-value, an infinite number of models with very different prop-
erties produce the same diffusion signal and form a manifold. At the true underlying
model (red dot), the manifolds at different b-values intersect tangentially. (b) For
an N-fascicle model (here N=3), the manifolds are (N−1)-dimensional hypersurfaces
which share the same tangent hyperplane at their intersection making the estimation
problem very sensitive to noise. (c) The population-informed prior (here restricted to
the manifold) associates different probabilities to otherwise equivalent models.

5.2 Geometry of the Ill-Posed Estimation Problem

In this section, we analyze the problem of estimating N -fascicle models from a
geometric point of view. We then demonstrate why spatial priors cannot be
used to remove the ill-posedness from the estimation.

5.2.1 Manifolds of Equivalent Models at a Given B-Value

A multi-fascicle model is represented as a mixture of single fascicle models. In
the multi-tensor formalism, we can represent each fascicle by a tensor [132]. In
this setting, the generative model for the formation of the diffusion signal S for
a b-value b and a gradient direction g (with ‖g‖ = 1) is:

S = S0

N∑
i=1

fie
−bgTDig, (5.1)

where Di and fi are the tensor and the volumetric fraction of the i-th fascicle.
Since, for any γi > 0, γie− log γi=1, all multi-fascicle models with fractions γifi
and tensors Di + log γi

b I produce the same signal:

S = S0

N∑
i=1

γifie
−bgT

“
Di+

log γi
b I

”
g
, with the constraint

N∑
i=1

γifi = 1. (5.2)
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The tensors remain positive definite as long as γi > e−bλ
min
i , where λmin

i is
the lowest eigenvalue of Di. These models are all equally compatible with
the observed signal S and selection of a particular model based solely on the
measurements is purely arbitrary. Fixing the value of the γ’s amounts to fixing
the lowest eigenvalues (λmin

i ) of each tensor (Di). Each model satisfying (5.2)
is thus uniquely identified by its vector (λmin

1 , . . . , λmin
N ). The set of all models

respecting equation (5.2) is a manifold of dimension (N − 1) defined by the
implicit equations (we let λi , λmin

i for clarity):
λi = λtruei + 1

b log (γi) for i = 1, . . . , N

∑N
i=1 γifi = 1,

(5.3)

where (λtrue1 , . . . , λtrueN ) is the true unknown model obtained if we let γ1 = ... =
γN = 1 (Fig. 5.1(a)). Since these equations depend on b, so will the manifold.
Acquiring diffusion images at different b-values amounts to defining different
such manifolds that intersect at the true underlying model λi = λtruei . Let us
analyze how those manifolds intersect at that point. The explicit equation of
the hypersurface λN (λ1, . . . , λN−1) obtained by eliminating the γ’s between
equations (5.3) is:

λN (λ1, . . . , λN−1) = λtrueN +
1
b

log

(
1−∑N−1

i=1 fie
b(λi−λtrue

i )

fN

)
. (5.4)

The normal vector to the hypersurface is η =
(
∂λN
∂λ1

, . . . , ∂λN
∂λN−1

,−1
)
. Its k-th

component is:

ηk =
∂λN
∂λk

=
−fkeb(λk−λ

true
k )

1−∑N−1
i=1 fieb(λi−λ

true
i )

, k = 1, ..., N − 1.

At the true underlying model, the normal vector is:

ηk

∣∣∣∣
λi=λtrue

i ,∀i
=
∂λN
∂λk

∣∣∣∣
λi=λtrue

i ,∀i
=
−fk
fN

. (5.5)

Remarkably, this normal vector (hence the tangent hyperplane) does not depend
on b at the point of interest. In other words, at the first-order approximation,
the manifolds at all b-values coincide locally, explaining the high sensitivity to
noise encountered when optimizing the parameters of a multi-fascicle model
(Fig. 5.1(b)). This is akin to the sensitivity of the intersection point of two
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almost-parallel lines in the plane: small perturbations of their slope can have
a dramatic effect, whereas for nearly orthogonal lines, the effect would be far
smaller.

At the second-order approximation, the manifold is characterized by the
Hessian matrix of λN (λ1, . . . , λN−1):

(
H
)
ij

=
∂2λN
∂i∂j

,

and a typical measure of the curvature in direction s is κb(s) = sTHs. At the
true underlying model, the Hessian has the following expression:

H

∣∣∣∣
λi=λtrue

i

=
−b
f2
N

(
f̃ f̃

T
+ fN diag(f̃)

)
,

where f̃ = [f1, . . . , fN−1]T . The difference between the Hessian matrices at the
intersection point for two different b-values, b and b′ > b, is positive definite
since, for all s 6= 0, we have

κb(s)− κb′(s) = sT (H(b)−H(b′)) s =
b′ − b
f2
N

(
(f̃

T
s)2 + fNs

Tdiag(f̃)s
)
> 0.

(5.6)
Therefore, there exists no direction s along which the two manifolds have the
same curvature. Consequently, the true model is locally the only intersection
of all manifolds. Given the difference (5.6), it appears that a wider range of
b-values leads to a larger difference between their manifolds, which should in
turn improve the accuracy of the estimation (ignoring the potential impact of b
on noise). Indeed, (5.6) indicates that manifolds with large b-values are strictly
more curved than manifolds with small b-values, in all directions. Continuing
with a different analogy, this is akin to having a small ball stuck inside a larger
ball, such that they intersect at a single point. Moving the small ball gently
displaces the intersection point somewhat. On the other hand, if the inner
ball is nearly as large as the outer one (almost the same b-value), then small
perturbations (due to noise) can lead to large displacements of the contact
point.

When an isotropic compartment fisoe−bDiso is added to the model, one can
show that the above development remains valid with an unchanged N if Diso is
known (typically set to the diffusion of water at 37◦C, that is 3× 10−3mm2/s)
and considering an (N + 1)-fascicle model if Diso needs also be optimized.
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In summary, estimating multi-fascicle models from single b-value data is an
ill-posed problem that has an infinite number of equivalent solutions. However,
due to the particular geometry of the manifold of these solutions, acquiring
data at two b-values is sufficient to resolve the particular equivalence relation
of (5.3).

5.2.2 Ill-Posedness with Spatial Priors

In this section, we demonstrate that the use of the most common spatial priors,
as described in [102, 81, 80], does not alleviate the ill-posedness problem of
the estimation. In their most general expression, these spatial priors impose
a penalty on multi-fascicle models based on some discrepancy between the
multi-tensor at one voxelM(x) and the multi-tensors in the neighborhood Ωx,
{M(x′)|x′ ∈ Ωx}:

P ({M(x′)|x′ ∈ Ωx}) = f({d(M(x′),M(x))|x′ ∈ Ωx}), (5.7)

where d(M(x′),M(x)) is some discrepancy function between the multi-tensors
M(x) andM(x′). The expressions for the spatial prior may vary (through the
choice of f, d and/or Ωx) but they share the property of reaching a maximum
if the local neighborhood is constant (i.e. ifM(x′) =M(x), ∀x′ ∈ Ωx), since,
typically, d(M,M) = 0, for anyM. For instance, the prior used in [102] for a
multi-fascicle model that has N tensors Di(x) at location x is:

Pspatial(D) ∝ exp
{
− 1

2σ2
s

∑
x

N∑
i=1

‖∇ logDi(x)‖2F

}
, (5.8)

where ∇ is the spatial gradient with respect to x approximated by finite
differences [57], with D=̂(D1, ...,DN ) and σs weights the confidence put in the
prior. The gradient ∇ is computed along the fascicle by selecting for each Di

at x, the two tensors in Ωx most similar to Di(x).
In a constant field of multi-tensor models, all gradients are equal to zero and

the prior is maximum. Therefore, two constant multi-tensor fields must have
equal spatial priors. Given a constant multi-fascicle model, one can generate an
infinite number of constant multi-fascicle models from (5.3) that the data alone
cannot distinguish. Since the spatial prior is unable to distinguish them either,
the ill-posedness problem persists.

Spatial priors that do not follow the expression (5.7) may be proposed. For
instance, one may propagate properties of tensors from single-tensor to multi-
tensor areas [104]. Since the estimation in single-tensor areas is not ill-posed,
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such a prior would, in theory, avoid the ill-posedness problem. However, this
regularization comes at the expense of strong assumptions about the homogeneity
of diffusion properties along the fascicles and would lead to estimation errors
that vary in space (voxels that are further away from single-tensor areas probably
have larger estimation errors).

5.3 Model Estimation with a Population-Informed Prior

While all models of Equation (5.3) are equally compatible with the observed
DWI at a given b-value, they are not all equally likely from a biological point of
view. This knowledge can be learnt from available observations of multi-fascicle
models at multiple non-zero b-values in other subjects. Since these subjects
are imaged at multiple non-zero b-values, their multi-fascicle models are not
affected by the ill-posedness problem and they are therefore reliable observations
of the anatomy. In this section, we explain how this prior knowledge can be
encoded and integrated in the estimation.

5.3.1 Posterior Predictive Distribution of the Parameters

For a fascicle i at a specific voxel, we denote by Fi = {f0
i , . . . , f

m
i } the obser-

vations of its i-th fraction and by Di = {D0
i , . . . ,D

mi
i } the observations of its

i-th tensor in m other subjects. Notice that the number of observations for
the fraction is always equal to the number m of subjects while the number
of observed tensors is mi ≤ m since, if a fraction is zero, the corresponding
tensor is not observed. We let F = (F1, ...,FN ) and D = (D1, ...,DN ) for the
observations of all fractions and all tensors in one voxel. These observations can
be incorporated into the estimation of a multi-fascicle model in a new subject, as
a prior over the parameters (fi,Di) (Fig. 5.1(c)). In this section, we will derive
an expression for the prior probability Pf,D(f ,D|F ,D) for the fractions and
tensors in one voxel given the observations at the same voxel in other subjects.

We assume that the fascicle properties are independent of partial voluming
and that the properties of one fascicle are independent of those of another. The
prior can therefore be expressed as:

Pf,D(f ,D;θ) = Pf(f ;θf )
N∏
i=1

PDi(Di;θi), (5.9)

where θf and θi are parameters of the distributions. The fractions are not
independent since they sum to 1. However, we assume that any fraction fi is
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independent of the relative proportions of others fj/(1− fi). This neutral vector
assumption naturally leads to the Dirichlet distribution:

Pf(f ;α) =
1f∈S
B(α)

N∏
i=1

fαi−1
i , where S =

{
x ∈ RN : xi > 0,

N∑
i=1

xi = 1

}
,

(5.10)
where 1f∈S equals one if only if f ∈ S and zero otherwise. Calculus of diffusion
tensor data is typically performed in the log-Euclidean domain since it resembles
the Euclidean space and avoids nonsensical negative eigenvalues [8]. The prior
knowledge about Di can be described as a multivariate Gaussian distribution
over their logarithm [107, 8]:

Li = log Di ∼ N (Mi,Σi) . (5.11)

In this notation, Li is vectorized as
(
diag(Li),

√
2 offdiag(Li)

)
∈ R6. In general,

Σi is a 6× 6 symmetric matrix and has 21 free parameters, which may overfit
the usually small training dataset. For DTI, Schwartzman et al. suggested
in [107] to constrain Σi to be orthogonally invariant, imposing the following
structure that depends only on σi and τi:

Σi = σ2
i

(
I3 + τi

1−3τi
I3 0

0 I3

)
, B(σi, τi).

Orthogonal invariance implies that a deviation ∆i from the mean Mi has
the same likelihood to occur as any of its rotated versions Q∆iQ

T for any
orthogonal matrix Q. In other words, the observation of a tensor Mi + ∆i is
equally likely as the observation of Mi +Q∆iQ

T , which is a notion of isotropy.
This structure yields a closed-form solution for the maximum likelihood (ML)
estimator [107]:

M̂ i = L̄i =
1
mi

mi∑
k=1

Lki and Σ̂i = B(σ̂i, τ̂i),with (5.12)

τ̂i =
−∑mi

i=1 ‖Lki − L̄i‖22
5
∑mi
i=1

[
Tr(Lki − L̄i)

]2 and σ̂2
i =

1
6mi

mi∑
i=1

‖Lki − L̄i‖2τ̂i , (5.13)

where ‖A‖2t = 〈A,A〉t and 〈A,B〉t=Tr(AB)−tTr(A)Tr(B). The ML estima-
tor may be unreliable for compartments with only a few observations. This
uncertainty is accounted for by replacing point estimates of θ by posterior
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Figure 5.2: Graphical model of the posterior predictive distribution model
that serves as a prior for new observations. Circles indicate random variables,
shaded circles indicate observed variables, and boxes indicate parameters. The
graphical model is repeated for all V voxels.

distributions and integrating over all possible θ. This yields the posterior
predictive distribution which contains all the knowledge about new observations
that we learn from previous observations. Its derivation requires the definition
of hyperpriors over θ and is closed-form if we select conjugate hyperpriors.
Mi ∼ N (M0,Λ0) is a conjugate hyperprior for the tensor part of (5.9) assum-
ing a deterministic Σi = Σ̂i. We set Λ0=B(1, 0) and M0=logDiso to keep
it weakly informative (this hyperprior merely encodes the order of magnitude
of diffusivity at 37◦C). The posterior predictive distribution over the tensors
becomes:

Li|Di ∼ N (Mmi
i ,Λmi

i ), (5.14)

with Λmi
i = Σ̂i +

(
Λ−1

0 +miΣ̂i
−1
)−1

, B(σ̃i, τ̃i), (5.15)

and Mmi
i =

(
Λ−1

0 +miΣ̂i
−1
)−1 (

Λ−1
0 M0 +miΣ̂i

−1
L̄i

)
. (5.16)

For the parameters αi in (5.10), a conjugate hyperprior is the Dirichlet
distribution. We set all its parameters to 1, making it uniform over the simplex
S. The resulting posterior predictive distribution is a Dirichlet with parameters
1 +

∑m
k=1 f

k
i . In this expression, fki are considered frequency counts since they

are samples of fi rather than samples from a multinomial parameterized by
fi. The complete posterior predictive distribution is represented as a graphical
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model in Fig. 5.2 and its expression is (with CF,D constant):

Pf,D(f ,D|F ,D) = CF,D1f∈S

N∏
i=1

f
Pm
k=1 f

k
i

i

N∏
i=1

exp
{
−‖Li −M

mi
i ‖2τ̃i

2σ̃2
i

}
.

(5.17)
This prior pertains to a single voxel. The population-informed prior for the
entire multi-fascicle model is obtained by multiplying this prior for all location
x. Dependence between adjacent voxels can be accounted for by a separate
spatial prior. This population-informed prior encodes our a priori knowledge
of the brain microstructure at every location. In the Section 5.3.3, we will see
how this prior is incorporated in a maximum a posteriori estimate of the model
parameters.

5.3.2 Building and Evaluating the Population-Informed Prior

The population-informed prior is built from data acquired in completely different
subjects at several b-values. These data are used to compute multi-fascicle
models for each subject. These multi-fascicle models are then registered to a
multi-fascicle atlas, using the method described in [127]. Following alignment,
tensors from all subjects at each voxel are clustered in N compartments by
minimizing the cumulative relative differential entropy as described in [125].
The number N of compartments is set to the maximum number of tensors
observed among subjects at that location. Each cluster represents the sets
Fi and Di of available observations for the i-th fascicle and the prior is built
following the procedure described in Section 5.3.1.

To evaluate the prior at a given voxel x for a given candidate model
(f(x),D(x)), we need the prior to be aligned to the subject whose multi-
fascicle model is being estimated. We also need to identify which fascicle of the
prior corresponds to what fascicle of the model being estimated. Alignment of
the prior is performed by first estimating a multi-fascicle model without the
population-informed prior and by performing multi-fascicle registration [127]
between this first estimate and the multi-fascicle atlas. Associations between
the fascicles of the model and the fascicles of the prior is achieved by computing
the prior for all possible associations of fascicles and recording the maximum
value obtained.
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5.3.3 Maximum A Posteriori Estimation

The population-informed prior is incorporated in the estimation of the model
as a prior over the parameters. The maximum a posteriori estimate of the
parameters becomes:

f̂ , D̂ = arg max
f ,D

{
Pf,D(f ,D|F ,D).Pspatial(f ,D).Plikelihood(y|f ,D)

}
.

We use the spatial prior Pspatial(f ,D) defined by Scherrer and Warfield [102]
and recalled in Equation (5.8). The likelihood density is over measurements
y = (y1, ..., yK), that is the set of K DWI. The expression of the likelihood
density depends on the noise model. Since the noise impacts DWI acquired
at a single b-value that is typically low (e.g. b=1000 s/mm2), the Gaussian
approximation of the noise is valid [44]. We denote its variance by σ2

noise, leading
to:

Plikelihood(y|f ,D) ∝
∏
x

K∏
k=1

exp
(
− 1

2σ2
noise

(
Sk(f(x),D(x))− yk(x)

)2
)
,

where Sk is the modeled signal obtained with Equation (5.1) given the b-value
(bk) and the gradient orientation (gk) of the measured yk.

The maximum a posteriori estimate at each voxel amounts to maximizing
the following for f and D:

L(f ,D) =
∑
x

{
log(1f∈S) +

N∑
i=1

m∑
j=1

f ji (x)fi(x)−
N∑
i=1

||logDi(x)−Mmi
i (x)||2τ̃i

2σ̃2
i

− 1
2σ2

s

N∑
i=1

‖∇ logDi(x)‖2F

− 1
2σ2

noise

K∑
k=1

(
S0

[
N∑
i=1

fi(x)e−bkg
T
kDi(x)gk

]
− yk(x)

)2}
. (5.18)

The first line is the population-informed prior, the second line is the spatial prior
and the third line is the likelihood. Notice that the population-informed prior
is learnt in closed form from data and therefore does not introduce additional
parameters. The estimation of the optimal values for parameters σ2

s and σ2
noise

is investigated in the next section.
As in [102], (5.18) is maximized using the BOBYQA algorithm [86] that

allows the introduction of constraints. The first term of (5.18), log(1f∈S), is
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Figure 5.3: Effect of the ill-posedness problem and the use of a prior on
the detectability of group differences. (a-c) If the group differences are aligned
with a manifold of equivalent models, then the use of a prior will unavoidably collapse
all models to a single point, preventing the detection of group differences. (d-f) If
differences are not aligned with the manifold, however, the use of a population-informed
prior will simply select the most likely model from the manifold of equivalent models.
To ease the understanding of which model gets selected by the prior, isosurfaces of
the population-informed prior are illustrated as black lines in (c) and (f).

thus set as a constraint on fractions f and removed from the objective function.
The selection of the number N of fascicles is an important aspect of the model
estimation. In this chapter, we use an F -test with a threshold t = 25 as in [102]
due to its widespread use [59, 4, 102] to isolate the impact of the population-
informed prior when comparing the results with those of earlier methods. Recent
developments have, however, enabled more reliable selection of the number of
fascicles [100, 103] and can be integrated with the proposed estimation.

5.3.4 Detectability of Group Differences

The introduction of an informed prior in the estimation implies that estimated
models will be closer to the mean of the population than they would be if
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the estimation problem was well-posed and if no prior was used. This is the
shrinkage towards the mean effect. In this section, we investigate, theoretically,
the impact of this effect on the detectability group differences.

Let us first imagine a population study in which the multi-tensor models of
all subjects (in a particular voxel) lie on a single manifold described by (5.3)
with the control subjects characterized by λmin

1 < t (for some threshold t) and
the patients characterized by λmin

1 > t (Fig. 5.3(a)). If the ground truth was
available, this distribution of λmin

1 would lead to a significant group difference.
However, because all models lie on the same manifold, estimations from single
b-value data with a population-informed prior would collapse all models to a
single point (assuming that the measurement noise is negligible) and the group
difference would not be detectable (Fig. 5.3(c)). With data at a single b-value,
the absence of a prior would result in arbitrary estimations along the manifold
which, too, would prevent the detection of group differences (Fig. 5.3(b)).

The situation described above is very unlikely, for models from each subject
would need to follow exactly equation (5.3). This equation imposes a strict
relationship between the eigenvalues of all tensors as well as their volumetric
fractions. In particular, subjects with a higher λmin

1 would need to have a lower
λmin

2 and a higher volumetric fraction f1. More commonly, differences between
groups are reflected into some properties of one of the tensors with all other
properties (other tensors and volumetric fractions) kept relatively constant
between groups (Fig. 5.3(d-f)). In this case, the models of each subject would
lie on different manifolds (Fig. 5.3(d)). Assuming zero noise in the data, the
use of a prior would then align the estimation to the most likely model along
each manifold and the group differences would remain detectable.

Situations where group differences are not aligned with the manifolds of
equivalent models are infinitely more likely to occur than situations where
differences are confounded with the manifold. Indeed, although the space of
first eigenvalues (λmin

1 , ..., λmin
N ) is sufficient to consider the equation of the

manifolds, N -tensor models live in a (7N − 1)-dimensional space spanned by
6N parameters for tensors and N − 1 volumetric fractions. The manifold of
equivalent models is therefore an (N − 1)-dimensional manifold embedded in a
space of (7N − 1) dimensions. The space orthogonal to the manifold is therefore
6N -dimensional. For a given multi-tensor model M, the set of models lying
orthogonally to the manifold of models equivalent to M therefore contains
infinitely more elements than the set of models lying on that manifold.
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5.4 Validation Experiments

This section validates the proposed approach and compares its results with
those obtained when no prior or only a spatial prior is used.

5.4.1 Comparison Metrics

In this section, different estimations of the multi-fascicle models will be compared.
A multi-fascicle model (f ,D) is compared to another (f̃ , D̃), according to the
following six metrics computed at every voxel:

∆2
FA =

N∑
i=1

fi + f̃i
2

(
FA(Di)− FA(D̃i)

)2

, (5.19)

∆2
MD =

N∑
i=1

fi + f̃i
2

(
MD(Di)−MD(D̃i)

)2

, (5.20)

Fro2 =
N∑
i=1

fi + f̃i
2
‖Di − D̃i‖2F , (5.21)

∆Dir =
N∑
i=1

fi + f̃i
2

(1− |e1,i.ẽ1,i|) , (5.22)

∆2
F =

N∑
i=1

(fi − f̃i)2, (5.23)

∆2
iso = (fiso − f̃iso)2, (5.24)

where e1,i is the principal eigenvector of tensor Di with unit norm.

5.4.2 Synthetic Phantom and In Vivo Data

Validation of the methods is based on experiments performed with a synthetic
phantom and in vivo data in both healthy subjects and children with autism.
The synthetic phantom, as previously used in [100] and [126], consists of a
16× 16× 16 multi-fascicle model containing an isotropic compartment and 1, 2
or 3 tensors with various properties (Fig. 5.5). S0 is set to 400. This phantom
enables the generation of synthetic DWI at different noise levels with different
gradient directions and b-values.

In vivo DWI were acquired on a Siemens 3T Trio scanner with a 32 channel
head coil using the CUSP-45 gradient sequence [102]. This sequence includes 30
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Without Prior With Prior

Figure 5.4: Visualization of the increased accuracy brought by the
population-informed prior on synthetic data. (Left) Incorporating the prior in
the estimation significantly improves the accuracy of the estimated model under the
three simulated scenarios and for all five comparison metrics (distributions are shown
for 20 datasets simulated for each set of parameters). (Right) The better accuracy
mostly affects the diffusion properties of tensors and not their directions, as predicted
by equation (5.2).

diffusion-encoding gradients on a shell at b = 1000 s/mm2 and 15 extra gradients
in the enclosing cube of constant TE with b-values up to 3000 s/mm2. Eddy
current distortion was minimized using a twice-refocused spin echo sequence [90].
Other acquisition parameters were set to FOV= 220mm, matrix= 128× 128,
number of slices=68, resolution = 1.7 × 1.7 × 2mm3. Data acquisition was
conducted using a protocol approved by the Institutional Review Board (IRB).
Images were acquired for 31 healthy controls and 10 children diagnosed with
a syndromic form of autism spectrum disorders (ASD) related to Tuberous
Sclerosis Complex (see details in Appendix B). No significant difference in age
and gender were observed between the groups. A total of 13 healthy controls were
used to construct the population-informed prior and the remaining 18 healthy
controls as well as the children with ASD were used to test the performance of
the estimation method.

5.4.3 Synthetic Phantom Experiment

In this experiment, we evaluated the impact of noise, group differences, and
registration error on the models estimated with and without the population-
informed prior. We constructed the prior from 20 sets of 95 DWI (5 at b =0
s/mm2, 30 at b =1000 s/mm2, 30 at b =2000 s/mm2, and 30 at b =3000 s/mm2)
simulated by the synthetic phantom under a Rician noise with squared scale
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Figure 5.5: Evolution of the six comparison metrics under the influence
of noise, group differences and registration error for the estimation of
the synthetic phantom. Significantly better results were obtained by utilizing
the population-informed prior. The directions are not affected by the absence of a
population-informed prior, as predicted by Equation (5.2).

σ2 = 80. This prior was then used to estimate multi-fascicle models from 30
DWI simulated at a single non-zero b-value (b =1000 s/mm2) and 5 DWI at
b =0 s/mm2. The estimation was performed in three different scenarios: (i)
under the influence of different levels of Rician noise, (ii) under the simulation
of group differences and (iii) under the simulation of registration errors. Each
estimation was repeated 20 times, each time with 35 DWI simulated to test the
performance of the estimation. In these experiments, no spatial prior was used
(i.e. σs →∞ in Eq. (5.18)). The parameter σ2

noise in Experiments (ii) and (iii)
was set to 80. Summary statistics for the comparison metrics are reported in
Table 5.1.

a) Influence of noise

The influence of noise level was assessed by simulating Rician noise of squared
scale varying from 40 to 120 by steps of 20. As depicted in Fig. 5.5, the
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Table 5.1: Average improvement achieved by utilizing the population-informed prior
in the estimation of the synthetic phantom (in percents of the value obtained without
the prior).

XXXXXXXXXXXXExperiment
Metric

∆FA ∆MD Fro ∆Dir ∆F ∆iso

Influence of noise 26.2% 45.0% 34.1% 12.2% 46.9% 81.7%

Group differences 20.4% 38.7% 29.3% 8.3% 39.6% 64.0%

Registration error 23.6% 38.7% 29.9% -2.4% 44.6% 66.5%

population-informed prior significantly improves the accuracy of the estimation
for the six comparison metrics (one-tail paired t-test: p < 10−10). The difference
is less pronounced for ∆Dir, since directions are not affected by the ill-posedness
problem, as predicted by Equation (5.2).

b) Impact of group differences

Estimating multi-fascicle models from patients’ data implies that the prior (built
in healthy controls) may be offset in terms of fascicle properties. To simulate the
impact of these group differences, we offset the FA of the tensors in the phantom
by -10% to +10% with steps of 2.5%. The datasets of DWI used for testing
were simulated from these offset phantoms while the population-informed prior
was left unchanged. The results, depicted in Fig. 5.5, show that the population-
informed prior significantly improves the accuracy of the estimation for the
six metrics (one-tail paired t-test: p < 10−5 for ∆Dir and p < 10−10 for the
other metrics). As for the previous experiment, the improvement in ∆Dir is less
pronounced than improvements in other metrics.

c) Impact of registration errors

The prior needs to be registered to the subject whose multi-fascicle model is to
be estimated. To simulate the impact of registration errors on the estimated
multi-fascicle model, we applied random deformations to the prior. The three
components of the deformation at each voxel were sampled from an uniform
distribution between 0 and a = 0, 0.5, 1, 1.5, and 2 voxels. The results, depicted
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in Fig. 5.5, show that the population-informed prior significantly improves the
accuracy of the estimation for the five metrics other than ∆Dir (one-tail paired
t-test: p < 10−5). For ∆Dir, a small decrease in accuracy is observed because
estimates without prior are not affected by registration errors. The angular
magnitude of this decrease, however, is 0.048◦, which is negligible in practice.

These experiments demonstrate that the population-informed prior signifi-
cantly improves the estimation of multi-fascicle models, even when registration
errors and group differences occur. In the next section, we will see that the
same is true for in vivo data.

5.4.4 In vivo Data Experiment

For in vivo data, there is no absolute ground truth. However, the CUSP
acquisition sequence allows us to estimate the multi-fascicle model from the full
set of DWI (5 DWI at b = 0 s/mm2, 30 DWI on a shell at b = 1000 s/mm2 and
15 DWI on the enclosing cube with b-values up to 3000 s/mm2) and from the
restricted set of DWI at a single non-zero b-value (5 DWI at b = 0 s/mm2, 30
DWI on a shell at b = 1000 s/mm2). The multi-fascicle models estimated with
the full sets of DWI are not affected by the ill-posedness problem. We consider
them as ground truths for the experiments and we compare estimations from
the restricted sets to it. In this section, we optimize the parameters for the
estimation and we compare our approach with the results obtained with (i) no
prior, (ii) a spatial prior only and (iii) a fixed response function as proposed in
the literature [132]. A summary of the performance of all methods is depicted
at the end of this section, in Fig. 5.9.

a) Optimization of the weight ratio

Two parameters need to be fixed for the estimation of the maximum a posteriori
in equation (5.18): the weight associated with the likelihood, 1/2σ2

noise, and the
weight associated with the spatial prior, 1/2σ2

s . The value of σ2
noise could be

estimated from the data directly assuming ergodicity. However, the noise in
diffusion images is only approximately ergodic [67] and we therefore prefer to
estimate the optimal weights based on comparisons to the ground truth. When
no population-informed prior is used, only the ratio of these weights, σ2

noise/σ
2
s ,

needs to be fixed. The ground truths (based on the full sets of DWI) were
estimated using a ratio σ2

noise/σ
2
s = 0.4 as we observed that it yields smooth

multi-fascicle models while preserving important structures of the white matter.
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Figure 5.6: Additional increase in accuracy when the population-informed
prior is introduced after optimizing the weight of the spatial prior. (Left)
Evolution of the six comparison metrics when only a spatial prior is used, for different
weight ratios σ2

noise/σ
2
s . (Right) Evolution of the six comparison metrics when both

a spatial prior and the population-informed prior are used, for different values of
the noise level σ2

noise withσ2
noise/σ

2
s = 0.6. The use of a population-informed prior

significantly improves the estimation accuracy for all five non-directional metrics. The
evolution is smooth and monotonic with respect to σ2

noise so that moderate errors in
the estimation of σ2

noise do not have a large impact on the result.

We first estimated multi-fascicle models from single b-value data using a
spatial priors only, removing the first term of Equation (5.18). Because of
the ill-posedness problem, the optimal weight ratio (σ2

noise/σ
2
s) may differ from

that used to build the ground truth. We therefore estimated multi-fascicle
models with weight ratios of σ2

noise/σ
2
s = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4. The

evolutions of the six similarity metrics with the weight ratio are depicted in
Fig. 5.6. These results show that the best overall results are obtained for a
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(a) (b) (d)

(e)(c)

Figure 5.7: In terms of direction, the spatial prior and the population-
informed prior perform equally well. (a) Coronal slice of a subject’s color FA
highlighting the centrum semiovale. (b) Directions estimated with the DWI at multiple
b-values. Directions estimated with DWI at a single b-value (c) without prior, (d)
with a spatial prior only, (e) with both spatial and population-informed priors.

weight ratio of 0.6, which is optimal for ∆MD, and ∆iso and close to optimal for
∆Dir, and Fro.

b) Comparison between population-informed and a spatial priors

As explained in Section 5.2.2, typical spatial priors alone do not solve the ill-
posedness problem in the estimation of multi-fascicle models from single b-value
data. In this experiment, we explored whether the population-informed prior
increases the accuracy of the estimation. We kept σ2

noise/σ
2
s to its optimal value

of 0.6 and we estimated multi-fascicle models for σ2
noise = 0, 3.7, 4.5, 5.75, 7.83,

12, 24.5, 32.83, 49.5 and 99.5. These values stem from our implementation which
consists in fixing the trade-off between the population-informed prior (assigning
it a weight w) and the likelihood (assigning it a weight (1− w)), with linearly
increasing w (0, 0.88, 0.9, 0.92, 0.94, 0.96, 0.98, 0.985, 0.99, 0.995). When
σ2
noise = 0, the population-informed prior is mute and the estimation corresponds

to the estimation with the spatial prior only (dashed lines in Fig. 5.6).
Results in Fig. 5.6 demonstrate that the population-informed prior improves

the accuracy of the estimation for all metrics except for ∆Dir. Optimal per-
formances occur for σ2

noise = 49.5 (corresponding to a trade-off w = 0.99).
Importantly, the performances improve monotonically and smoothly with σnoise
so that slightly suboptimal estimates of the noise level will not dramatically
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Figure 5.8: The maps of isotropic fraction show that population-informer
prior results in maps with a lesser bias than those obtained with the spatial
prior alone. The spatial prior leads to maps that are visually plausible but affected
by a global bias (negative for Subject 1 and positive for Subject 2). This bias is due to
the arbitrary choice of a model and the propagation of this choice through neighboring
voxels. By contrast, the population-informed prior results in maps of the isotropic
fraction that are closer to the ground truth. Scatter plots next to every image depicts
the joint distribution of isotropic fraction in the ground truth (x-axis) and in the
estimation (y-axis) highlighting the bias observed in estimations with a spatial prior.

affect the results. For σ2
noise = 49.5, the improvement in the group of healthy

controls ranges from 7.8% for Fro to 28.8% for ∆iso. One-tail paired t-tests
indicate that these improvements are significant (p < 0.005 for all five metrics).
Importantly, similar results were obtained for the estimation of multi-fascicle
models in patients with autism (Fig. 5.9). Improvements were observed for all
five non-directional metrics with improvements ranging from 3.2% for ∆FA to
18.2% for ∆iso. One-tail paired t-tests indicate that these improvements are
significant (p < 0.005 for all metrics except p = 0.05 for ∆F).

To better appraise the improvement brought by the population-informed
prior, Fig. 5.10 depicts the spatial distribution of the improvement in estimation
error (as measured by ∆F). The improvement is widespread and is more
important in areas with crossing fascicles than in areas with a single fascicle
(in those areas, estimating the model with single b-value data is not ill-posed).
Importantly, even in areas with low contrast in diffusion-weighted images, the
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Figure 5.9: Accuracies of the estimation of a multi-fascicle model from
single-shell HARDI data with the five methods under comparison. (1)
estimation without prior, (2) estimation with a fixed response (fixed eigenvalues), (3)
estimation by setting all parameters to the mode of the population, (4) estimation
with a spatial prior only and (5) estimation with a population-informed prior. Results
with the population-informed prior have overall better performances than all other
methods.

estimation remains better with a population-informed prior, probably owing to
the reliability of the proposed registration in those areas [128].

The slightly worse ∆Dir observed with the population-informed prior cor-
responds to an angular difference of 0.4◦, which is negligible in most practical
applications. The equivalent accuracies in ∆Dir is explained by Equation (5.2)
which implies that directions are not affected by the ill-posedness problem.
Figure 5.7(d-e) illustrate the difference in directions between estimations with
and without the population-informed prior.

Consistently for both synthetic data and in vivo data in healthy controls
and patients with autism, the isotropic fraction is the metric most beneficial of
the introduction of the population-informed prior. The reason for this dramatic
improvement can be understood from Equation (5.3). Equation (5.3) implies
that models with large γi have the i-th fascicle close to an isotropic tensor (due
to the offset of all eigenvalues by log(γi)/b) and a volumetric fraction (γifi).
Due to noise, those fascicles may be associated with an isotropic compartment,
thereby increasing the isotropic fraction. Conversely, a multi-fascicle model that
has a large isotropic fraction may be misinterpreted as one with a small isotropic
fraction and a tensor with a low fractional anisotropy. The choice between the
two models is arbitrary. The spatial prior only imposes that a consistent choice
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Figure 5.10: Spatial distribution of the improvement in accuracy brought
by the population-informed prior. Difference in ∆2

F between the estimation
without the prior and with the population-informed prior. Values larger than zero
indicate voxels where the population-informed prior improves the estimation. As
indicated by the arrows, the improvement is more important in areas with crossing
fascicles. In areas without crossing fascicles, the estimation without prior is not
ill-posed and results in models with a similar accuracy as those estimated with a
population-informed prior.

be made between adjacent voxels, and will lead to globally biased isotropic
fractions if the wrong model is picked. This phenomenon is observed in Fig. 5.8,
where, in the first row, a negative bias is observed throughout the map of
isotropic fraction, and, in the second row, a positive bias is observed. These
global biases may mislead population studies as will be demonstrated in the
next section.

c) Comparison with a fixed response function

One way to remove the ill-posedness problem is to fix a priori the tensor
eigenvalues and to focus on optimizing the directions [132]. We assessed this
strategy by estimating, for each subject individually, a typical response function,
i.e. a tensor that represents the typical fascicle within the individual’s brain.
This response was estimated in a similar fashion as [130]. First, we selected the
300 voxels with the highest FA. We assumed that a single fascicle was present
in these voxels. A tensor was then estimated in each of these voxels and we
computed its principal eigenvector. This eigenvector was used to re-orient the
fascicle with the z-axis. The rotation was then applied to all DWI voxels and
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the corresponding gradients were reoriented accordingly. Finally, the typical
response tensor was estimated from all 300 voxels of all the reoriented DWI.
This response function was plugged into the maximum a posteriori estimate as
a hard constraint on the tensor eigenvalues. Results in Fig. 5.9 demonstrate
that such a fixed response strategy fails to accurately estimate a multi-fascicle
model. In particular, the estimated FA is on average worse than that estimated
without any prior.

d) Assessment of the shrinkage towards the population mean

Bayesian parameter estimation leads to models that are closer to the mean of
the population than they would be without a prior. One could be concerned
that this shrinkage, if too severe, would jeopardize the usefulness of the models
for population studies. To assess the extent of the shrinkage created by the
population-informed prior, we compared the models estimated with our method
with the mode of the population-informed prior. If the shrinkage is large, the
models would be very close to this mode.

Results in Fig. 5.9 show that the estimation accuracies of the population
mode are significantly worse than those obtained with the proposed population-
informed prior. The departure of our results from those obtained with the
population mode shows that the Bayesian inference operates in a regime that
trades off information from both the prior and the likelihood. Remarkably, our
estimation performs equally good than the spatial prior estimate in terms of
∆Dir despite the poor results obtained by the population mode.

These results suggest that our maximum a posteriori expression correctly
integrate information from the likelihood, the spatial prior and the population-
informed prior. In particular, if the population-informed prior indicates a large
dispersion in fascicle orientations in one voxel, the corresponding variance σ̃i
will be large and more weight will be put on the spatial prior and the likelihood.

5.5 Application to Population Studies

Multi-fascicle models enable population studies of various properties of the
brain microstructure. In this section, we propose two population studies of
the brain microstructure comparing patients with autism spectrum disorders
to neurotypical controls. The increased accuracy brought by the population-
informed prior translates –as we will see– into a more reliable inference of group
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Figure 5.11: Maps of the p-values of isotropic diffusion analysis, thresh-
olded at p < 0.05 after correction for family-wise error rate. The population-
informed prior leads to inference of group differences that are remarkably close to
those obtained with the data at several b-values (CUSP). A spatial prior alone fails to
detect any difference due to biases in estimations of the isotropic fraction.

differences. All results presented in this section were based on σ2
noise/σ

2
s = 0.6

and σ2
noise = 49.5.

5.5.1 IDA in the white matter

Isotropic diffusion analysis [126] allows whole-brain inspection of differences in
isotropic fraction fiso. Excessive fiso relates to the presence of neuroinflammation
and edema among others [137, 82]. We performed isotropic diffusion analysis to
compare the group of patients with ASD to the group of neurotypical controls.
The statistics of interest was the t-statistics transformed with threshold-free
cluster enhancement [114]. This statistics is more sensitive to group differences
occurring in clusters of neighboring voxels, without relying on the (typically
arbitrary) choice of a threshold. The p-values were corrected for family-wise
error rate using exact tests with 5000 permutations.

Widespread regions of significantly higher isotropic fraction were observed
in patients with autism, as compared to controls (see the maps of corrected
p-values thresholded at p < 0.05 depicted in Fig. 5.11). These regions corre-
spond to the arcuate fasciculi, the corpus callosum and cortico-spinal tracts.
These widespread differences are consistent with finding of widespread white
matter abnormalities in patients with tuberous sclerosis complex [91] as well as
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Anterior

Posterior

Long

Figure 5.12: The dorsal language circuit is composed of three main fasci-
cles. These fascicles are thought to connect Broca’s area in the frontal lobe, Wernicke’s
area in the temporal lobe, and Geschwind’s territory in the parietal lobe.

recent findings of impaired language pathways [63] and loss of corpus callosum
integrity [83] in children with syndromic autism. However, those recent results
were based on single-tensor DTI analysis which conflates differences in fascicle
properties (such as the FA) and differences in isotropic fraction. DTI studies
therefore cannot separate axon/myelin injury from increased cellularity associ-
ated with neuroinflammation [137]. Our findings of increased isotropic fraction
in children with autism suggest that previous findings of impaired white matter
in children with syndromic autism may be in part due to increased cellularity
or edema that may point to a neuroinflammatory process in those regions, as
suggested by post-mortem studies of autism [135].

Remarkably, the differences found with the population-informed prior match
the differences found with the ground truth models. By contrast, no significant
differences were detected with the spatial prior, probably owing to the arbitrari-
ness of the choice of a model from the manifold of equivalent models as explained
in the previous section and depicted in Fig. 5.8. Changes in volumetric fractions
across the manifold of equivalent models are compensated by changes in fascicle
properties. Group difference in volumetric fraction may therefore be incorrectly
interpreted as differences in fascicle properties. In the next experiment, we will
see that this misleading effect occurs in our population when spatial priors are
being used alone.
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Figure 5.13: Results of fascicle-based spatial statistics in the dorsal lan-
guage circuit. The mean FA along fascicles are shown as dark lines and their
confidence intervals are colored shadowed curves. Segments of significant differences
are identified by grey rectangles. Estimations with a population-informed prior detect
most differences observed with the ground true and does not lead to excessive false
discovery rates. By contrast, estimations with a spatial prior generate false positives
at a high rate, covering the anterior fascicle and the long fascicle by over 35%.

5.5.2 FBSS in the dorsal language circuit

Fascicle-based spatial statistics (FBSS) enables to analyze white matter proper-
ties along individual fascicles in the presence of crossing fascicles. As explained
in Chapter 3, FBSS proceeds in four steps. First, all multi-fascicle models
are registered to a multi-fascicle atlas. Second, tractography is performed on
the atlas and specific fascicles are selected. Third, properties of the fascicles
are extracted from each subject by selecting at every point the tensor most
aligned with the fascicle. Fourth, statistical analysis is performed on the fascicle
properties by computing t-tests at every point of the fascicle and by performing
permutation tests on the threshold-free cluster enhanced t-statistics, similar
to [113], to control for multiple comparisons.

We performed FBSS for the FA of the dorsal language circuit (Fig. 5.12).
This set of pathways involved in language is organized around three main
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fascicles [63]: the posterior, anterior and long fascicles. These fascicles are
thought to connect Broca’s area in the frontal lobe, Wernicke’s area in the
temporal lobe, and Geschwind’s territory in the parietal lobe. FBSS was
performed on these three fascicles individually.

Along the posterior fascicle, two clusters of significantly lower FA were
observed (p < 0.05 after correction, Fig. 5.13). Similar findings were obtained
with estimations using the population-informed prior and the spatial prior alone.
Along the anterior fascicle, no significant difference was observed (Fig. 5.13).
Estimations with the population-informed prior only found a small false positive
cluster covering 1.4% of the anterior fascicle. With the spatial prior, three
large false positive clusters were observed, covering 39.4% of the fascicle. This
high prevalence of false discoveries with the spatial prior can be explained by
its inability to detect the significant differences in isotropic fractions. These
differences are incorrectly reflected on the FA of the fascicle. A similar effect is
observed for the long fascicle. A cluster of significantly lower FA was observed
using the ground truth. This cluster was not detected by the population-
informed prior and only partially detected (30% overlap) by the spatial prior
which also incorrectly detects other clusters covering 38.9% of the fascicle.

5.6 Summary

Multi-fascicle models cannot be estimated from conventional single-shell HARDI
data alone because a manifold of different models are equally compatible with
the measurable diffusion signals, making them indistinguishable. Estimation
with a spatial prior arbitrarily selects a model from the manifold of equivalent
models and thereby conflates differences in fascicle properties and differences in
volumetric fractions. This conflation misleads conclusions of population studies
in a similar way as single tensor DTI. With single b-value data, spatial priors
alone therefore fail to harness the novel insight provided by multi-fascicle models.
By contrast, we showed that the introduction of a population-informed prior
generates more accurate multi-fascicle models by removing the ill-posedness
problem from the estimation. These models, in turn, lead to a more reliable
inference in population studies, distinguishing differences in isotropic fractions
from differences in fascicle properties. The population-informed prior therefore
enables novel investigations of properties extracted from multi-fascicle models
with single-shell diffusion data. This method thus opens new opportunities for
population studies with the large number of available clinical diffusion images.





Chapter 6

Beyond Multiple Fascicles:
Distribution of Microstructural

Environments

The multi-fascicle model defined in (2.5) accounts for the presence of multiple
fascicles and one or several extra-axonal spaces. However, it makes the assump-
tion that, within a particular compartment, the diffusion of all water molecules
can be described by the same tensor (isotropic or anisotropic). In this chapter,
we challenge this assumption.

We describe our recently developed DIAMOND model that accounts for the
heterogeneity of the signal contributions from different groups of water molecules
(called spin packets in reference to the spin of the protons that generates the
diffusion signal) within a single compartment [98]. We then show, using the
method described in Chapter 4, that the DIAMOND has a lower generalization
error than the multi-fascicle model in specific parts of the white matter. We
subsequently provide a geometric insight into the space of DIAMOND models
that generate the diffusion signals. This insight sheds light on the required
DWI acquisition and provides a method to assess the uncertainty in the model
parameters.

6.1 Distribution of Anisotropic Microstructural Environ-
ments in Diffusion Imaging (DIAMOND)

In this section we explain how, mathematically, the DIAMOND model represents
the heterogeneity occurring at various scales in the diffusion of water molecules.
While the DIAMOND model is a framework (rather than a specific model) to
represent this heterogeneity, we also propose a specific form of the model in
which the major sources of diffusivity are explicitly identified and labelled and
in which variations of such diffusivities are considered.
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(a) Macro-Scale (b) Meso-Scale (c) Micro-Scale

Fascicles
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Microglia
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Figure 6.1: Heterogeneity of the spin packets at different scales. The
different spin packets generate heterogeneous diffusion signal. This heterogeneity
occurs at three spatial scales. (a) At the macro-scale, heterogeneity is due to the
presence of multiple fascicles, an extra-cellular space and partial volumes of CSF
and/or grey matter. (b) At the meso-scale, heterogeneity is due to the various shapes
and sizes of axons, their degree of myelination and the presence of other cells including
astrocytes, microglia and oligodendrocytes. (c) At the micro-scale, heterogeneity is due
to the distance from water molecules to the cell membranes, as well as intra-cellular
obstacles to diffusion.

6.1.1 Heterogeneity in the Diffusion of Water Molecules

Heterogeneity of the diffusion of water molecules arises at different scales. The
multi-fascicle models has been defined to capture the heterogeneity at the
macro-scale (Fig. 6.1a). At this scale, heterogeneity in the diffusion of spin
packets arises from the presence, within one voxel, of multiple compartments
(crossing fascicles, an extra-axonal space or a partial volume of CSF or gray
matter). These are large scale microstructural environments (LSME).

At the so-called meso-scale, each LSME presents an heterogeneous mi-
crostructure due to the presence of glial cells and axons with various radii,
orientations and degree of myelination (Fig. 6.1b). The diffusion signal of water
molecules interacting with an homogeneous portion of this microstructure is
well modeled by a mono-exponential decay leading to a tensor representation.
However, the signal arising from the whole LSME may deviate from a mono-
exponential decay due to the heterogeneity in the interaction of spin packets. At
the micro-scale, other biophysical mechanisms such as heterogenities of cellular
structure and the proximity of spin packets to the cell membranes may further
impact the diffusion signal (Fig. 6.1c).

The DIAMOND model proposes to account for the various sources of het-
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erogeneity in a phenomenological manner, rather than a biophysical way. A
phenomenological approach has the advantage of simultaneously capturing
all sources of diffusion heterogeneity without adding many extra parameters.
Biophysical models of the heterogeneity would require separate models for each
source of heterogeneity, resulting in a consequential increase in the number of
parameters. However, unlike biophysical models, interpretation of phenomeno-
logical parameters in terms of microstructural features may require additional
assumptions because of the one-to-many correspondence between the model
parameters and the sources of heterogeneity.

6.1.2 DIAMOND: a Framework to Model Heterogeneity

To model the heterogeneity of the diffusion of spin packets, we consider that
the signal attenuation due to the diffusion of one spin packet is represented
by a single tensor response e−bg

TDg but that different spin packets may be
characterized by different tensors D. The fraction of water molecules being
characterized by a same tensor D is a matrix-variate distribution p(D)dD and
the diffusion signal in one voxel is obtained by integrating the contributions
from each spin packet:

S(b, g) = S0

∫
S+

3

p(D)e−bg
TDgdD, (6.1)

where S+
3 is the space of 3× 3 symmetric positive-definite matrices. The single

tensor model of (2.3) with tensor D0 is a particular case of (6.2) for which
p(D) is an indicator function 1(D=D0) and the multi-fascicle model of (2.5) is
a particular case for which p(D) is a sum of indicator functions

∑N
i=1 1(D=Di).

Generally, the diffusion signal in each LSME can be characterized by a peak
shaped-distribution over matrices D. The diffusion signal arising in one voxel
from all LSME together is thus characterized by a mixture of the peak-shaped
distributions:

S(b, g) = S0

N∑
i=1

fi

∫
S+

3

pθi(D)e−bg
TDgdD. (6.2)

In this equation the mixture weights fi play the same role as the volumetric
fraction in the multi-fascicle model of (2.5). The distributions pθi(D) are
parameterized by a set θi of parameters whose value may differ between LSME.

A natural peak-shaped distribution for n × n symmetric positive definite



134
Chapter 6. Beyond Multiple Fascicles:

Distribution of Microstructural Environments

matrices is the matrix-variate Gamma distribution [46, 71, 106]:

pκ,Σ(D) =
|D|κ−(n+1)/2

|Σ|κΓn(κ)
e−Tr(Σ

−1D),

where κ > (n − 1)/2 is the concentration parameter, Σ ∈ S+
n is the scale

parameter, |.| is the matrix determinant and Γn is the multivariate gamma
function.

The expectation of the matrix-variate Gamma distribution is Dm = κΣ and
the concentration parameter κ is larger if matrices D are more concentrated
around the mean Dm. In the DIAMOND model [98], the heterogeneity within
each LSME is characterized by a matrix-variate Gamma distribution pκi,Σi

(D):

S(b, g) = S0

N∑
i=1

fi

∫
S+

3

pκi,Σi(D)e−bg
TDgdD.

Importantly, the integrals in this expression are Laplace transforms of pκi,Σi(D)
which have a known analytical expression [56] and the signal model S reads
(with Di=̂κiΣi):

S(b, g) = S0

N∑
i=1

fi

(
1 +

bgTDig

κi

)−κi
. (6.3)

The matrix Di in this equation represents the average mono-exeponential decay
of all spin packets in the i-th LSME. The heterogeneity in the spin packets
local microenvironment is accounted for by the concentration parameter κi.
In particular, for κi → ∞, the DIAMOND model of (6.3) is equal to the
multi-fascicle model of (2.5).

One of the LSME in (6.3) typically represents the extra-axonal space with an
isotropic tensor D0 = disoI3. In this LSME, D0 is the average diffusion of water
molecules in the extra-axonal space. Using a finite concentration parameter
κiso enables the representation of a spectrum of isotropic diffusivities (Fig. 6.2).
While the mean diffusivity in this compartment is given by D0 = disoI3, the
mode equals Dmode = diso(1 − 2

κiso
)I3 because the matrix-variate Gamma

distribution is not symmetric around its mode (Fig. 6.2). This diffusivity
spectrum may reflect isotropic diffusion in the extra-cellular space as well as
isotropic diffusion in glial cells (Fig. 6.1b).

To account for the heterogeneity of the diffusion process governing different
spin packets, the DIAMOND model requires one extra parameter per com-
partment (κi). To assess the added value of this parameter in representing
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Figure 6.2: Spectrum of isotropic diffusivities with the DIAMOND model.
The isotropic large scale microstructural environment encompasses a spectrum of
diffusivities that may represent diffusion within different glial cells and in the extra-
cellular space. The plotted curves are relative densities of the isotropic diffusivities
for two different values of κ. The mode of the distribution is given by diso

“
1− 2

κiso

”
.

the diffusion signal of each LSME, we will compare, in the next section, the
generalization error of the DIAMOND model with that of the multi-fascicle
model of (2.5).

6.1.3 A Specific DIAMOND Model

In models of the microstructure of the brain, it is possible to identify a number
of compartments, each of which may be suitably described as a continuous
mixture of diffusion tensors through a matrix-variate gamma distribution. For
example, isotropic free water and isotropic restricted water diffusion can each be
represented by a matrix-variate gamma distribution with an isotropic mode. The
diffusivity of restricted intra-axonal molecules in a fascicle, and the surrounding
hindered extra-axonal molecules can each be represented by a matrix-variate
gamma distribution, and the similarity of orientation between the restricted
and hindered diffusivity can be accounted for by, for example, using the same
eigenvectors in the mode of the distributions. In this model, a finite mixture of
matrix-variate gamma distributions of diffusion tensors provides a generative
model that captures isotropic free and restricted diffusivity, and describes
the diffusivity of each fascicle that is present with two matrix-variate gamma
distributions.

In general, whenever the tissue microstructure compartments give rise to
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(a) (b) (c)

Figure 6.3: Number of fascicles detected by minimization of the general-
ization error using DIAMOND model (a) Map showing the number of fascicles
detected. Consistently with the known anatomy, diffusion in the ventricles (i), a
single fascicle is present in the corpus callosum (ii) and in the cortico-spinal tracts
(iii) and up to three fascicles are found in the corona radiata (iv). (b) A zoomed-in
display of fascicles orientation in the corona radiata. (c) Volumetric fractions of each
compartment. (Figure adapted from [98])

heterogeneity that is described by a matrix-variate gamma distribution that is
broader than we desire, it is possible to consider a mixture of matrix-variate
gamma distributions to better capture the heterogeneity as a sum of more
homogeneous compartments. It is then important to consider the nature of the
imaging strategy that enables the identification of the model parameters, the
practicality of such an imaging scheme for clinical or research application, and
alternative mechanisms for identifying suitable model parameters such as using
parameter values from the literature or other experiments.

6.2 Generalization Error of the DIAMOND Model

The DIAMOND model has one extra parameter by compartment (κi) compared
to the multi-fascicle model of (2.5) to capture the heterogeneity in the diffusion
of spin packets. To assess whether this extra parameter captures novel observable
diffusion phenomena not captured by the multi-fascicle models, we used the
model selection approach described in Chapter 4.

We acquired 395 DWI with a multi-shell HARDI sequences (gradient direc-
tions located on multiple spheres each with a specific b-value): 5 DWI at b =
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0 s/mm2 and 15 shells of 26 gradient directions each with b ∈ [200, 3000] s/mm2

by increments of 200 s/mm2. We repeated the estimation-testing process 100
times using, at each iteration, 70% of the data for estimation and 30% for
testing. Within the estimation set, the number of fascicles was estimated with
the 632 bootstrap with 50 bootstrap replicates (Fig. 6.3). Using the test set at
each iteration, we computed the mean squared prediction error at each voxel.
The above procedure was performed with both the DIAMOND model and the
multi-fascicle model of (2.5). Mean squared prediction errors of both models
were then compared at each voxel.

The resulting map of difference between the mean squared prediction errors
is depicted in Fig. 6.4. On average, the DIAMOND model is better than the
multi-fascicle model of (2.5) with a mean improvement corresponding to 8% of
the mean error. To test whether the improvement is statistically significant, one-
tailed paired t-tests were used. This test requires independent measurements,
which is not the case of voxels that share spatial dependence (smoothness). To
increase independence between samples, the t-test was conducted by selecting
only one voxel out of five along each dimension of the image, resulting in a
p-value p < 0.002 for the test. This test indicates that DIAMOND is, on
average, significantly better than the multi-fascicle model. The generalization
error is mostly decreased along corpus callosum and the cortico-spinal tract
(arrows in Fig. 6.4).

6.3 Acquisition and Estimation of DIAMOND Models

In Chapter 5, we showed that there is a manifold of different models that all
generate the same measurable diffusion signals at a given b-value and therefore
cannot be distinguished. The same is certainly true for DIAMOND models
since they include multi-fascicle models as a particular case (for κi →∞, ∀i).
The particular geometry of the manifolds at the intersection point which, for
multi-fascicle models, guarantees the local unicity of the intersection of two
manifolds at two different b-values, may be different for DIAMOND models. In
this section, we elucidate the geometry of the manifold of equivalent DIAMOND
models and demonstrate that two b-values are no more sufficient to uniquely
identify the model parameters.
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+3 - 3 
DIAMOND is betterDIAMOND is not better

Figure 6.4: The DIAMOND model has, on average, a lower generalization
error than the multi-fascicle model. The map shows the difference in general-
ization errors measured by cross-testing in 395 DWI. The difference is more notable
in the corpus callosum (topmost arrow) and in the cortico-spinal tracts (lowermost
arrow). (Figure adapted from [98])

6.3.1 Manifold of Equivalent DIAMOND Models

As for the multi-fascicle model, let us start by rewriting the signal generation
model of (6.3) by multiplying each term by γi

γi
:

S(b, g)
S0

=
N∑
i=1

γi
γi
fi

(
1 +

b

κi
gTDig

)−κi
=

N∑
i=1

γifi

(
γ

1
κi
i + γ

1
κi
i

b

κi
gTDig

)−κi
=

N∑
i=1

γifi

(
1 +

b

κi
gT
{
γ

1
κi
i Di +

κi
b

[
γ

1
κi
i − 1

]
I

}
g

)−κi
.(6.4)

The DIAMOND model with parameters {fi, κi,Di}(1≤i≤N) therefore generates
the same diffusion signal at a given b-value as all the DIAMOND models with
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parameters {f ′i , κ′i,D′i}(1≤i≤N) such that:

f ′i = γifi (6.5)

κ′i = κi (6.6)

D′i = γ
1
κi
i Di +

κi
b

[
γ

1
κi
i − 1

]
I, (6.7)

for all γi > 0, insofar as the expression of D′i remains positive definite and
as
∑N
i=1 γifi = 1. Estimating the parameters of a DIAMOND model from

DWI acquired at a single b-value is therefore an ill-posed problem. Since D′i
is a linear combination of Di and the identity I, it has the same eigenvectors
as Di. Only the estimation of the eigenvalues and the volumetric fractions
is thus ill-posed. All three eigenvalues of D′i are related to the eigenvalues
of Di by the same linear transformation. Therefore, all models of the set of
equivalent models described by (6.5-6.7) are uniquely identified by the vector
(λmin

1 , ..., λmin
N ) where λmin

i is the lowest eigenvalue of the mean tensor Di. In
terms of these eigenvalues (that we denote λi , λmin

i for clarity), we have the
following implicit equation for the manifold of equivalent DIAMOND models:

λi = γ
1
κi
i λtruei + κi

b

[
γ

1
κi
i − 1

]
∑N
i=1 γifi = 1.

(6.8)

As expected, for κi → ∞, the implicit equations (6.8) are equivalent to the
implicit equations (5.3) for multi-fascicle models, since

lim
κ→∞

κ
(
γ

1
κ − 1

)
= log γ.

By eliminating the γ’s between equations (6.8), we obtain the following compact
expression for the manifold of equivalent DIAMOND models:

N∑
i=1

fi

(
λi + κi

b

λtruei + κi
b

)κi
= 1. (6.9)

As in the multi-fascicle case, identifying a DIAMONDmodel requires acquisitions
at multiple b-values so as to have different manifolds intersecting at the true
underlying model for which λi = λtruei , ∀i. The robustness and uniqueness of
the intersection can be analyzed by exploring the geometry of the manifolds at
different b-values.
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The expression (6.9) has the form F (λ1, ..., λN ) = 1. A normal vector
to the manifold of equivalent DIAMOND models is given by η = ∇F =(
∂F
∂λ1

, . . . , ∂F∂λN

)
. Its k-th component computed at the point of the true under-

lying model (λi = λtruei ,∀i) is:

ηk

∣∣∣∣
λi=λtrue

i ,∀i
=

∂F

∂λk

∣∣∣∣
λi=λtrue

i ,∀i
=

fkκkb

bλtruek + κk
. (6.10)

In contrast with multi-fascicle models, this normal vector depends on the b-value
(unless κk → ∞). Therefore, manifolds of equivalent DIAMOND models for
different b-values do not, in general, intersect tangentially. The intersection
between two different manifolds will be more robust to noise if the angle between
the normal vectors is wider. This is akin to the intersection of two straight lines.
Small changes in their slopes will displace the intersection point by a distance
that depends on the difference between their slopes. If their slopes strongly
differ, then changing them slightly will not strongly impact the location of the
intersection (Fig. 6.5a) whereas if their slopes are close to each other, changing
them slightly will strongly impact the location of the intersection (Fig. 6.5b).

(a) (b)

Figure 6.5: The difference between the slopes of manifolds impacts the
robustness of their intersection. (a) If the slopes differ strongly, a slight change
of the slopes (depicted are dashed lines corresponding to changes of ±5◦) do not
strongly impact the location of the intersection. The purple area shows all the possible
locations of the intersection is slopes change by up to 5◦. (b) If slopes are close to
each other, a slight difference may strongly impact the location of the intersection, as
shown by the wider purple area.

Equation (6.10) enables to assess, through simulations, how the choice of b-
values impact the angle between the manifolds of equivalent DIAMOND models.
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As an illustration, we explored how the angle between the normal vectors to
two manifolds evolves as a function of the second b-value when the first b-value
is set to b = 1000 s/mm2. We generated 1000 random DIAMOND models by
uniformly drawing eigenvalues (λi) between 0 and 0.01mm2/s, concentrations
parameters (κi) between 1 and 10, volumetric fractions between 0 and 1 and
tensor azimuth and zenith angles between 0◦ and 360◦. The second b-value was
set between 100 s/mm2and 10,000 s/mm2by steps of 50 s/mm2. The procedure
was repeated for a two-fascicle DIAMOND model and a three fascicle DIAMOND
model.

Angular separations between the manifolds at the intersection corresponding
to the true model are depicted in Fig. 6.6. This angle increases monotonically
as the second b-value is set further apart from the initial one (b = 1000 s/mm2).
The rate of change of this angle is higher when b-values are lower than the first
one, indicating that acquisitions at smaller b-values may play an important role
in estimating the parameters of a DIAMOND model.
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Figure 6.6: More robust intersections are obtained when the second b-
value is further apart from the first one. The angle between manifolds,
however, remains small. The curves show the relation between the second b-value
(when the first one is 1000 s/mm2) and the angle between the normal vector to the
manifolds at the intersection point. Even for large (b = 10, 000 s/mm2) and small
(b = 100 s/mm2) b-values, the angular separation remains, on average, small (< 14◦).

For multi-fascicle models, we saw in Chapter 5 that the tangency of manifolds
at the intersection point and the positive definiteness of the difference between
the Hessian matrices imply that the true model λi = λtruei is locally the
only intersection between two manifolds. For DIAMOND models, general
claims about the dimension of the intersection between two manifolds are less
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straightforward. This is because solutions to the equation (6.9) cannot be found
other than numerically, to the best of our knowledge. In the next section, we
will investigate the locus of intersection points between two manifolds as well as
the geometry of manifolds around these points when considering a two-fascicle
DIAMOND model. This investigation, as it turns out, will provide important
insights into the estimation of DIAMOND models and the required number of
b-values.

6.3.2 Investigation of the Two-Fascicle DIAMOND Model

Equation (6.9) for N = 2 can be rewritten explicitly as a function λ2(λ1; b)
relating the lowest eigenvalue of the first compartment (λ1) to the lowest
eigenvalue of the second compartment (λ2). Relabeling f1 = f and f2 = 1− f ,
we have:

λ2(λ1; b) =
(
λtrue2 +

κ2

b

)[
1− f

(
bλ1 + κ1

bλtrue1 + κ1

)κ1
]1/κ2

(1− f)−1/κ2 − κ2

b
.

(6.11)
This expression holds because f

(
bλ1+κ1
bλtrue

1 +κ1

)κ1

= fγ1 < 1 due to the condition
on the volumetric fractions f ′i = fiγi.

Equation (6.11) describes a curve (the manifold) in the plane (λ1, λ2) re-
stricted to its upper-right quadrant. We can show that, for any b-value and any
underlying model, λ2(λ1; b) is a decreasing concave function of λ1 for a given
b (Appendix C). This provides an overall characterization of the manifold of
equivalent two-fascicle DIAMOND models. Furthermore, when DWI at two
distinct b-values are acquired, the set of equivalent two-fascicle DIAMOND
models consist, at most, of two points that are the only intersections of the
curves λ2(λ1; b) and λ2(λ1; b′) for b 6= b′ (Proposition 8 in Appendix C).

These findings imply that DWI need to be acquired with at least three
distinct non-zero b-values in order for the estimation of a DIAMOND model
to be well posed. This is a necessary condition on the number of b-values to
be used in the acquisition. For two-fascicle DIAMOND models, this is also an
upper bound if and only if the second intersection of the two manifolds depends
on their b-values (b and b′). Obtaining an analytic expression for the second
intersection is challenging. In our simulations, however, the intersection of
three manifolds was always a single point, suggesting that acquisitions at three
b-values are theoretically necessary and sufficient to distinguish two-fascicle
DIAMOND models.
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Although distinct at all points other than the true underlying model, the
manifolds for three different b-values may remain extremely close (Fig. 6.7).
Albeit well-posed with more than two b-values, the problem of estimating
the parameters of a DIAMOND model may thus remain ill-conditioned. The
manifolds in Fig. 6.7 were generated with λtrue1 = 0.77× 10−3 mm2/s, λtrue2 =
1.3 × 10−3 mm2/s, κ1 = 3.35, κ2 = 2.33, and f = 0.58. At the intersection
between the manifolds corresponding to b = 4500 s/mm2 and b = 500 s/mm2

(left zoom-in on Fig. 6.7), the third manifold (with b = 1500 s/mm2) is offset
by only 0.5% on the λ2-axis. Reliably estimating the parameters of such a
DIAMOND model would thus require λ2 to be estimated with an error lower
than 0.5%. Failing to achieve this accuracy may cause the optimization to
converge to the wrong intersection of the manifolds. In the case of the model of
Fig. 6.7, choosing the wrong intersection would result in an uncertainty on λ1

of 52% and an uncertainty on λ2 of 44%. As for the uncertainty on the fraction
f , it can be computed from equation (6.8).

f ′ = γ1f =
(

λ1 + κ1
b

λtrue1 + κ1
b

)κ1

f,

which, for the model of Fig. 6.7, corresponds to an uncertainty of 29%.
The uncertainty on the model parameters depends on the b-values used for

the acquisition, the true underlying DIAMOND model and the noise on the
DWI. Assessing this uncertainty is critical to analyzing the resulting models and
to compare its value in population studies. In the following section, we present
a simple method to assess the parameter uncertainty based on the equation of
the manifolds of equivalent models.

6.3.3 Manifold-Based Estimation of Parameter Uncertainty

The parameters of the models of the brain microstructure may ultimately be
used as biomarkers of neurological disorders. Assessing the uncertainty of the
parameter estimates is important to evaluate the reliability of inferences based
upon these parameters. Non-parametric methods such as bootstrap methods
are commonly used in this context. However, the knowledge of the geometry
of the manifold of equivalent models provides complementary insights into the
uncertainty of parameter estimates. For instance, this knowledge informs us
that, at a single b-value, the uncertainty on the parameter estimate describes a
manifold even with noise-free measurements. In this section, we develop a simple
method to harness the knowledge of the geometry of the space of solutions
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Figure 6.7: Manifolds of equivalent two-fascicle DIAMOND models. The
manifolds are decreasing concave curves whose curvature increases (in absolute value)
with the b-value b. Three such manifolds obtained with three different b-values
intersect at a single point. However, the manifolds may remain close over a wider
range of parameters. To single out the true underlying model (avoiding convergence
to the second zoomed-in region), a high accuracy in the estimation is required. If this
accuracy is not achieved, large uncertainty on the parameter remains, pertaining to
the geometry of the manifolds.

in estimations of the model uncertainty. This method is complementary to
non-parametric estimates and can be used alongside these methods to provide
rich characterizations of parameter uncertainty.

The uncertainty on the model parameters can be fully described by the
posterior distribution over the models M, that is p(M|y) where y are the
acquired DWI. Insofar as the DWI are independent given a modelM, we have:

p
(
M
∣∣∣y) ∝ p(M)∏

b

p
(
yb

∣∣∣M), (6.12)

where p(M) is a prior over the model parameters and yb is the subset of DWI
measurements acquired at a b-value b. We know that p(yb|M) is equal for
all modelsM along the manifold of equivalent models at a b-value b. In the
noise-free scenario, p(yb|M) would therefore be uniform along the manifold.
Under the influence of noise, the expression of p(yb|M) depends on the noise
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model. Under the Gaussian assumption, for instance, we have:

p(yb|M) ∝ exp

(
− 1

2σ2
noise

Kb∑
k=1

(S(M, gk, b)− yb,k)

)2

,

where S(M, gk, b) is the signal modeled by (6.3). IfM′ lies on the same manifold
of equivalent models asM for a b-value b, we have S(M′, gk, b) = S(M, gk, b).
Therefore, the distribution p(yb|M) has level sets that follow the manifold
of equation (6.9). The distribution p(yb|M) can thus be seen as a stack of
manifolds each assigned with some likelihood value. This distribution therefore
only needs to be estimated in a direction orthogonal to the manifold. An
example of such "stack" is depicted in Fig. 6.8(a-b) for two different noise levels.
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Figure 6.8: Example of posterior distributions over the model parameters
when one, two or three b-values are used in the acquisition (a-b) At a single
b-value, the posterior distribution has level sets that follow the same geometry as the
manifolds, forming a stack of manifolds with different likelihood. (c-f) When multiple
b-values are used in the acquisition, the distributions corresponding to each b-value
are multiplied, decreasing the uncertainty on the parameter estimates. The resulting
posterior distribution may be multimodal, as seen in (d) and (f).
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To estimate the manifold-based uncertainty of the parameter estimates, one
can proceed as follows:

1. Estimate a modelM using all the acquired DWI y as in [98].

2. For each b-value b, estimate the likelihood p(yb|M) (of DWI acquired
with a b-value b) in the direction orthogonal to the manifold.

3. Compute the likelihood p(yb|M) in all directions by propagating the
values obtained in the previous step along the corresponding manifolds.

4. Multiply the likelihoods obtained in Step 3 for all b-values as in (6.12).

5. Multiply the result by the prior over the models p(M).

Figure 6.8(c-f) depicts the result of this process for a two-fascicle DIAMOND
model using DWI at two (c-d) and three (e-f) b-values for two different noise
levels (higher in the top row and lower in the bottom row). Interestingly, the
geometry of the manifolds may lead to a multimodal posterior distribution
(especially visible in Fig. 6.8(f)). This multimodality implies that iterative
optimization algorithms (such as the BOBYQA algorithm [86] used to estimate
the DIAMOND parameters [98]) may converge to the wrong mode of the
posterior distribution. To remove or weaken the confounding modes and single
out the true underlying model, an informative prior could be used. In this
context, a population-informed prior (as used in Chapter 5) would play an
important role even if the estimation problem is ill-conditioned though not
ill-posed. The data used to build this population-informed prior would need to
be of high quality in order to dismiss the confounding modes of the posterior.

If the optimization algorithm is always initialized close to a single mode of
the posterior distribution, it may converge to that mode even with different
bootstrap replicates of the DWI data. Therefore, assessing the parameter
uncertainty from bootstrap methods only may ignore the presence of other
modes in the posterior distribution and mistakingly lead to the conclusion that
uncertainty on the DIAMOND parameters is small. By contrast, the geometry
of the manifold of equivalent models informs us of the presence of other modes
if any. Importantly, this information remains available even if the optimization
converges to the wrong mode, thereby warning that another model possibly
explains the data.

The estimation of the parameter uncertainty can be performed for each voxel
individually, once all DIAMOND models have been estimated. There are voxels
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for which the manifolds at two different b-values only have one intersection,
leading to monomodal posterior distributions and reduced parameter uncertainty.
The uncertainty as computed with the proposed methods only impacts the three
eigenvalues and the volumetric fraction of each compartment of the DIAMOND
model. Because the orientation and concentration parameters κi are not affected
by the ill-posedness problem described in (6.8), these parameters have a zero
manifold-based uncertainty. Combining manifold-based uncertainty estimation
with other uncertainty estimations such as the bootstrap is therefore important
to assess the uncertainty in all the parameters.

6.4 Summary and Discussion

The multi-fascicle model used in the previous chapters assumes that the diffusion
signals arising from each fascicle and from the extra-axonal space are well
represented by a multi-variate Gaussian function. This assumption ignores the
potential heterogeneity in each large scale microstructural environment. This
heterogeneity may be due to meso-scale effects (such as differences in axonal
diameter) and micro-scale effects (such as the distance from water molecules to
the cell membrane). The DIAMOND model has been introduced to account for
the different sources of heterogeneity. This model compares favorably to the
multi-fascicle model in terms of generalization error estimated from 395 DWI.

Similarly to multi-fascicle models, there is an infinite number of DIAMOND
models that all produce the same diffusion signal at a single b-value. These
models describe a manifold of indistinguishable models. However, unlike the
multi-fascicle models, the manifolds at different b-values do not intersect tan-
gentially and may have several intersections. The estimation of the DIAMOND
parameters thus remains ill-posed at two b-values. When more than two b-
values are acquired, the estimation remains ill-conditioned and the posterior
distribution over the model parameters can be multimodal. This multimodality
implies that the optimization algorithm may systematically converge to the
wrong model if it is initialized away from the mode corresponding to the true
underlying model. The uncertainty on the model parameters may therefore be
high even when DWI are acquired at multiple b-values.

The parameters of the multi-fascicle model used in the previous chapters
may have a lower uncertainty than the parameters of the DIAMOND model.
However, the lower uncertainty comes at the expense of an infinite error made on
the concentration parameter κi. Future investigations should indicate whether
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the concentration parameters play a key role in the definition of biomarkers
and, if they do not, whether the other parameters can be reliably estimated
when setting κi →∞.

One way to disentangle the different modes of the posterior distribution of
DIAMOND models would be to include an informative prior over the model
parameters. This informative prior could be based on biological assumptions
(such as minimum and maximum values on the diffusivities) or based on an
external population of subjects scanned with multiple b-values and with a high
signal-to-noise ratio (by repeating and averaging the acquisitions of DWI, for
instance).

The DIAMOND model holds promise to provide better characterization of
the brain microstructure. Its phenomenological account of the heterogeneity
in microstructural environments may prove useful in the definition of early
biomarkers of neurological conditions such as autism spectrum disorders. Our
capacity to assess and characterize the uncertainty in estimates of the DIA-
MOND parameters will be critical to draw reliable inference of abnormalities in
this context.



Conclusions

A framework to study the brain microstructure

The brain function is supported by a complex organization of cellular components
called the brain microstructure. Alterations of the microstructure is thought to
play an important role in the pathogenesis of various neurological disorders. The
brain microstructure can be analyzed non-invasively by microstructure imaging
that relies on multi-fascicle models estimated from diffusion-weighted images. In
this thesis, we proposed that microstructure alterations can be characterized by
conducting population studies from clinically available diffusion-weighted images.
Population studies based on multi-fascicle models required new capabilities to
fulfill unmet needs.

In Chapter 3, we proposed a mathematical framework that enables the
spatial alignment of multi-fascicle models and the construction of an atlas of
the brain microstructure. These capabilities boil down to the definition of
a method to compute weighted combinations of multi-fascicle models and a
similarity metric to detect common multi-tensor landmarks. We proposed a
scheme based on the simplification of Gaussian mixtures to efficiently compute
weighted combinations of multi-fascicle models. As for the similarity metric,
we proposed a generalized correlation coefficient that is invariant under linear
transformations of diffusivities, thereby enabling the alignment of pathological
microstructure images to an atlas based on healthy subjects.

Chapter 3 also proposed a system to perform statistical analysis of features
of the brain microstructure. This system is composed of Fascicle-Based Spatial
Statistics (FBSS) and Isotropic Diffusion Analysis (IDA). FBSS compares
white matter properties on a per-fascicle basis. This property is fundamental
to conducting population studies since altered fascicles may cross unaltered
fascicles in a single voxel. Together, FBSS and IDA enable rich characterization
of microstructural alterations reflected in multi-fascicle models.

In Chapter 4, we proposed a rationale to select between different models
of the brain microstructure and to identify the appropriate granularity of the
model for a given dataset. This selection is based on the minimization of the
generalization error estimated by the 632 bootstrap. In contrast with the F-test
commonly used in this context, minimization of the generalization error is shown



150
Chapter 6. Beyond Multiple Fascicles:

Distribution of Microstructural Environments

to be more robust to image pre-processing and less dependent on the choice of
a specific threshold.

Most available clinical dataset have been acquired with a single b-value
because of time constraints when imaging patients. In Chapter 5, we proposed
a method to estimate multi-fascicle models from these datasets. This problem
is known to be ill-posed. To regularize it, we introduced a population-informed
prior in the maximum a posteriori estimation of the model parameters. This
prior encodes the prior knowledge about the brain microstructure that can be
learnt from other subjects, scanned in a research setting with multiple b-values.
We showed that inference of group differences from the resulting multi-fascicle
models are remarkably close to those obtained when images at multiple b-values
are available.

Altogether, the model selection of Chapter 4, the estimation of Chapter 5,
the registration and statistical analysis of Chapter 3 provide a comprehensive
framework to conduct population studies of the brain microstructure from
clinically available imaging datasets.

Future Directions

In future work, we will apply the developed framework to the widely available
clinical datasets. These studies have the potential to answer pressing questions
about normal development as well as advance research of biomarkers of autism
spectrum disorders. If ASD is, as suggested by biopsies and post-mortem studies,
related to an autoimmune response associated with an increased concentration
of microglial cells and the consequential secretion of cytokines leading to cy-
totoxic response, population studies of the brain microstructure shall reveal
systematic and robust differences in corresponding features of the diffusion
model. If an autoimmune response is not part of the pathogenesis of (all)
autism spectrum disorders, population studies of the brain microstructure shall
invalidate this hypothesis and may point to another specific alteration of the
brain microstructure.

These studies may require the adaptation of the multi-fascicle models to
embrace more complex features of the brain microstructure, such as the het-
erogeneity of microstructural environments. Another recently active field of
research is the characterization of the gray matter microstructure that has long
been ignored due to the absence of a principal fascicle direction along which
water molecules diffuse. Novel diffusion models with increased complexity may
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better characterize the cortical microstructure and reveal patterns of alterations
that point to certain diseases. In these cases, the methods developed in this
thesis to estimate, register and analyze microstructure images will have to be
adapted to the new selected model (may it be DIAMOND or a biophysical
model of the diffusion signal).

Current imaging techniques may not be able to reliably estimate the pa-
rameters of these models of increased complexity from clinical data. However,
fast parallel imaging and increasing resolution of MRI scanner will probably
accelerate the development of such complex models and bring them to the realm
of clinical practice. Furthermore, the brain microstructure can be imaged with
modalities other than diffusion-weighted magnetic resonance imaging. PET
imaging, for instance, enables to map the activity of microglial cells, which may
then be used to detect neuroinflammatory response. Multimodal microstructure
imaging will therefore likely play an ever important role in the identification of
pathological pathways of neurological disorders.

Developments of novel methods to harness the multimodal models of brain
microstructure in population studies will be required. These developments will
aim at answering the very questions asked in this thesis: what acquisitions are
required to estimate the selected models, how can we register and analyze them,
and what insight in the microstructure do they provide? In this context, we
believe that the developments of this thesis will serve as a fertile ground and
provide important guidelines for future innovations.





Appendix A

Sufficient Conditions on the
Generalized Scalar Mapping

In this appendix, we demonstrate how properties (3.14-3.17) are satisfied if con-
ditions (3.18-3.21) are satisfied. We first recall these properties and conditions.
The desired properties on ρ are:

ρ(aR+ bT, S) = ρ(R,S) (A.1)

ρ(R,S) = ρ(S,R) (A.2)

ρ(R,R) = 1 (A.3)

|ρ(R,S)| ≤ 1. (A.4)

and the conditions on m that we proposed to be sufficient for those properties
to hold are:

m(R+ bT, T ) = m(R, T ) + bm(T, T ) (A.5)

m(aR, S) = am(R,S) (A.6)

m(R,S) = m(S,R) (A.7)

|m(R,S)| ≤ nm(R)nm(S). (A.8)

These properties hold for any generalized correlation ρ of the form:

ρ(R,S) = m

(
R−m(R, T )T

nm(R−m(R, T )T )
,

S −m(S, T )T
nm(S −m(S, T )T )

)
. (A.9)

Proposition 1. Property (A.1) is satisfied if conditions (A.5), (A.6) and (A.7)
are satisfied.

Proof We have

ρ(aR+ bT, S) = m

(
aR+ bT −m(aR+ bT, T )T

nm(aR+ bT −m(aR+ bT, T )T )
,

S −m(S, T )T
nm(S −m(S, T )T )

)



154
Appendix A. Sufficient Conditions on the Generalized Scalar

Mapping

From (A.5) and (A.6), and since nm(T ) = 1, we have

m(aR+ bT, T ) = am(R, T ) + bm(T, T ) = am(R, T ) + b,

and therefore,

ρ(aR+ bT, S) = m

(
aR− am(R, T )T

nm(aR− am(R, T )T )
,

S −m(S, T )T
nm(S −m(S, T )T )

)
.

From (A.6) and (A.7), we have

nm(aR)=
√
m(aR, aR)=

√
am(R, aR)=

√
am(aR,R)=

√
a2m(R,R)=anm(R).

Therefore,

ρ(aR+ bT, S) = m

(
a[R−m(R, T )T ]

anm(R−m(R, T )T )
,

S −m(S, T )T
nm(S −m(S, T )T )

)
= m

(
R−m(R, T )T

nm(R−m(R, T )T )
,

S −m(S, T )T
nm(S −m(S, T )T )

)
= ρ(R,S)

�

Proposition 2. Property (A.2) is satisfied if condition (A.7) is satisfied.

Proof This follows directly from the definition (A.9) of ρ(R,S) as a scalar
mapping m between two normalized multi-fascicle models. �

Proposition 3. Property (A.3) is satisfied if conditions (A.6) and (A.7) are
satisfied.

Proof From (A.6) and (A.7), we have nm(aR) = anm(aR) as described in the
proof of Proposition 1. Therefore,

ρ(R,R) = n2
m

(
R−m(R, T )T

nm(R−m(R, T )T )

)
=

1
n2
m(R−m(R, T )T )

n2
m(R−m(R, T )T )

= 1

�

Proposition 4. Property (A.4) is satisfied if conditions (A.6), (A.7) and (A.8)
are satisfied.
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Proof From (A.6) and (A.7), we have

m(aR, bS) = am(R, bS) = am(bS,R) = abm(R,S)

Therefore,

|ρ(R,S)| ≤ 1∣∣∣∣m( R−m(R, T )T
nm(R−m(R, T )T )

,
S −m(S, T )T

nm(S −m(S, T )T )

)∣∣∣∣ ≤ 1

⇔

∣∣∣m(R−m(R, T )T, S −m(S, T )T
)∣∣∣

nm

(
R−m(R, T )T

)
nm

(
S −m(S, T )T

) ≤ 1

⇔
∣∣∣m(R−m(R, T )T, S −m(S, T )T

)∣∣∣ ≤ nm(R−m(R, T )T
)
nm

(
S −m(S, T )T

)
The latter inequality is a particular case of Property (A.8). �





Appendix B

Details on the Studied Population

The population studies presented in Chapter 3 and 5 involve healthy controls,
subjects with TSC and subjects with both TSC and autism. In each case, the
groups were age and gender-matched. The age range in both cases was 0.5 - 25
years.

The controls were either recruited specifically as healthy controls or were
patients seen at the Boston Children’s Hospital who received a clinical MRI for a
reason other than TSC or developmental disability. A pediatric neuroradiologist
reviewed each MRI; all controls had normal MRI results and normal neurologic
examination results. Controls did not undergo neuropsychological evaluation
as part of these studies. Recruitment of subjects and data acquisition were
conducted using a protocol approved by the institutional review board of Boston
Children’s Hospital. All patients fulfilled the clinical criteria for definite TSC, as
defined by the Tuberous Sclerosis Consensus Conference [93]. All patients with
TSC were neurologically examined, and clinical data were obtained during office
visits and from review of medical records. ASD diagnoses were based on clinical
assessment by a board-certified pediatric neurologist, using the Diagnostic and
Statistical Manual of Mental Disorders, Fourth Edition, Text Revision [15].





Appendix C

Manifold of Equivalent
Two-Fascicle DIAMOND Models

Equation (6.11) describes the manifold of indistinguishable DIAMOND models
for a given b-value b:

λ2(λ1; b) =
(
λtrue2 +

κ2

b

)[
1− f

(
bλ1 + κ1

bλtrue1 + κ1

)κ1
]1/κ2

(1− f)−1/κ2 − κ2

b
.

In this appendix, we will demonstrate that this curve is a decreasing concave
function of λ1 and λ2(λ1; b) and λ2(λ1; b′) have at most two intersections that
need to be considered for any b 6= b′. We start with two propositions related to
the first and second derivative of λ2(λ1; b).

Proposition 5. λ2(λ1; b) is a decreasing function of λ1 for a given b.

Proof If we let
u(λ1; b)=̂

bλ1 + κ1

bλtrue1 + κ1
,

then, we have the following expression for the partial derivative of λ2:

∂λ2

∂λ1
(λ1; b) = − κ1fb

κ2 (bλtrue1 + κ1)
(1− f)−1/κ2

(
λtrue2 +

κ2

b

)
(1− fuκ1)

1
κ2
−1
uκ1−1.

We know that κ1 > 1 and κ2 > 1 by definition of the matrix-variate Gamma
distribution, that 0 < f < 1 because f is a volumetric fraction, and that
fuκ1 = γ1f1 < 1. The partial derivative of λ2 is therefore negative and λ2 is a
decreasing function of λ1. �

Proposition 6. λ2(λ1; b) is a concave function of λ1 for a given b.

Proof The second derivative of λ2 with respect to λ1 is:

∂2λ2

∂λ2
1

(λ1; b) = −K (1− fuκ1)
1
κ2
−2
uκ1−2

[(
1− κ1

κ2

)
fuκ1 + κ1 − 1

]
, (C.1)
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with
K =̂

κ1fb

κ2 (bλtrue1 + κ1)2

(
λtrue2 +

κ2

b

)
(1− f)−1/κ2

Because each of its factors is positive, K is positive. We know that fuκ1 < 1
and therefore (1− fuκ1) > 0. Furthermore,

v(λ1; b) =̂
[(

1− κ1

κ2

)
fuκ1 + κ1 − 1

]
> 0

because it is a linear function of fuκ1 ∈ ]0, 1[ and:

v
∣∣∣
fuκ1=0

= κ1 − 1 > 0

v
∣∣∣
fuκ1=1

= κ1 −
κ1

κ2
> 0.

Therefore, the derivative (C.1) is negative and λ2(λ1; b) is concave. �

Now, two distinct decreasing concave functions may have an infinite number
of intersections. To assess the number of intersections between two curves
λ2(λ1; b) and λ2(λ1; b′) that need to be considered as potential solutions of
the DIAMOND estimation problem, we need to investigate the evolution of
the second derivative (C.1) with respect to b. This is the gist of the following
proposition.

Proposition 7. For λ1 > λtrue
1 , ∂

2λ2
∂λ2

1
(λ1; b) is a decreasing function of b.

Proof The partial derivative of ∂
2λ2
∂λ2

1
(λ1; b) with respect to b is:

∂

∂b

∂2λ2

∂λ2
1

(λ1; b) = w(λ1; b)

[
(κ2 + bλtrue2 )κ1 + bλtrue2 (κ1 + bλtrue1 )

+ κ1bfv
−1

(
κ1

κ2
− 1
)

(κ2 + bλtrue2 )uκ1−1κ1(λ1 − λtrue1 )
κ1 + bλtrue1

− κ1bf(κ2 + bλtrue2 )uκ1−1

(
1
κ2
− 2
)

(1− fuκ1)−1 κ1(λ1 − λtrue1 )
κ1 + bλtrue1

+ b(κ2 + bλtrue2 )u−1(κ1 − 2)
κ1(λ1 − λtrue1 )
κ1 + bλtrue1

]
, (C.2)

where w(λ1; b) is a negative function defined by:

w(λ1; b) =̂ − κ1f(1− fuκ1)
1
κ2
−2uκ1−2v

(1− f)1/κ2(κ1 + bλtrue1 )2κ2
.
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The last three terms of (C.2) can be grouped leading to:

∂

∂b

∂2λ2

∂λ2
1

(λ1; b) = w(λ1; b)

[
(κ2 + bλtrue2 )κ1 + bλtrue2 (κ1 + bλtrue1 )

+ b(κ2 + bλtrue2 )
κ1(λ1 − λtrue1 )
κ1 + bλtrue1

u−1v−1 (1− fuκ1)−1

×
{
κ1f

(
κ1

κ2
− 1
)
uκ1 (1− fuκ1)− κ1fu

κ1

(
1
κ2
− 2
)
v

+ (κ1 − 2)v + (κ1 − 2) (1− fuκ1)

}]
. (C.3)

(C.4)

We can show that the expression inside the curly brackets is equal to:{
(1− fuκ1)(κ1 − 1)κ1 + 2(1− fuκ1)(κ1 − 1)v + κ1f

(
2− 1

κ2

)
uκ1v

}

and is therefore positive since u > 0, v > 0, (1− fuκ1) > 0, κ1 > 1 and κ2 > 1.
If λ1 > λtrue1 , then all the terms in (C.3) are positive. Since all these positive
terms are multiplied by the negative w(λ1; b), we have:

∂

∂b

∂2λ2

∂λ2
1

(λ1; b) < 0, ∀ λ1 > λtrue1 .

and therefore ∂2λ2
∂λ2

1
is a decreasing function of b for λ1 > λtrue1 . �

Proposition 7 implies that the curvature of the curves λ2(λ1; b) in the plane
(λ1, λ2) are decreasing when b increases for all λ1 > λtrue1 . Since the curvatures
are negative (Proposition 6), their absolute value increases with the b-value.
Proposition 7 leads to the following important results.

Proposition 8. When DWI at two distinct b-values are acquired, the set of
equivalent two-fascicle DIAMOND models consist, at most, of two points.

Proof Let λ2(λ1; b) and λ2(λ1; b′) be the two manifolds of equivalent DIA-
MOND models obtained by acquiring data at two distinct b-values b, b′ (we let
b > b′). These two curves intersect when their difference (∆(λ1)=̂λ2(λ1; b′)−
λ2(λ1; b)) equals zero. By construction, ∆(λtrue1 ) = 0 because both manifolds
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include the true underlying model. For λ1 > λtrue1 , ∆(λ1) is a convex function
of λ1 since:

∂2∆(λ1)
∂λ2

1

=
∂2λ2(λ1; b′)

∂λ2
1

− ∂2λ2(λ1; b)
∂λ2

1

> 0, ∀λ1 > λtrue1 , (C.5)

due to Proposition 7. Therefore, ∆(λ1) has at most one other zero for λ1 > λtrue1 .
Now, let us assume that ∆(λ1) has additional zeros for λ1 < λtrue1 . If it has a
total of two distinct zeros, then the proposition is proven. If it has more zeros,
let us label them ρ1 < ρ2 < ... < ρm with m ≥ 3. Any ρk for k < m− 1 cannot
be the true underlying model, because if would violate (C.5). Therefore, the
true underlying model may only be (ρm−1, λ2(ρm−1; b)) or (ρm, λ2(ρm; b)).

Now, let some DIAMOND model be characterized by (ρ1, λ2(ρ1; b). Because
it is on the same manifold as (λtrue1 , λtrue2 ), it generates the same diffusion signal
as any of the model on that manifold. Therefore, the manifold of DIAMOND
models equivalent to (ρ1, λ2(ρ1; b)) is the same as the manifold of models
equivalent to (λtrue1 , λtrue2 ) at a b-value b. Since (ρ1, λ2(ρ1; b)) = (ρ1, λ2(ρ1; b′)),
the same is true for a b-value b′. From Proposition 7 with λtrue1

′ = ρ1, there
is therefore a maximum of one intersection with λ1 > ρ1. Since there is no
intersection with λ1 < ρ1 by definition of ρ1, the two manifolds described
by λ2(λ1; b) and λ2(λ1; b′) have at most two intersections, which proves the
proposition. �

Two manifolds spanned from the same true model (with λtrue1 = 0.77 ×
10−3 mm2/s and λtrue2 = 1.3× 10−3 mm2/s) with two intersections are depicted
in Fig. C.1. They illustrate all the propositions demonstrated in this appendix.
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Figure C.1: Manifolds of equivalent two-fascicle DIAMOND models. The
manifolds are decreasing concave curves whose curvature increases (in absolute value)
with the b-value b. The manifolds obtained with two different b-values intersect at
two points, at most.
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