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ABSTRACT

Di↵usion-weighted imaging is sensitive to the movement of water molecules through the tissue microstructure
and can therefore be used to gain insight into the tissue cellular architecture. While the di↵usion signal arising
from simple geometrical microstructure is known analytically, it remains unclear what di↵usion signal arises from
complex microstructural configurations. Such knowledge is important to design optimal acquisition sequences, to
understand the limitations of di↵usion-weighted imaging and to validate novel models of the brain microstructure.
We present a novel framework for the e�cient simulation of high-quality DW-MRI signals based on the hybrid
combination of exact analytic expressions in simple geometric compartments such as cylinders and spheres and
Monte Carlo simulations in more complex geometries. We validate our approach on synthetic arrangements
of parallel cylinders representing the geometry of white matter fascicles, by comparing it to complete, all-out
Monte Carlo simulations commonly used in the literature. For typical configurations, equal levels of accuracy
are obtained with our hybrid method in less than one fifth of the computational time required for Monte Carlo
simulations.
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1. INTRODUCTION

Di↵usion-weighted magnetic resonance imaging (DW-MRI) is a non-invasive, in vivo imaging modality sensitive
to the motion of water molecules through the tissues in the direction of an externally-applied magnetic gradient.
Since tissues act as barriers to the free di↵usion of water molecules, DW-MRI measurements are used to infer
information on their microscopic spatial configuration, a discipline known as microstructure imaging. In a brain
voxel, microstructural parameters of interest include the number and orientation of fascicles of axons, the axons’
mean diameter and the axonal density.

We identify three reasons motivating the study of the e�cient simulation of high-accuracy DW-MRI data.
First, synthetic data is often used as ground-truth information to validate parametric models expressing DW-MRI
signals as a function of the underlying microstructure and of the applied magnetic gradient. Second, knowing the
di↵usion signal arising from complex microstructural geometries would help determine the optimal acquisition
sequence to measure microstructural properties of interest.1 Third, we believe that quantitative microstructure
estimation based on large collections or dictionaries of pre-computed DW-MRI signals could play an important
role in the future. Research in that direction has been undertaken in Ref. 2 for instance, with pre-computed
signals based on a very simple physical model. Considering more accurate, physically realistic DW-MRI signals
could lead to better quantitative microstructure estimation.

We therefore consider physically-relevant models of brain microstructure based on water compartments (typ-
ically shaped like cylinders and spheres to model the brain’s axons and glial cells) rather than phenomenological
models based on simplified analytical expressions of the di↵usion signal, such as multi-tensor models,3 NODDI,4
CHARMED5 or DIAMOND.6 The geometric regularity of these shapes can be exploited by an e�cient analytic
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tool known as the multiple correlation function (MCF) approach.7 The signal contribution due to water outside
these regularly-shaped compartments, referred to as the extra-cellular signal, will be dealt with numerically using
Monte Carlo (MC) simulations, more computationally intensive but able to provide arbitrary precision if the
statistical sampling is su�ciently large.

Section 2 describes the analytic method and the numerical method we selected and how they are combined
through a convenient superposition principle that holds under the slow-exchange hypothesis, which we recall
below. This hybrid method is then validated in Sec. 3 on three simple microstructural configurations based on
cylindrical water compartments by comparing our results to complete MC simulations making no use of analytic
results, generally considered to provide ground-truth.8, 9

2. HYBRID METHOD : THEORY

We focus on the widely-used PGSE sequence characterized by a gradient direction ög, gradient intensity G,
gradient duration � and di↵usion time �. The problem is to find the value of the DW-MRI signal Epgse(⌦)
associated with the di↵usion environment or microstructure configuration ⌦, which is obtained through the
resolution of the Bloch-Torrey PDE in ⌦.10 Sections 2.2 and 2.3 describe, respectively, the analytic and the
numerical method we have selected to solve that PDE and obtain relevant PGSE signals in specific types of
compartments. The slow-exchange hypothesis, recalled below in Sec. 2.1, enables e↵ective combination of the
signals obtained by either method in an accurate and e�cient hybrid simulation procedure, which we describe
in Sec. 2.4.

2.1 Slow-exchange hypothesis

If the di↵usion environment ⌦ can be expressed as the union of K mutually-disjoint compartments ⌦1, . . . ,⌦K

with volumes |⌦1| , . . . , |⌦K | and with perfectly-reflecting boundaries, then the total signal Epgse(⌦) in the
di↵usion environment ⌦ is obtained as

Epgse(⌦) =
KX

i =1

fi Epgse(⌦i ), (1)

where fi = |! i|
|! | and Epgse(⌦i ), for i = 1, . . . ,K, are respectively the volume fractions and the individual signal

contributions of each compartment. This result holds if the T2 characteristic time and the proton density is
uniform across all subdomains ⌦i .

In practice, cell membranes are seldom completely impermeable. However, at the time scale of a DW-MRI
acquisition, typically of the order of 100 ms, we may consider that little molecule transfer between compartments
occurs.9, 11 This is referred to as the slow-exchange limit.

2.2 Multiple correlation function approach

Grebenkov’s multiple correlation function approach7 is a unified mathematical framework for solving the Bloch-
Torrey PDE based on the decomposition of the solution into Laplace eigenfunctions. It yields exact results for
a sequence of applied magnetic gradients with fixed direction and piecewise-constant intensity profile such as
encountered in a PGSE acquisition.

If we consider a microstructural environment ⌦ of typical length scale L0 (for instance, ⌦ could be an
infinitely-long cylinder and L0 its radius), the DW-MRI signal EMCF,pgse (⌦) associated to the PGSE parameters
ög, G,�, � is exactly given by

EMCF,pgse (⌦) =
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where p = DT
L 2

0
and q = �GL0T are two dimensionless numbers with D the di↵usivity of the medium and T being

related to the typical time scale of the PGSE experiment, for instance T = � + �, where the exponentials are



matrix exponentials on the diagonal matrix ⇤ and the symmetric matrix B, both of infinite dimension and where
[á]0,0 denotes the first diagonal element. The matrices ⇤ and B only depend on the geometry ⌦ through the
resolution of the (time-independent) Laplace eigenvalue problem in ⌦, which is simpler than directly solving the
Bloch-Torrey PDE. They must be computed once and for all and can then be used for any PGSE parameters.

In practice, we will only keep the first M terms of the eigenfunction expansion, i.e. the first M lines and
columns of ⇤ and B, with M chosen so that

p�M >> q, (3)

where �i is the i-th diagonal element of ⇤, thus ensuring that the real, damping factor p⇤ dominates the
imaginary, oscillating factor iqB in Eq. (2). This is justified by the strictly monotonous increase of the diagonal
elements of ⇤.12 Note that Eq. (2) can not be further simplified since the matrices ⇤ and B do not commute in
general.

The MCF approach thus yields arbitrarily accurate DW-MRI signals for spatial domains or compartments
in which the time-independent Laplace eigenvalue PDE can be solved, which includes spheres, disks (useful for
infinitely-long cylinders) and finite-length cylinders. Evaluation of Eq. 2 is a matter of milliseconds on commonly
available software such as Matlab.

2.3 Monte Carlo simulations

A Monte Carlo simulation can be seen as a stochastic resolution of the Bloch-Torrey PDE from the microscopic
level. The method chiefly consists in generating the di↵usion trajectories of a number N of water molecules,
also referred to as spins or random walkers. The phase � of each spin due to its motion during the application
of magnetic gradients is computed by integrating the resulting magnetic field over time numerically with some
quadrature rule. This gives the normalized DW-MRI signal associated with each individual spin, e

i! . The
DW-MRI signal is then calculated as the sample mean of the individual contributions.

More specifically, in an implementation such as the Camino Di↵usion MRI Toolkit,13, 14 the duration of the
PGSE sequence is partitioned as 0 = t0, t1, . . . , tT comprising T time increments of fixed duration �t . The
accumulated phase � of each spin is calculated using a rectangle quadrature rule, i.e. at every iteration i =
0, . . . , T ! 1,

�(ti +1 ) = �(ti ) + �f(ti )Gög ár (ti )�t , (4)

where � is the gyromagnetic ratio of protons, f(t) is the normalized temporal profile of the applied gradient,
namely 1, 0 and ! 1 in a PGSE sequence, and r (t) is the simulated random trajectory of a given spin, made of
discrete jumps of randomly chosen direction and of fixed step length Lstep taken as

Lstep =
p

2nD�t , (5)

where n is the spatial dimension of the di↵usion environment ⌦ (e.g. n = 2 for the 2D-disk) and D is the
di↵usivity of the medium in ⌦. The final normalized DW-MRI signal EMC,pgse (⌦) is computed as the sample
mean of e

i!

EMC,pgse (⌦) =
1
N

NX

k=1

e

i! k
. (6)

Monte Carlo simulations thus allow to compute DW-MRI signals in any geometry ⌦ with an accuracy that
increases arbitrarily in the limit �t " 0 and N " +# . However, the computational burden is much heavier
than for the analytic results presented in Sec. 2.2 for instance, especially for di↵usion environments ⌦ of small
typical length scale, for long PGSE sequences or for a high gradient intensity G. In practice, we will thus mostly
resort to MC simulations to compute the signal associated to water molecules in the extra-cellular space, as the
geometry of this environment is generally too complex to use more e�cient analytic results.



2.4 Hybrid formula

Assuming that the di↵usion environment or microstructure configuration ⌦ is made of mutually-disjoint com-
partments ⌦1, . . . ,⌦K of respective volume fractions f1, . . . , fK , that the analytic MCF approach is applicable
in the first Ka compartments and that there is little to no water exchange between the compartments, we can
apply the superposition principle presented in Sec. 2.1 and obtain our total hybrid signal Ehyb (⌦) as

Ehyb (⌦) =
K aX

i =1

fi EMCF (⌦i ) +
KX

i = K a+1

fi EMC (⌦i ), (7)

where the PGSE subscripts have been omitted for clarity and where EMCF (⌦i ) and EMC (⌦i ) respectively repre-
sent the signals obtained by the analytic MCF and numerical MC methods.

3. HYBRID METHOD : VALIDATION

We validate the method presented in Sec. 2 on three types of microstructure configurations based on simple
arrangements of cylinders described in Sec. 3.1. Section 3.2 briefly discusses the choice of parameters for the
MCF method and most importantly for the MC simulations involved in the hybrid signal simulation method.
We compare our results to complete MC simulations, considered to provide ground-truth data, in Sec. 3.3 and
discuss the gain in e�ciency-accuracy trade-o↵ that our method o↵ers compared to complete, traditional MC
simulations in Sec. 3.4.

3.1 Synthetic phantoms of the microstructure

We consider the following brain microstructure configurations for the validation of the presented hybrid method.

¥ Single fascicle of axons with identical radii : Modeled by an infinite array of regularly-packed
cylinders of infinite length and fixed radius r, placed a distance s from each other leading to a fraction
fin of intra-axonal space, i.e. the volume fraction occupied by the cylinders (see Fig. 1a). Here we choose
r = 3 µm and adjust s so that fin $ 0.877.

¥ Single fascicle of axons with varying radii : Modeled by 100 infinitely-long, parallel cylinders of
varying radii packed in a square region of size l and periodically repeated to infinity (see Fig. 1b). The
radii are drawn from a Gamma distribution �(a, b), as suggested in Ref. 8 for its biological relevance. Here
we select a shape parameter a = 16.275 and a scale parameter b = 2.86 %10! 6 µm, corresponding to a
distribution mean µr = ab = 0.465 µm and standard deviation �r =

&
ab = 0.115 µm. The 100 cylinders

are packed into a square of side length l = 10.45 µm through a trial-and-error algorithm implemented in
Camino.13 The obtained radii lead to fin = 0.65 and range from rmin = 0.243 µm to rmax = 1.025 µm.

¥ Crossing fascicles of axons with identical radii : Modeled by two identical arrays of parallel cylinders
characterized by the parameters r and fin such as described above crossing in interleaved planes at an angle
✓ (see Fig. 2a). Here we set ✓ = "

4 , r = 1 µm and adjust s so that fin $ 0.71.

In all three cases, the cylindrical compartments representing the axons of the brain are the water compartments
wherein the analytic MCF method is applicable. The analytic formula (2) needs to be computed once in the first
case (all cylinders are identical), 100 times in the second case and twice in the last case (one for each orientation).
Note that for infinitely-long cylinders such as presented here, the di↵usion is free and thus Gaussian along the
axis of the cylinders and the MCF formula needs only be used for the components of the gradient that are
perpendicular to the cylinders’ axis.5

The extra-axonal water compartments present more complex geometric organization and will require a nu-
merical MC simulation for each type of microstructure.

3.2 Selection of simulation parameters

Special care must be taken in selecting appropriate parameters both for the reference, ground-truth, complete
MC simulations and for the hybrid signal simulations in order to obtain accurate results.



3.2.1 Parameters of the reference Monte Carlo simulations

As will be further discussed in Sec. 3.4, the statistical error of MC simulations typically decreases as 1/

&
N and

a large enough N is therefore required. In the case of single fascicles with either fixed or varying radii, we select
values of NMC random walkers found in the literature through signal mean and variance analysis for similar
microstructure configurations, as reported in Tab. 1. We slightly increase it for the crossing fascicle configuration
to account for a less regular di↵usion environment.

The number of time steps T determines the value of the time increments �t and of the fixed step length Lstep

defined in Eq. 5. Its value is therefore mainly impacted by the water compartments of smallest size, which is
a major drawback of MC implementations with fixed step length. The value of �t should also be reduced (i.e.
T increased) in the presence of magnetic gradients of high intensity G for the quadrature in Eq. 4 to remain
relevant. We either took values found in the literature or computed it so as to make Lstep comparable to the
typical length scale of the di↵usion environment.

3.2.2 Parameters of the hybrid signal simulations

We set the truncation parameter of the MCF method to M = 60 in order to ensure nearly perfect signal accuracy
in all three experiments, as discussed in Ref. 7.
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(a) Hexagonal packing of cylinders of Þxed radius r with
cylinder separation s leading to an intra-axonal volume frac-
tion f in .

(b) Radius heterogeneity modeled by cylinders with radii
drawn from a Gamma distribution and packed into a square
region repeated to inÞnity.

Figure 1: Single fascicles of axons modeled as regularly-packed parallel cylinders. View in the xy-plane
of two geometric models for single fascicles of axons based on cylinders of infinite length aligned with the z-axis.
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(b) All gradient directions ög are parametrized by the elevation angle
! from the fasciclesÕ plane, and the angle" between their projection
into the fasciclesÕ plane (dashed arrow) and the bisectoröb.

Figure 2: Crossing fascicles modeled as arrays of axons crossing in interwoven planes. One fascicle is
directed along the z-axis and the second is rotated an angle ↵ about the y-axis.



Since the random walkers are initially uniformly distributed across the di↵usion environment, the MC sim-
ulation associated to the spins in the extra-axonal space required in the hybrid method could theoretically be
run with a number NH $ (1 ! fin )NMC , if fin represents the fraction of space inside the cylinders. We allow
potentially better precision for the extra-axonal signal by taking slightly higher values of NH , as reported in
Tab. 1.

The value of T is left untouched since it is apparent in Figs. 1a, 1b and 2a that the di↵usion areas of smallest
length scale are located in the extra-axonal space, which is where the MC simulations are executed in the hybrid
method.

Table 1: Simulation parameters for the complete MC simulations and the extra-axonal MC simu-
lations of the hybrid method. Note that for the MC simulations of the hybrid method we can a↵ord to take
NH ' (1 ! fin )NMC , thus increasing quality, while maintaining NH ( NMC , thus decreasing the simulation cost.

Microstructure configuration NMC NH (1 ! fin )NMC T

Single fascicle identical radii 100 00014 20 000 12 300 100014

Single fascicle varying radii 160 0008 62 000 56 000 50008

Crossing fascicles 110 000 35 000 31 900 1200

3.3 Comparison to Complete Monte Carlo simulations
We choose to compute signals associated to PGSE parameters distributed over HARDI shells15 as these allow
convenient representation of the obtained normalized signal E(⌦) = S/S0 (where S0 is the detected signal in the
absence of applied gradients). For the two single-fascicle configurations, the normalized signal can be plotted in
1D as a function of the dot product between the axis of the axons n and the direction ög = g/G of the applied
gradient, as depicted in Figs. 3 and 4. In the case of crossing fascicles, a 2D representation is necessary in terms
of the elevation angle ↵ and the angle � from the fascicles’ bisector, as illustrated in Figs. 2b and 5. All the
HARDI shells used have 90 gradient directions and b-values indicated on the graphs.

It can be observed in Figs. 3, 4 and 5 that the results obtained with the hybrid method, in less computation
time, is nearly impossible to distinguish from the traditional, all-out Monte Carlo simulations.

As expected, signal maxima seem to occur in directions where the di↵usion as ”seen by the gradient” is most
restricted, i.e. when n áög $ 0 in the case of single fascicles and in the direction normal to the crossing fascicles’
plane, i.e. when ↵ $ 0, in the third microstructural configuration. In the crossing fascicles’ plane (↵ = 0),
maxima occur when the applied magnetic gradient is perpendicular to either one of the fascicles.

3.4 Precision-e!ciency gain
We proceed to a simple variance analysis of the signal obtained by complete MC simulations and the hybrid
signal presented above to analyze the gain in precision-e�ciency trade-o↵ o↵ered by the use of analytic results
along with MC simulations.

If we note Wk = e

i! k the random variable representing the (non-normalized) signal contribution of spin k,
where �k is the accumulated phase shift, then the hybrid signal SH is the random variable

SH = fin Sin + fex
1

NH

NX

k=1

Wk ,

where NH is the number of spins used to simulate the extra-axonal signal and where Sin is the value obtained
with the MCF method assumed applicable for the intra-axonal signal and considered deterministic and exact.
The spins’ trajectories (and any function thereof) are independent by definition, and we further assume that an
initial uniform distribution of spins across the domain ensures that they are identically distributed, which allows
to compute the variance �

2
H of SH as a function of the variance �

2
W of all the random variables Wi

�

2
H =

f

2
ex �

2
W

NH
.
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Figure 3: Hybrid method yields ground-truth results for identical cylinders. Total signal of an array
of parallel cylinders obtained by complete MC simulations, considered exact, and by our hybrid combination of
MC and MCF methods. The asterisks correspond to the free-di↵usion signals. The two curves for each b-value
are barely distinguishable.
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Figure 4: Hybrid method yields ground-truth results for Gamma-distributed cylinders. Total signal
of so-called Gamma-distributed cylinders obtained by complete MC simulations (dashed curves, considered exact)
and our hybrid approach (solid curves). The asterisks correspond to the free-di↵usion signals. The two methods
are again almost perfectly identical.

Defining the precision p as the inverse of the standard deviation, we obtain the precision pH associated with the
hybrid signal

pH =
&

NH

fex �W
, (8)

while the precision pM of a complete MC simulation performed with a total of NM spins can be written as

pM =
&

NM

�W
, (9)

assuming intra-axonal and extra-axonal spin phases are identically distributed.

We can now analyze the gain in precision-e�ciency trade-o↵ through three di↵erent situations, illustrated in
Figure 6.

¥ Fixed di"usion environment. For a given intra-axonal volume fraction fin where the MCF method
is applicable, we predict the simulation times tH and tM of the two methods as a function of the desired



Figure 5: Hybrid method yields ground-truth results for crossing cylinders. Signal of fascicles crossing
at an angle ✓ = ⇡/4 $ 0.785 rad, obtained by complete MC simulations, considered exact, and our hybrid
approach. The surfaces are obtained by smooth interpolation of the actual data points, in black (90 points per
shell per method). The MC and hybrid surfaces are almost indistinguishable, except near � $ 1.5 rad. The black
marker at (↵,�) = (0, #

2 ) corresponds to the presence of fascicles either side of the bisector while the red marker
at (↵,�) = (0,

"
2 ! #

2 ) indicates the direction perpendicular to either fascicle in the fibers’ plane (↵ = 0), where
a signal maximum seems to occur.

precision p as

tH = t0NH = t0�
2
W f

2
ex p

2

tM = t0NM = t0�
2
W p

2
,

(10)

where the common factor t0 accounts for the number of time steps and of PGSE sequences. There is
therefore a gain factor f

2
ex for the hybrid method, which is non-negligible for typical values fex $ 0.3,

leading to a reduction of 81% in computation time for the same precision, as shown in Figure 6a.

¥ Fixed precision. Figure 6b illustrates Eq. (10) as a function of the intra-axonal volume fraction fin , for
a given precision. We see the advantage of using the hybrid method, especially for typical microstructural
values fin ' 0.5.

¥ Fixed simulation time. If we set NH = NM = N , then the precision pM of a MC simulation will remain
constant irrespective of the intra-axonal volume fraction fin , i.e. pM =

"
N

$W
, while the precision pH of the

hybrid method evolves as

pH =
&

N

�W (1 ! fin )
, (11)

tending to the (nearly) infinite precision of the MCF approach when there is no extra-axonal space, as
presented in Figure 6c.
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Figure 6: Hybrid method leads to gain in precision-e!ciency trade-o" for commonly-used mi-
crostructural conÞgurations. The reference values t0 and p0 include factors common to both methods, such
as the number of PGSE sequences or the number of time steps used. These results hold when part of the signal
arises from geometric compartments where the MCF method is applicable.

4. CONCLUSION

Various configurations of the cerebral tissue microstructure can be adequately represented as an arrangement
of cylindrical and spherical compartments. Given the availability of closed form formulas for the di↵usion
signal arising from such simple compartments, computationally-intensive MC simulations are not required for
the simulation of signal arising from water molecules inside these compartments. Conversely, no analytical
expression can accurately represent the di↵usion signal arising from extracellular water molecules whose di↵usion
is hindered by tissue barriers. For those water molecules, MC simulation is a reliable approach to predict the
di↵usion-weighted MRI signal. This paper introduced a hybrid method for the simulation of di↵usion-weighted
MRI signal arising from both intra-cellular and extra-cellular water molecules by taking advantage of analytical
solutions for intra-cellular compartments and MC simulation for extra-cellular compartments. This approach
leads to an important decrease in simulation time for an identical desired precision, especially as the extra-cellular
volume fraction decreases. For typically-encountered intra-axonal volume fractions of about 0.7, less than a fifth
of the simulation time is necessary. Conversely, the presented method leads to superior precision levels for a
given simulation time. This novel hybrid approach can therefore be used for simulations of di↵usion-weighted
MRI signals in a large number of microstructural configurations.
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