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ABSTRACT

Multi-fiber models have been introduced to leverage the ac-
curacy of the diffusion representation in crossing fiber areas.
The improved accuracy may, however, be impaired by poor
processing of the multi-fiber models. In particular, interpolat-
ing multi-fiber models proves challenging, while it is a per-
vasive and recurrent task in many processes. The error ac-
cumulated from iterating a poor interpolation may yield sig-
nificantly corrupted global results. In this paper, we propose
an interpolation scheme based on gaussian mixture simplifi-
cation and demonstrate its benefits over a heuristic approach
in terms of spatial normalization and tractography results.

Index Terms— Multi-Fiber Models, Interpolation, Trac-
tography, Spatial Normalization, Diffusion Tensor Imaging

1. INTRODUCTION

Brain diffusion tensor imaging (DTI) enables the visualiza-
tion and characterization of fiber tracts in the white matter.
A classical limitation of DTI is its incapacity to represent
complex structures such as crossing fibers [1]. To overcome
this limitation, novel model-based and model-free methods
to analyze the diffusion signals have emerged (see [1], chap-
ter 2 for a detailed review). Multi-fiber models (MFM) are
of particular attractiveness since they allow the computation
of diffusion parameters for each fiber bundle independently.
This property is of central interest for tractography and fiber
integrity assessment [2]. MFM represent the diffusion as a
gaussian mixture model:
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where b is the b-value at which the signal is acquired, g is
the gradient direction, Diso is the diffusivity of free water,Di

are the anisotropic diffusion tensors and fi are the relative
volumetric occupancy. In this model, water molecules are as-
sumed to be in one of the compartment with some probability
fi. These models can then be used in various applications,
including tractography [3, 4].

However, the structure of MFM makes it challenging
to perform basic tasks such as interpolation. The difficulty
mainly comes from the arbitrary assignment of a compart-
ment to the tensors (e.g. for a two-tensor model, the parame-
terization (f1, D1, f2, D2) is equivalent to (f2, D2, f1, D1)).
A simple generalization of single tensor interpolations is
therefore illicit. For this reason, authors have performed the
interpolation on the raw diffusion-weighted sequences [4]
or they have defined some heuristics to cluster the tensors
into groups on which single tensor interpolation can be per-
formed [3]. One such heuristics would be to define the
clusters based on the principal eigenvector of each compo-
nent. This heuristic method may lead to ill-posed selection
and arbitrary choices when different voxels contain different
number of tensors.

In this paper, we present an interpolation method which
fully accounts for the structure of multi-fiber models, based
on recent developments in gaussian mixture simplification.
The remaining of this paper is organized as follows. Section 2
introduces the theory of gaussian mixture simplification and
applies it to multi-fiber models. Section 3 then presents the
results in terms of tractography and spatial normalization. Fi-
nally, Section 4 concludes the paper.

2. GAUSSIAN MIXTURE SIMPLIFICATION

The central idea of the proposed method is to define a com-
plete gaussian mixture containing the information of all the
initial mixtures and to subsequently reduce this model to a
mixture of the same order as the initial data. This section
introduces the theory of gaussian mixture simplification and
then applies it to multi-fiber model simplification.

2.1. General Theory

Gaussian mixture simplification (GMS) has been developed
in distribution-based soft clustering where a mixture models
needs be learnt from a set of distributions. A seminal paper
in this field is [5], which has been extended in [6] for the
particular case of gaussian mixtures.



Let Gi(x) = N (x|µi,Σi) be a multivariate gaussian and

pN (x|G) =
N∑
i=1

αiGi(x)

be a gaussian mixture model of N components. Simplify-
ing this gaussian mixture consists in defining a new gaussian
mixture of order K ≤ N :

pK(x|R) =
K∑
j=1

fjRj(x),

where Rj(x) = N (x|mj ,T j) is another set of multivariate
gaussians. This simplification is based on the minimization
of some energy function:

p∗K(x|R) = arg min
pK(x|R)

D(pN (x|G), pK(x|R)).

In information theoretic approaches, the energy function is
related to the amount of information lost when approximating
pN by pK . In [6], the cumulative differential relative entropy
is used, that is the weighted sum of the differential relative
entropies between the gaussian components in pN and their
best representative component in pK . In other words,

D(pN (x|G), pK(x|R)) =
K∑
j=1

∑
i:πi=j

αiD(Gi||Rj), (2)

where the πi’s are latent variables indicating which compo-
nent Rj best represents Gi. An expectation-maximization
scheme can efficiently minimize (2). In a first step, the N
components are assigned to one ofK clusters and, in a second
step, the parameters of the representatives Rj are optimized
in each cluster.

Davis and Dhillon [6] showed that the optimization of the
parameters of the Rj’s can be carried out in closed form once
the cluster assignments are known. We have:

mj =
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i:πi=j

αiµi∑
i:πi=j

αi
, (3)

Tj =

∑
i:πi=j

αi
(
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In the clustering step,Gi is assigned the cluster j such thatRj
is the closest to Gi in terms of differential entropy. Alternat-
ing these two steps converges to a gaussian mixture model of
K elements that minimizes (locally) the cumulative differen-
tial entropy. The mixture weights fj are naturally equal to the
sum of the initial weights αi in the clusters: fi =

∑
i:πi=j

αi.

2.2. Multi-Fiber Model Simplification

The problem of interpolating between MFM can be inter-
preted as a particular case of GMS by defining and simplify-
ing a complete mixture comprising all the neighboring com-
ponents. Let M be the number of neighbors from which we

want to interpolate the mixture at a floating location x (typ-
ically, M = 8) and let Mm be the gaussian mixture at the
neighbor voxel m (1 ≤ m ≤M ):

Mm =
Nm∑
i=1

αm,iN (g|0, D−1
m,i).

Each component of this mixture has a zero mean and a covari-
ance matrix equal to the inverse of the diffusion tensor Dm,i.
The number of components Nk may vary from one voxel to
the other. The complete mixture model is then:

pN (g|M) =
M∑
m=1

wm

Nm∑
i=1

αm,iN (g|0, D−1
m,i).

with weightswm defined by classical scalar interpolation (e.g.
trilinear). The number of components in the final mixture at
location x depends on our choice of model. In this paper, we
chooseK = maxmNm. GMS is used to reduce the complete
model with

∑M
m=1Nm components to a model with K com-

ponents. Since tensors in DTI have zero mean, the update
rules (3) and (4) are simplified. The former can be ignored
and the latter amounts to computing the weighted average of
the initial covariances in each cluster. As for the cluster as-
signment, it is carried out by minimizing the Burg matrix di-
vergence between the covariance matrices, i.e.

πi = arg min
j

D(Gi||Rj) = arg min
j

B(D−1
i , Tj)

where the Burg matrix divergence for 3×3 matrices is defined
as B(A,B) = Tr(AB−1)− log |AB−1| − 3.

One may be concerned about the swelling effect stem-
ming from averaging the covariance matrices in (4). Although
this effect reflects the intrinsic lack of knowledge about the
diffusion signal at the considered location, it can be unde-
sired, depending on the application [7]. This entails us to
define a log-euclidean version of the GMS described above
as it was defined for single-tensor interpolation [8]. This is
achieved by replacing the covariance matrices by their ma-
trix logarithm prior to performing GMS. The update of the
covariance matrices now reads:

log Tj =

∑
i:πi=j

αi logD−1
i∑

i:πi=j
αi

.

Interestingly, since logA−1 = − logA, the multi-fiber inter-
polation in the log-domain, reduces to the single tensor inter-
polation in areas where a single component is present in each
neighboring voxel (Nk = 1) and K = 1. This is not the
case in the direct domain, since GMS averages the covariance
matrices rather than the tensors.

The EM optimization in GMS converges to a local mini-
mum of the cumulative differential entropy. An initialization
step is thus required. In this paper, we initialize the clusters
by spectral clustering [9] with the cosine similarity between
the primary eigenvectors of each tensor as a similarity matrix.



Fig. 1. GMS interpolation better preserves the information con-
tained in an original multi-fiber model. The results here compares
the original image (top) with the result projected backward using
GMS (middle) and heuristic interpolation (bottom). A zoom of the
yellow box shows how GMS better preserves areas with multiple
fibers. In the zoomed version, fractions are encoded as the trans-
parency of the ellipsoids.

3. APPLICATIONS

In this section, we present the results of the GMS inter-
polation compared to the heuristic interpolation presented
in the introduction. The interpolation was applied in two
contexts: spatial normalization and two-tensors tractogra-
phy. Ten multi-fiber DTI (resolution: 1.8×1.8×2.4mm3) of
different subjects with two anisotropic and one isotropic com-
partments were estimated using the method described in [2].
The log-euclidean version of GMS was used and compared
with the log-euclidean heuristic interpolation.

3.1. Spatial Normalization

To assess the quality of the interpolation in terms of spatial
normalization, we sequentially apply a spatial transform and
its inverse to the data and compare the final image with the
initial one. This tells us the amount of information lost in the
process. The transform used here is obtained by registering
a T1-weighted image of each subject to an atlas. The results
show that GMS interpolation better preserves the information
contained in the original image (Fig. 1).

By selecting the tensor beforehand and subsequently in-
terpolating single tensor fields, the heuristic interpolation
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Fig. 2. GMS (top) prevents confounding the fiber bundles in trac-
tography, as compared with heuristic interpolation (bottom). Results
are shown for 5% (left) and 15% (right) gaussian noise.

tends to lose information in areas where both single tensor
and multiple-tensors are present, as shown by the yellow box
in Fig. 1. In contrast, by evaluating a global model at once,
GMS preserves as much information as possible.

To assess the gain in accuracy obtained by GMS in-
terpolation, a voxel-wise distance between the original data,
(f0, F0, f1, F1) and the backward projected result, (g0, G0, g1, G1)
was computed for all ten multi-fiber brain DTI as:

min
(f0 + g0

2
||F0 −G0||2 +

f1 + g1
2
||F1 −G1||2,

f0 + g1
2
||F0 −G1||2 +

f1 + g0
2
||F1 −G0||2

)
, (5)

The mean distance was 27.2%(±.05%) of the mean tensor
norm for GMS and 29.4%(±.1%) for the heuristic interpo-
lation. When restricted to areas with multiple tensors, the
difference is larger with a mean distance of 22.3%(±.2%)
for GMS and 38.0%(±.4%) for the heuristic interpolation.
A one-tail t-test performed on the voxel-wise difference be-
tween the GMS interpolation error and the heuristic interpo-
lation error showed that, on average, GMS performs signifi-
cantly better (p < 10−6 for each subject individually).

3.2. Tractography

In the context of tractography, interpolation is required to es-
timate the value of the MFM at the floating end of the tract
being constructed. We applied and compared both interpo-
lation schemes in a probabilistic tractography algorithm [3].

3.2.1. Synthetic Data

Tractography was performed on a digital phantom made of
two crossing fiber bundles (Fig. 2) under the influence of
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Fig. 3. GMS (•) significantly increases the number of tracts cor-
rectly identified (true positive rate, left) and reduces the proportion of
confounded tracts (false positive rates, right) as compared to heuris-
tic interpolation (◦). The plot represents the mean rate for each noise
level. A 95% confidence interval of the difference in these statistics
between GMS and heuristic interpolation is depicted by vertical bars.

noise. Symmetric matrices of gaussian noise (20 repetitions
of each noise level between 1%-15% of the mean Frobenius
tensor norm) were added independently to the MFM compart-
ments in the log-domain. The results reveal more confounds
in the fiber bundles when heuristic interpolation is used than
when GMS is used (Fig. 2). In terms of the areas they connect
(A,B,C,D, see Fig. 2), the true positive tract rates (number
of correctly identified tracts over number of true tracts in the
phantom) and the false positive rates (number of confounded
tracts over number of true tracts) were computed. On aver-
age, for any noise level, GMS significantly increases the true
positive rates (p < .03) and decreases the false positive rates
(p < .001), as seen on Fig. 3.

3.2.2. Clinical Data

The performance of the interpolation schemes were compared
in the context of a clinical application: the visualization of the
optic radiation, a set of axons carrying visual stimuli to the vi-
sual cortex. These neural pathways present areas of crossing
fibers whose disentanglement is critical to visualize particu-
lar structures such as the Meyer’s loop. Performing proba-
bilistic tractography with both interpolation schemes demon-
strates that GMS is better at unravelling tracts (Fig. 4).

4. CONCLUSION

This paper has introduced a novel approach to the interpola-
tion of multi-fiber models. Experiments on synthetic and real
world data demonstrate the benefits of this approach over a
more heuristic method. In particular, spatial normalization
presents a lower information loss and tractography reveals
more subtle structures and yields fewer spurious tracts. We
believe that gaussian mixture simplification (GMS) should be
used every time interpolating between multi-fiber models is
required, since small interpolation errors tend to accumulate
to corrupt the global results in practical contexts.

Fig. 4. GMS (top) better unravels neural pathways in the presence
of crossing fibers than heuristic interpolation (bottom). The zoomed-
in area is the Meyer’s loop. The loop is not clearly visible at the
bottom, due to the poor interpolation in crossing fiber areas. Note
also the increased number of spurious tracts on the bottom image.
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