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Abstract. Diffusion tensor imaging cannot represent heterogeneous fas-
cicle orientations in one voxel. Various models propose to overcome this
limitation. Among them, multi-fascicle models are of great interest to
characterize and compare white matter properties. However, existing
methods fail to estimate their parameters from conventional diffusion
sequences with the desired accuracy. In this paper, we provide a ge-
ometric explanation to this problem. We demonstrate that there is a
manifold of indistinguishable multi-fascicle models for single-shell data,
and that the manifolds for different b-values intersect tangentially at
the true underlying model making the estimation very sensitive to noise.
To regularize it, we propose to learn a prior over the model parameters
from data acquired at several b-values in an external population of sub-
jects. We show that this population-informed prior enables for the first
time accurate estimation of multi-fascicle models from single-shell data
as commonly acquired in clinical context. The approach is validated on
synthetic and in vivo data of healthy subjects and patients with autism.
We apply it in population studies of the white matter microstructure
in autism spectrum disorder. This approach enables novel investigations
from large existing DWI datasets in normal development and in disease.
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1 Introduction

Diffusion tensor imaging is unable to represent the signal arising from crossing
fascicles. Various approaches have been proposed to overcome this limitation.
Among them, generative models such as multi-tensor models [2,3] seek to rep-
resent the signal contribution from different populations of water molecules.
Based on biological modelling, they are of great interest to characterize and
compare white-matter properties. However, estimating their parameters from
conventional diffusion data has proven inefficient.

Recent works have suggested that part of this inaccuracy is explained by
the ill-posedness of the problem and not only by the imaging nuisance [3,4]. To
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Fig. 1. (a) Infinitely many models produce the same diffusion signal at a given b-value
and form a manifold. The manifolds for different b-values intersect at the true under-
lying model. (b) For N -fascicle models (here N=3), manifolds are (N−1)-dimensional
hypersurfaces that intersect tangentially, making the estimation sensitive to noise. (c)
The population-informed prior assigns different probabilities to models on the manifold.

regularize the estimation of models with a single anisotropic tensor, elaborate
spatial priors have been proposed [2], and it was shown that acquiring additional
b-values improves the analysis of isotropic fraction [1]. For N -tensors, it was
proposed to fix the tensor eigenvalues [4], solving the ill-posedness problem but
reducing the amount of microstructural information contained in the model.
No method has proposed to regularize the estimation of an N -fascicle model
while keeping all its degrees of freedom. Furthermore, there is a strong need for
a strategy to estimate multi-fascicle models from conventional single-shell data
due to their wide availability in clinical setting. Section 2 analyzes the estimation
problem from a geometric point of view. Section 3 develops an estimator based on
a prior informed by an external population of subjects. Section 4 presents results
and Section 5 concludes. Conclusions about estimating an N -tensor model can
be applied to all generative models that include a multi-tensor as part thereof.

2 Manifolds of Equivalent Models at a Given B-Value

A multi-fascicle model is represented as a mixture of single fascicle models. In the
multi-tensor formalism, the generative model for the formation of the diffusion
signal S for a b-value b and a gradient direction g is:

S = S0

N∑
i=1

fie
−bgTDig, (1)

where Di and fi are the tensor and the volumetric fraction of fascicle i. Since
γie
− log γi=1, all multi-fascicle models with fractions γifi and tensorsDi+ log γi

b I
produce the same signal:

S = S0

N∑
i=1

γifie
−bgT

“
Di+

log γi
b I

”
g
, with the constraint

N∑
i=1

γifi = 1. (2)



The tensors remain positive definite as long as γi > e−bλ
min
i , where λmin

i is the
lowest eigenvalue of Di. Each of these models is uniquely identified by its vector
(λmin

1 , . . . , λmin
N ). The set of all models respecting Equation (2) is a manifold of

dimension (N − 1) defined by the implicit equations (we let λi := λmin
i ):

λi = λtrue
i + 1

b log (γi) for i = 1, . . . , N∑N
i=1 γifi = 1,

(3)

where (λtrue
1 , . . . , λtrue

N ) is the true unknown model (Fig. 1(a)). Since these equa-
tions depend on b, so will the manifold. Acquiring diffusion images at different
b-values amounts to defining different such manifolds. Let us investigate how
those manifolds intersect at the point of interest λi = λtrue

i . The explicit equation
of the hypersurface λN (λ1, . . . , λN−1) obtained by eliminating the γ’s between
equations (3) is:

λN (λ1, . . . , λN−1) = λtrue
N +

1
b

log

(
1−∑N−1

i=1 fie
b(λi−λtrue

i )

fN

)
. (4)

The normal vector to the hypersurface is η =
(
∂λN
∂λ1

, . . . , ∂λN
∂λN−1

,−1
)

. Its k-th
component evaluated at the true model is:

ηk

∣∣∣∣
λi=λtrue

i ,∀i
=
∂λN
∂λk

∣∣∣∣
λi=λtrue

i ,∀i
=
−fk
fN

. (5)

Remarkably, this normal vector (and thereby the tangent hyperplane) does not
depend on b at the point of interest. In other words, at the first-order approxima-
tion, the manifolds at all b-values coincide locally, explaining the high sensitivity
to noise encountered when optimizing the parameters of a multi-fascicle model
(Fig. 1(b)).

At the second-order approximation, the manifold is characterized by the Hes-
sian matrix of λN (λ1, . . . , λN−1):

H

∣∣∣∣
λi=λtrue

i

=
−b
f2
N

(
f̃ f̃T + fNdiag(f̃)

)
,

where f̃ = [f1, . . . , fN−1]T . The difference between the Hessian matrices at two
different b-values, b and b′ > b, is positive definite since, for all x 6= 0, we have

xT (H(b)−H(b′))x =
b′ − b
f2
N

(
(f̃Tx)2 + fNx

Tdiag(f̃)x
)
> 0. (6)

Therefore, there exists no direction x along which the two manifolds have the
same curvature. Consequently, the true model is locally the only intersection of
all manifolds. Given the difference (6), it appears that a wider range of b-values
leads to a larger difference between their manifolds, which should in turn improve
the accuracy of the estimation (ignoring the potential impact of b on noise).

When an isotropic compartment fisoe−bDiso is added to the model, one can
show that the above development remains valid with an unchanged N if Diso is
known and considering an (N+1)-fascicle model if Diso needs also be optimized.



3 Posterior Predictive Distribution of the Parameters

While all models of (3) are equally compatible with the observed DWI at a given
b-value, they are not all as likely from a biological point of view. This knowledge
can be learnt from available observations at several b-values of a fascicle i in
mi subjects Fi = {f0

i , . . . , f
mi
i }, Di = {D0

i , . . . ,D
mi
i }, and incorporated in the

estimation as a prior over the parameters (fi,Di) (Fig. 1(c)). If the effect of the
fascicle properties on partial voluming is negligible, and if the properties of one
fascicle are independent of those of another, then the prior can be expressed as:

Pf,D(f ,D;θ) = Pf(f ;θf )
N∏
i=1

PDi(Di;θi). (7)

The fractions are not independent since they sum to 1. However, we assume that
any fraction fi is independent of the relative proportions of others fj/(1 − fi).
This neutral vector assumption naturally leads to the Dirichlet distribution:

Pf(f ;α) =
1f∈S
B(α)

N∏
i=1

fαi−1
i , where S =

{
x ∈ RN : xi > 0,

N∑
i=1

xi = 1

}
. (8)

To prevent negative eigenvalues of the tensors, the prior knowledge about Di can
be described as a multivariate Gaussian distribution over their logarithm [5]:

Li = log Di ∼ N (Mi,Σi) . (9)

In general, Σi has 21 free parameters, which may overfit the usually small train-
ing dataset. For DTI, it is suggested in [5] to constrain Σi to be orthogonally
invariant, imposing the following structure that depends only on σi and τi:

Σi = σ2
i

(
I3 + τi

1−3τi
13 0

0 I3

)
, B(σi, τi).

This structure yields a closed-form solution for the maximum likelihood [5]:

M̂ i = L̄i =
1
mi

mi∑
k=1

Lki and Σ̂i = B(σ̂i, τ̂i), (10)

with τ̂i =
−∑mi

i=1 ||Lki − L̄i||22
5
∑mi
i=1

[
Tr(Lki − L̄i)

]2 and σ̂2
i =

1
6mi

mi∑
i=1

||Lki − L̄i||2τ̂i , (11)

where ||.||2t is defined by 〈A,B〉t=Tr(AB)−tTr(A)Tr(B). The ML estimator
may be unreliable for compartments with only a few observations. This uncer-
tainty is accounted for by replacing point estimates of θ by posterior distri-
butions and integrating over all possible θ. This yields the posterior predictive
distribution (PPD) which contains all the knowledge about new observations
that we learn from previous observations. Its derivation requires the defini-
tion of hyperpriors over θ and is closed-form if we select conjugate hyperpriors.



Mi ∼ N (M0,Λ0) is a conjugate hyperprior for the tensor part of (7) assuming a
deterministic Σi = Σ̂i. We set Λ0=B(1, 0) and M0=logDiso to keep it weakly
informative (this hyperprior merely encodes the order of magnitude of diffusivity
at 37◦C). The PPD over the tensors is Di|Di ∼ N (Mmi

i ,Λmii ) with

Λmii = Σ̂i +
(
Λ−1

0 +miΣ̂i
−1
)−1

, B(σ̃i, τ̃i), (12)

and Mmi
i =

(
Λ−1

0 +miΣ̂i
−1
)−1 (

Λ−1
0 M0 +miΣ̂i

−1
L̄i

)
. (13)

For the parameters αi, a conjugate hyperprior is the Dirichlet distribution. We
set all its parameters to 1, making it uniform over the simplex S. The resulting
PPD is a Dirichlet with parameters 1+

∑mi
k=1 f

k
i . In this expression, we consider

fki as frequency counts since they are samples of fi rather than samples from a
multinomial parameterized by fi. The complete PPD is (with CF,D constant):

Pf,D(f ,D|F ,D) = CF,D1f∈S

N∏
i=1

f
Pmi
k=1 f

k
i

i

N∏
i=1

exp
{
−||Li −M

mi
i ||2τ̃i

2σ̃2
i

}
. (14)

We incorporate this PPD as a prior in the estimation. We assume Gaussian noise
on the DWI measurements yk since they are acquired on a single shell typically
at b=1000 for which noise is approximately Gaussian. The maximum a posteriori
estimator at each voxel amounts to maximizing the following for f and D:

L = log(1f∈S)+
N∑
i=1

mi∑
k=1

fki fi−
N∑
i=1

||Li −Mmi
i ||

2
τ̃i

2σ̃2
i

−
K∑
k=1

(Sk(f ,D)− yk)2

2σ2
k

. (15)

The influence of the noise σ2
k is analyzed in the next section. In practice, the prior

is built from data acquired in completely different subjects at several b-values.
All these subjects are registered to a multi-fascicle atlas as in [7]. Following align-
ment, tensors from all subjects at each voxel are clustered in N compartments
as in [6]. Each cluster represents the sets Fi and Di of available observations.
The prior is then aligned with an initial estimate (without prior) of the multi-
fascicle model. To evaluate (14), all assignments of compartments to tensors are
considered and the highest prior value is recorded. BOBYQA algorithm is used
to maximize (15) and the number of fascicles is estimated by an F-test as in [3].

4 Results

We compare the models estimated by our method to a ground truth {gi,Gi}
with five root mean square metrics, ∆FA, ∆MD, Fro, ∆F and ∆iso defined by:

∆2
FA =

NX
i=1

fi + gi

2
(FA(F i)− FA(Gi))

2 , ∆2
MD =

NX
i=1

fi + gi

2
(MD(F i)−MD(Gi))

2

Fro2 =

NX
i=1

fi + gi

2
||Di −Gi||F , ∆2

F =

NX
i=1

(fi − gi)
2 and ∆2

iso = (fiso − giso)2.
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Fig. 2. (Left) Incorporating the prior in the estimation significantly improves the ac-
curacy of the estimated model under the three simulated scenarios and for all five
comparison metrics (distributions are shown for 20 datasets simulated for each set
of parameters).(Right) The better accuracy mostly affects the diffusion properties of
tensors (other than their directions), as predicted by Equation (3).

Synthetic Phantom Experiment DWI were simulated under Rician noise
from a phantom containing an isotropic compartment and 0 to 3 tensors of
various properties with S0=400. The prior was built from 20 datasets of 90 DWI
at b=1000, 2000 and 3000. The accuracy was evaluated with 20 datasets of 30
DWI at b=1000 in three scenarios. First, the noise variance increased from 40
to 120. Second, the FA of the phantom was offset by −10% to +10% without
changing the prior to simulate patient’s data with a prior built from healthy
subjects. Third, random deformations of 0 to 2 voxels were applied to the prior to
simulate registration errors. In the last two scenarios, the noise variance was 80.
In all scenarios and for all metrics, incorporating the prior significantly improved
the accuracy of the estimation (one-tail paired t-test: p < 10−6) (Fig. 2)

In Vivo Data Experiment Eighteen healthy subjects and 10 subjects with
autism were imaged to test the method and an extra 13 healthy subjects were
imaged to build the prior. For all subjects, DWI at resolution 1.7× 1.7× 2mm3

were acquired with a Siemens 3T Trio with a 32 channel head coil using the
CUSP-45 sequence [3]. This includes 30 gradients on a single-shell at b = 1000
and 15 gradients with b-values up to 3000. For each test subject, all 45 DWI
were first used to estimate a multi-fascicle model considered as a ground truth.
Estimations using the single-shell subset only were then compared to it. Four
strategies were compared: estimation without prior, estimation by fixing all ten-
sors to a globally optimized value, and estimation with the prior assuming a noise
level σ2

k of 20 and 500. Results in Fig. 3 show that estimations which incorporate
a prior outperform other strategies. Estimations with σ2

k = 500 are significantly
better than estimations without prior for all metrics and, remarkably, for both
healthy controls and ASD patients (one-tail paired t-test: p < 10−6). The true
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Fig. 3. (a) Incorporating prior knowledge significantly improves the quality of the
model estimation for all five metrics and for both healthy controls and ASD patients.
This improvement implies that (b) the extracellular water fraction can be visualized
with more contrast and less noise in smaller details of the white matter up to its
boundary with the grey matter, and (c) properties of the fascicles in crossing areas
(shown is the corona radiata) are better represented and do not suffer the arbitrary
choice of a model from Equation (3).

noise level of DWI is arguably closer to 500 than 20. However, estimations with
σ2
k = 20 remain more accurate than estimations without prior, indicating that

the population-informed prior improves the model accuracy even for crude es-
timates of the noise level. Empirical estimates of this noise level is kept for fu-
ture work. Finally, fixing the fascicle response results in accuracies that strongly
vary among quality metrics and, furthermore, only provides average information
about the brain microstructure, which is not suitable in most studies.

Application to Population Studies One could be concerned that the im-
proved accuracy brought by the prior would come with a severe shrinkage of the
estimated parameters towards the mean of the population. This would prevent
its use in population studies. To address this concern, we conducted two popu-
lation studies of autism spectrum disorder (ASD) using the proposed estimator.
The first one focused on fascicle properties in the left arcuate fasciculus by ana-
lyzing the FA along the median tract. The second study investigated whether an
increased extracellular volume fraction fiso is observed in ASD. Less restricted
diffusion may be related to the presence of edema, thinner axons, and neu-
roinflammation [1]. The latter has been proposed as a possible cause of autism.
Corrections for multiple comparisons were based on cluster-size statistics in 1000
permutations with a threshold on t-scores of 3. As presented in Fig. 4, the first
study revealed decreased FA integrity in the arcuate fasciculus of patients with
ASD, in line with most recent studies of autism. The second study revealed
one clusters of significantly increased unrestricted diffusion (permutation test:
p < 0.003). Without the prior, none of these findings were observed (p > 0.1).
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Fig. 4. The population-informed prior enables population studies of multi-fascicle mod-
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FA related to autism in the left arcuate fasciculus (*p<.05,**p<.01). (c-d) The second
study reveals a cluster of significantly higher fiso. (d) Average fiso in the cluster.

These studies show that the use of a prior in the estimation preserves contrasts
of diffusion properties between groups, so that single-shell HARDI data can be
used in large population studies based on multi-fascicle models.

5 Conclusion

Multi-fascicle models cannot be estimated from conventional single-shell HARDI
data because a manifold of models produce the same diffusion signals. However,
we showed that a posterior predictive distribution over the model parameters can
be learnt from data acquired at several b-values in an external population. By
incorporating this population-informed prior in the maximum a posteriori esti-
mator of the parameters, we are able to estimate accurate multi-fascicle models
from data at a single b-value. This method thus opens new opportunities for
population studies with the large number of available clinical diffusion images.
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