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Abstract. The brain microstructure is the complex organizations of
cellular structures and the extra-cellular space. Insights into this mi-
crostructure can be gained in vivo by means of diffusion-weighted imag-
ing that is sensitive to the local patterns of diffusion of water molecules
throughout the brain. Diffusion compartment imaging (DCI) provides
a separate parameterization for the diffusion signal arising from each
compartment of water molecules at each voxel. Their use in population
studies and longitudinal monitoring of diseases hold promise for unrav-
eling alterations of the brain microstructure in various disorders and
conditions. Yet, to analyze multi-compartment models, high-level opera-
tions commonly used in scalar images need to be generalized. We present
a framework that enables interpolation, averaging, filtering, spatial nor-
malization and statistical analyses of multi-compartment data with a
focus on multi-tensor representations. This framework is based on the
generalization of linear combinations of voxel values through mixture
simplification. We illustrate the impact of this framework in registra-
tion, atlas construction, tractography and population studies.

1 Introduction

The brain microstructure is the complex organization of cellular structures in-
cluding the neurons, the axons, their myelin sheath, and glial cells. A key tech-
nique to probe the brain microstructure in vivo is to acquire diffusion-weighted
images (DWI), the intensity of which depends on the local diffusion of water
molecules through the microstructure. Diffusion tensor imaging (DTI) is the
most widely used model to represent the brain microstructure from DWI. This
model assumes that water molecules are diffusing in a single compartment, be
it a single fascicle (in which the diffusion is anisotropic) or a compartment of
free water (in which the diffusion is isotropic). This limits the validity of DTI to
represent the brain microstructure which presents a variety of compartments in
each voxel, including several crossing fascicles and partial volumes of CSF. The
prevalence of voxels with crossing fascicles at typical resolutions has been shown
to be around 60-90% [6]. Hence any model of the microstructure that does not
represent multiple fascicles is wrong in at least 60% of the brain.

In contrast, diffusion compartment imaging (DCI) provides a separate repre-
sentation for the diffusion of water molecules in each microstructural compart-
ment in each voxel, thereby enabling a richer and more reliable characterization



of the local brain microstructure. Properties of the diffusion compartment model
can be directly related to properties of the underlying microstructure. For in-
stance, the diffusion of water molecules in a direction that is orthogonal to a
bundle of axons is facilitated if the axons have a larger diameter. The radial dif-
fusivity of the corresponding compartment is therefore larger if axonal radii are
larger. Typical examples of compartments are the intra-axonal space of a par-
ticular fascicle, the extra-axonal volume in the vicinity of the fascicle, the space
within glial cells, and the extra-cellular space [10]. Various DCI models spanning
a range of granularity and complexity have been proposed in the literature. These
include the multi-tensor model with fixed diffusivities [23], full multi-tensor mod-
els with separate representations of fascicles [14], CHARMED [2], NODDI [25]
and DIAMOND [13]. By providing a more reliable representation of the brain
microstructure, DCI opens new opportunities to investigate the brain in disease
and injury.

Analyzing DCI models has, however, proven challenging because of the ab-
sence of a one-to-one correspondence between compartments of different voxels
(neighboring voxels or voxels from different subjects). This is because different
voxels may have different numbers of fascicles crossing them (Fig. 1). Therefore,
corresponding compartments cannot be identified and analyzed separately and
a holistic approach is required. This chapter presents a holistic mathematical
framework for the analysis of DCI.

Typical parameterizations of DCI models are introduced in Section 2.1. As
we shall see, many operations on DCI models boil down to computing linear
combinations of these models. Section 2.2 explains why computing linear com-
binations of diffusion compartment models is a mixture model simplification
problem. Sections 2.3 and 2.4 presents two algorithms to compute linear combi-
nations of DCI. Section 3 provides additional details about the implementation
of these methods. Finally, Section 4 illustrates the far-reaching impact of this
novel analysis framework on various applications, including registration, atlas
construction, smoothing, tractography, population studies and model estima-
tion.

2 Theory

In this section, we first introduce the typical parameterization of diffusion com-
partment models. We then explain why typical operations of image processing
boil down to computing linear combinations of voxel values and how the concept
of linear combinations can be generalized to diffusion compartment models. Fi-
nally, we present two approaches to compute linear combinations of DCI. The
choice between these two approaches depend on the quantity that one wants to
preserve: the first approach preserves the diffusion signal that is generated by
the model, whereas the second approach preserves the microstructural properties
of the models. In summary, the theoretical contributions of this chapter are the
following:



Fig. 1. Simple synthetic diffusion compartment model with fractions of occupancy
encoded as the transparency of the tensors. The challenge of analyzing diffusion com-
partment imaging (DCI) stems from the presence of different numbers of compartments
in each voxels. For example, in the red area, voxels containing one (isotropic), two and
three compartments are present.

1. We propose a generic approach to generalize common operations to DCI,
such as interpolation, averaging, smoothing and spatial normalization. We
originally proposed this approach in [18] and applied it to registration, atlas
construction and statistical analysis of DCI in [20] and [16].

2. We express two complementary approaches to computing linear combina-
tions of DCI models: one that preserves the signal and one that preserves
the microstructural properties. The former is similar (although slightly dif-
ferent) to the approach presented in our previous papers. The latter is a
novel contribution of this chapter.

2.1 Diffusion Compartment Models

At each voxel, DCI models represent the diffusion signal arising from a set of
several compartments as the weighted combination of the signals that would arise
from each compartment individually. For a given set of acquisition parameters,
if a compartment A is known to generate a signal SA and a compartment B is
known to generate a signal SB , then the DCI model for the signal emanating
from a voxel containing a fraction fA of water molecules in A and a fraction
fB = 1− fA of water molecules in B is:

S = fASA + fBSB .



This equation can be generalized to an arbitrary number N of compartments as:

S =
N∑
i=1

fiSi, with
N∑
i=1

fi = 1.

The assumption underpinning this equation is that there is no exchange of water
molecules between compartments. This is known to be an approximation since
water molecules do diffuse through cell membranes. However, this approximation
is reasonable insofar as the time it takes to observe a substantial exchange of
water molecules between compartments is large compared to the diffusion time
(which is a parameter of the acquisition).

The signal generated in each compartment, Si, has its own parameterization.
For example, the compartment containing freely diffusing water molecules (as in
the CSF) can be represented by an isotropic tensor, i.e., its diffusion-weighted
signal for a gradient direction g and a b-value b is:

Siso = S0e
−bdfree ,

where dfree = 3 × 10−3mm2/s is the diffusivity of free water at 37◦C. In the
sequel, we will focus on compartments whose signal decay can be represented
by a multivariate Gaussian. This does not imply that we assume all fascicles
to be represented by a single tensor. Indeed, the diffusion signal, Sj , arising
from the j−th fascicle could be represented by two compartments, one for the
intra-axonal water (Sj,in) and one for the hindered water molecules (Sj,h):

Sj = f in
j S

in
j + (1− f in

j )Sh
j = f in

j e
−bgT Din

j g + (1− f in
j )e−bg

T Dh
j g,

where f in is the relative contribution of the intra-axonal space to the signal.
In this representation, Din and Dh have the same eigenvectors but the radial
diffusivity of Din is smaller than Dh. This is similar to the CHARMED model
in which the restricted diffusion would be approximated by a Gaussian diffusion
tensor with small radial eigenvalues.

In summary, the class of models that we consider in the following sections
is described as follows. Let N be the number of compartments including Niso

isotropic compartments and Nf fascicles, themselves represented by K compart-
ments (usually K = 1 for a tensor representation or K = 2 for a bi-tensor
representation). The signal decay S/S0 is thus modeled as:

S/S0 =
N∑
i=1

fie
−bgT Dig =

Niso∑
l=1

f iso
l e−bd

iso
l +

Nf∑
j=1

K∑
k=1

fkj e
−bgT Dk

j g.

2.2 Weighted Combination of DCI: a Model Simplification Problem

Weighted combinations of voxel values are ubiquitous in medical image analysis.
To name a few, interpolation consists in linearly combining the values of voxels
on the grid to infer the value of the image at a non-grid location. Averaging (as



used in atlas construction) consists in linearly combining the values of voxels in
several subjects. Filtering consists in linearly combining the values of the voxels
in an area with weights defined by a smoothing kernel.

Voxels in DCI contain compartment models and linearly combining these
models is challenging. The challenge arises from the absence of a one-to-one
correspondence between compartments of different voxels. There may be fascicles
that are not present in all voxels (one-to-zero correspondence). There may be
fascicles that are represented by different number of compartments in different
voxels (one-to-many correspondence), for example in the case of fanning fascicles.
For this reason, it is impossible to simply group compartments in pairs and
compute linear combinations of single compartments in those pairs.

The goal of weighted combinations is to determine the parameters of a dif-
fusion compartment model that can be interpreted as a weighted sum of other
DCI models in a meaningful way. Let us define a virtual voxel containing all
compartments from an original set of M compartment models, in proportion
equal to some predefined weights αm,m = 1, ...,M . If Smi is the signal arising
from the i−th compartment in the m−th model (i = 1, ..., Nm) and fmi is the
fraction of its contribution to the total signal, then the diffusion signal arising
from the microstructure in this virtual voxel would be accurately modeled as:

S =
M∑
m=1

αm

Nm∑
i=1

fmiSmi =
M∑
m=1

Nm∑
i=1

αmfmiSmi ,
Nc∑
k=1

wkSk.

A meaningful definition of the weighted combination of M diffusion compart-
ment models could thus be the diffusion compartment model made of all these
compartments with fractions equal to the original fractions multiplied by the
weights of the combination. This complete model would, however, have an in-
creased number of compartments (equal to MN̄ , where N̄ is the average number
of compartments in the original models) compared to all original models. This is
not desirable for two reasons. First, the model complexity may become computa-
tionally intractable when linear combinations need to be recursively computed.
Second, it may be that some compartments from the complete model actually
represent the same microstructural environment and should therefore be merged
in some way.

We want to simplify the complete model to obtain a simplified model that
accurately represents the microstructure in the virtual voxel containing all com-
partments. To formalize this problem, let us introduce some notations. Let the
complete model be denoted by Mc and let Nc be the number of its compart-
ments. Let its k-th compartment be represented by a tensor Dc

k and generate
a signal S(Dc

k, b, g) = S0e
−bgT Dc

kg at a b-value b and for a gradient direction
g. Finally, let wk be the relative contribution of the k-th compartment to the
signal decay, so that the signal generated by the complete model at a b-value b
and for a gradient direction g is modeled as:

SMc
(b, g) =

Nc∑
k=1

wkS(Dc
k, b, g).



Similarly, letMs be the simplified model with Ns ≤ Nc compartments, with the
j-th compartment described by a tensor Ds

j and generating a signal S(Ds
j , b, g)

that contributes in a fraction fj to the signal decay from the simplified model,
so that the latter signal is modeled as:

SMs
(b, g) =

Ns∑
j=1

fjS(Ds
j , b, g). (1)

The parameters of the simplified model are to minimize some discrepancy mea-
sure with respect to the complete model:

M∗s = arg min
Ms

d(Mc,Ms). (2)

The discrepancy function depends on whether one is interested in preserving the
signal or in preserving the microstructure. We detail the solutions to the mixture
simplification problem in those two scenarios in the next two sections.

2.3 Signal-Preserving Model Simplification

If the model simplification should preserve, as much as possible, the signal that
would arise from the complete model, then the discrepancy function reads:

dS(Mc,Ms) =
∫ (

SMs
(b, g)− SMc

(b, g)
)2
db dg

=
∫  Ns∑

j=1

fjS(Ds
j , b, g)−

Nc∑
k=1

wkS(Dc
k, b, g)

2

db dg.

In other words, we want the simplified model to generate a signal that is as
close as possible to the signal generated by the complete model, throughout
the q-space. Minimizing this function is challenging. However, Zhang and Kwok
provided an efficient algorithm to compute the following upper bound to this
function [26,27]:

d̃S(Mc,Ms) = Ns

Ns∑
j=1

∫ fjS(Ds
j , b, g)−

∑
k∈Ωj

wkS(Dc
k, b, g)

2

db dg (3)

, Ns

Ns∑
j=1

d̃jS

≥ dS(Mc,Ms)

where Ω = {Ω1, . . . , ΩNs
} is a partition of the Nc components of the complete

model in Ns clusters (i.e., Ns groups of compartments that share some similar-
ities) and d̃jS is the discrepancy of the signal within each cluster. Minimizing d̃S



is much easier than minimizing dS because the optimization can be performed
independently in each cluster, i.e., the terms d̃jS can be independently optimized.

Zhang and Kwok proposed an iterative algorithm in which the partition
variables (Ωj) and the parameters of the simplified model in each cluster (fj and
Ds
j) are alternatively optimized [26,27]. Their method can be applied insofar

as the components of the models can be expressed as kernel functions, Sk =
|Hk|−1/2KHk

(g − gk) , which is the case for Gaussian compartment models.
The algorithm for the particular case of Gaussian DCI is presented in Algorithm
1 (with the step on Line 14 being detailed in Algorithm 2).

This algorithm deserves some comments regarding its interpretation and im-
plementation.

1. The algorithm only involves simple matrix computations.
2. Both Algorithm 1 and Algorithm 2 relies on iterative approaches. These

approaches were empirically shown to converge to a local minimum [27] and
this was also observed in all of our experiments.

3. The equations on Lines 10 and 12 of Algorithm 2 result from decoupling the
minimization of d̃jS among the parameters fj and Ds

j . Line 12 follows from
the fact that d̃jS is a quadratic form in fj and Line 10 arises by computing
the partial derivative of d̃jS with respect to (Ds

j)
−1.

4. The formulation of the distance on Line 20 of Algorithm 1 is a direct refor-
mulation of the distance (3) for multivariate Gaussian.

5. Convergence checking for the clustering variables on Line 12 of Algorithm 1
simply consists in assessing whether any element k moved from one cluster
to another during the last iteration.

6. Convergence for the tensor estimation on Line 5 of Algorithm 2 is verified
by computing the Frobenius norm of the difference between two consecutive
estimates and dividing it by the norm of the current estimate. When this
ratio is sufficiently small, then convergence is claimed.

7. For computational efficiency, the inverse of all tensors should be computed
a priori, given their frequent occurrence throughout the algorithm.

8. The initialization of clusters on Line 11 of Algorithm 1 can be done in several
manners. We found empirically that the spectral clustering approach of Ng
et al. [8] with the similarity between two tensors defined as the cosine of
the scalar product between their principal orientation is both efficient and
accurate. This approach involves a k-means algorithm on the projection of
similarity vectors onto the basis of the first Ns eigenvectors of the Lapla-
cian matrix. The efficiency of the algorithm enables us to run it multiple
times with random initializations and select the best clustering (based on
the within-cluster sum of distances).

The results of this algorithm in terms of interpolation (a prototype appli-
cation of weighted combinations) are depicted in Fig. 2. As expected from the
minimization of the discrepancy between signals, the interpolated models tend
to preserve the signal of the original tensors. This preservation should be under-
stood in the following way. When the two original models (at the extreme left



and extreme right of Fig. 2a) generate the same signal (for a particular b-value
and gradient direction), then all the interpolated models (in between original
models) also generate the same signal, so that the signal is preserved along the
interpolated line. When the original models generate different signals then the se-
quence of interpolated models should generate signals that monotonically evolve
from one model to the other. This can be seen by looking at all the signals at
any x-location on the graph of Fig. 2(b).

As observed in the top row of Fig. 2(a), the tensors tend to look inflated. This
is confirmed by the plot of the radial and axial diffusivities and the fractional
anisotropy which all present non-monotonic evolutions (Fig. 2(c)). By preserving
the signal, we do not preserve the microstructure. In the next section, we will
show that the opposite is also true.

To understand why we introduce microstructural artifacts by preserving
the signal, let’s picture the weighted combinations of many identical highly
anisotropic compartments spanning a spectrum of orientations (Fig. 3). Preserv-
ing the microstructure would result in one such highly anisotropic compartment
aligned with the mean direction in the spectrum. However, as a function of gra-
dient direction, the signal decay generated by this average compartment would
present a sharp peak in the orientation of the compartment. This sharp peak is
not present in the signal decay of the original spectrum which presents moderate
decay values for all gradient directions within the spectrum. To most accurately
represent these moderate values spanning a larger area, an inflated tensor needs
to be fit.

Another way to preserve the signal would be to compute weighted sums of
the signal, i.e., the set of original scalar diffusion-weighted images (DWI). This
is sometimes performed in the literature as a work-around to the problem of
processing DCI. In this view, the signal-preserving weighted combination pre-
sented above can be interpreted as an acceleration technique to carrying all the
processing in the space of DWI (since by processing DCI, one avoids the compu-
tational burden associated with re-estimating the DCI at each processing step).
However, the discussion above also makes it clear that if the goal is to preserve
properties of the microstructure then one should not process DWI directly.

Finally, alternatives to the distance in Equation 3 can also be proposed. For
instance, the original method proposed to compute weighted combinations of
DCI was based on the minimization of the differential entropy between com-
partments [18]. The associated algorithm, presented in [16], is framed as an
Expectation-Maximization clustering problem and is guaranteed to converge to
a local minimum. The preserved quantity of this energy function is less clear.
However, the simplified model simply consists in the weighted mean of covariance
matrices in each cluster, which speaks more to the intuition than the equation
on Line 10 of Algorithm 2. The two cost functions mostly differ theoretically
and lead to very similar results in practice.



0 30 60 90 120 150 180
0.1

0.15

0.2

0.25

0.3

0.35

Gradient angle [degrees]

S/
S 0

0 30 60 90 120 150 180
0.1

0.15

0.2

0.25

0.3

0.35

Gradient angle [degrees]

S/
S 0

Signal Radial diffusivity Axial diffusivity FA

Signal-preserving Microstructure-preserving

0.5

0.6

0.7

0.8

0.22

0.25

0.28

0.8

1

1.2
x 10−3

2.5

4

5.5
x 10−3

Signal
-

preserving

Signal
-preserving

Microstructure
-preserving

0.5

0.6

0.7

0.8

0.22

0.25

0.28

Microstructure
-

preserving

0.8

1

1.2
x 10−3

2.5

4

5.5
x 10−3

S/
S 0

S/
S 0

(a)

(b)

(c)

Fig. 2. Interpolation results using the signal-preserving and microstructure-preserving
interpolations. Signal-preservation implies that the signal monotonically transits from
one value to another, whereas microstructure-preservation implies that microstructural
features monotonically transits from one value to another. When signal-preservation
is achieved, microstructure is not preserved and vice versa. (a) The models at the left
and right extremities are fixed and the others are interpolation results with weights
increasing from 0.1 to 0.9 with steps of 0.1. The colored circles and squares match those
in the graphs below. (b) Signals arising from each model for a b-value of 1000s/mm2

and for in-plane gradients making an angle between 0 and π with the horizontal. (c)
Signal generated in a direction of π/25 and various microstructural properties of the
green tensor.
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Fig. 3. Let an identical highly anisotropic original compartment be repeated many
times (here 21) with various orientations. The signal-preserving mean of these com-
partments is an inflated tensor with higher radial diffusivity and lower axial diffusivity
than the original fascicle. This inflated tensor better represents the signal generated
by the spectrum of fascicles although it has microstructural features that do not cor-
respond to original compartments. By contrast, the microstructure-preserving mean
accurately represents the microstructure of the compartments in the spectrum but its
generated signal departs from the signal generated by the spectrum.

2.4 Microstructure-Preserving Model Simplification

In many applications, preserving the microstructural features is arguably more
important than preserving the signal. For instance, when we align DCI from
various subjects in order to compare their microstructure, it is important that
the interpolation does not result in inflated tensors. This may jeopardize our
capability to detect group differences because the amount of inflation depends
on the weights of the interpolation (tensors further away form the extremities in
Fig. 2 are more inflated).

If weighted combinations must preserve the microstructure, then the discrep-
ancy function in Equation (2) should express differences between the parameters
of the DCI models rather than differences between the generated signals. The
j-th compartment of the simplified model should accurately represent a subset
Ωj of the compartments from the complete model so that each compartment
of the complete model is well represented by a compartment in the simplified
model. The discrepancy function therefore reads:

dM(Mc,Ms) =
Ns∑
j=1

∣∣∣∣∣fj − ∑
k∈Ωj

wk

∣∣∣∣∣+
∑
k∈Ωj

wkd
′(Dc

k,D
s
j)

 .

The first term expresses that the fraction fj of the j-th compartment in the
simplified model should be close to the total fraction of all the compartments
that the j-th compartment represents. The second term expresses thatDs

j should
be close to the tensors Dc

k that it represents in a proportion that is weighted by
the fraction wk of occupancy of those compartments. This discrepancy should
be simultaneously minimized for all fj , all Ds

j and all Ωj . Given any clustering
of compartments into Ns clusters (Ωj , j = 1, ..., Ns), one can always find a set
of fractions (fj , j = 1, ..., Ns) that globally minimizes the first term. Indeed, for



fj =
∑
k∈Ωj

wk, the first term is minimum and equal to zero and the constraints

that
∑Ns

j=1 fj = 1 with 0 ≤ fj ≤ 1 are respected. It is therefore sufficient to
simultaneously optimize the tensors and the partition by minimizing the second
term of the discrepancy:

M∗c = arg min
Mc

dM(Mc,Ms)

= arg min
Mc

Ns∑
j=1

∑
k∈Ωj

wkd
′(Dc

k,D
s
j), with fj =

∑
k∈Ωk

wk.

This is a weighted k-means clustering problem which can be solved by iterating
the following two steps:

Ds
j = WeightedMean

{
(wk,Dc

k)
}
k∈Ωj

(4)

Ωj =
{
k
∣∣∣ d′ (Dc

k,D
s
j

)
≤ d′ (Dc

k,D
s
l ) ,∀l = 1, ..., Ns

}
. (5)

In order for the k-means algorithm to converge, the definitions of the distance
function d′ and the weighted mean must be interrelated so that the weighted
mean is the tensor that is at the smallest (weighted) cumulative distance of all
the elements in the cluster. Here, we choose the recently introduced anisotropy-
preserving metric of Collard et al. [4] for it best preserves the microstructural
features while being computationally tractable.

In this anisotropy-preserving framework, the weighted mean of two tensors,
D1 with weight w and D2 with weight 1−w, is defined as follows (the general-
ization to N tensors is straightforward). First, we compute the spectral decom-
position of each tensor:

Di = U iΛiU
T
i .

Second, the eigenvector matrices U i are transformed to their quaternion repre-
sentations qi = (ai,vi) where ai is a scalar and vi is a vector in R3 such that
‖qi‖2 = 1. The quaternion representation can be understood as the rotation re-
quired to align the canonical basis of R3 to the eigenvectors U i. The scalar ai is
related to the angle of the rotation and vi is proportional to the invariant axis
of rotation.

Averaging the quaternions directly would give equal importance to the ori-
entation of all tensors regardless of their anisotropy. However, tensors with low
anisotropy have less relevant orientational information than highly anisotropic
ones. To reflect this relative importance, Collard et al. weight quaternions by a
function of the anisotropy of the tensors. Formally, if we let HAi = log λmax

λmin
be

the Hilbert anisotropy of the tensors, we compute the weighted mean of quater-
nions as follows (for details on the derivation, see [4]):

q̄ = w∗q1 + (1− w∗)q2

with w∗ =
wf
(
min(HA1,HA)

)
wf
(
min(HA1,HA)

)
+ (1− w)f

(
min(HA2,HA)

) ,



where f is any sigmoid function. From the representation of Di as (qi,Λi), the
weighted mean of two tensors is then defined as:

WeightedMean
{

(w, q1,Λ1), (1− w, q2,Λ2)
}

=
(
w∗q1 + (1− w∗)q2, exp

(
w logΛ1 + (1− w) logΛ2

))
. (6)

In other words, in the anisotropy-preserving framework, the eigenvalues are in-
dependently averaged in the log-domain and the eigenvectors are averaged in
their quaternion representations, with weights that depend on the anisotropy of
tensors.

Since the sign of eigenvectors is undefined, there are 23 different represen-
tations of U i as a basis of R3 and therefore 8 different equivalent quaternions.
Before summing quaternions, they must therefore be aligned. Collard et al. pro-
posed to perform this alignment by first selecting one arbitrary tensor from the
set of tensors to be averaged, computing one of its quaternion representation,
calling it the reference quaternion and then selecting for each other tensor the
quaternion representation that maximizes the scalar product with the reference
quaternion [4].

The distance between two tensors in the anisotropy-preserving framework
of [4] can be defined in terms of a metric compose of one term related to the
quaternions (the chordal distance) and one term related to the eigenvalues. Sim-
ilarly to the weighted mean, the term related to the quaternion is weighted by a
function of the Hilbert anisotropy. The distance induced by this metric has no
obvious closed-form and we therefore employ the following approximation which
is an upper bound of the distance [4]:

d′(D1,D2) = f (min(HA1,HA2)) ‖q1 − q2‖2 +
3∑
i=1

∣∣∣∣log
Λ1,ii

Λ2,ii

∣∣∣∣ . (7)

The weighted mean (Equation (6)) and distance (Equation (7)) in the anisotropy-
preserving framework are ill-posed when the tensors are cylindrically symmetric,
because each cylindrically symmetrical tensor can be decomposed in a quater-
nion in an infinite number of ways. Cylindrical symmetry is often enforced in
DCI to reduce the number of parameters to estimate [10,22]. We thus intro-
duce the following weighted average and distance operators that can be used for
cylindrically symmetric tensors whose representations only depend on the main
orientation ei of tensors and their eigenvalues:

WeightedMeanc
{

(w, e1,Λ1), (1− w, e2,Λ2)
}

=
(

w∗e1 + (1− w∗)e2

‖w∗e1 + (1− w∗)e2‖2
, exp

(
w logΛ1 + (1− w) logΛ2

))
(8)

and

d′c(D1,D2) = f (min(HA1,HA2)) acos(|e1 � e2|) +
3∑
i=1

∣∣∣∣log
Λ1,ii

Λ2,ii

∣∣∣∣ . (9)



We now have operators to compute the weighted mean and distance for non-
symmetric tensors (Equations (6) and (7)) and for symmetric tensors (Equa-
tions (8) and (9)). We can plug these single-tensor operators into the k-means
algorithm (Equations (4) and (5)) to obtain a framework for the analysis of DCI
that preserves the microstructure.

Expressing the weighted combinations of diffusion compartment models as a
k-means clustering problem enables the incorporation of useful extensions devel-
oped in the general k-means framework. One particularly interesting extension
is the so-called constrained k-means in which prior knowledge about the clusters
can be incorporated [24]. This is useful if we know that some compartments
definitely represent different microstructural environments despite the possible
similarity between their parameters. For instance, one may want to force the
free water compartments to remain separate from other compartments; or one
may want to keep all compartments that were separate in one voxel to remain
so in the simplified model. Conversely, if some tensors are known to be represent
the same microstructural environments in advance, this can also be incorporated
in the k-means algorithm. Both types of constraints can be expressed as a con-
straint matrix C whose k1k2-entry defines the link between the k1-th and k2-th
tensors in the complete model:

C(k1, k2) =

−1 if k1 and k2 must not belong to the same cluster
1 if k1 and k2 must belong to the same cluster
0 otherwise.

The full algorithm to perform microstructure-preserving weighted combinations
of DCI is presented in Algorithm 3. The results using this algorithm with con-
straints imposing that two tensors from a same voxel cannot be clustered to-
gether are depicted in Fig. 2. As expected, the microstructural features are pre-
served in this framework, whereas the signal is not preserved.

3 Details of Implementation

In this section, we provide additional details regarding the implementation of
the weighted combinations of DCI.

3.1 Selecting the Number of Compartments in the Output

One aspect of the algorithm that we have not yet discussed is how the number
of compartments of the output (Ns in Equation (1)) is determined. We argue
that any choice for Ns that is lower than the maximum number of non-empty
(i.e., with a non-zero fraction) compartments in the input models is not self-
consistent. In other words, we argue that if we have M input DCI models and
if the m-th input model has Nm non-empty compartments, then we need:

Ns ≥ max
m=1,...,M

Nm.



To understand why other choices would not be self-consistent, imagine that we
want to compute the average DCI model in the following two situations. In
the first situation, the first model is a three-compartment model S1 = faSa +
fbSb + fcSc and the second model is a two-compartment model S2 = (1 −
ε)SA + εSB with a fraction ε that is arbitrarily close to zero. In the second
situation, the two-compartment model is replaced by a one compartment model
S2 = SA. There is essentially no difference between the two situations in terms
of the microstructure being represented and in terms of the diffusion signal
being generated (the signal generated by the compartment with an infinitesimal
fraction will itself be infinitesimal). Yet, if the number of compartments of the
output depends on the number of compartments in the second model (e.g., if we
set Ns to be the average number of compartments in the input), then we may
end up with two different average DCI models in the two situations.

Since there is no obvious reason to increase the number of compartments in
the output DCI model compared to the input models, we set, in every applica-
tions, the number of output compartments to be equal to the maximum number
of non-empty compartments in the input models, i.e.,

Ns = max
m=1,...,M

Nm.

3.2 Computational Time

Several factors impact the computational time required to estimate weighted
combinations of DCI models. In general, weighted combinations are computed
at every voxel of an image, whether it is to apply a transformation field to a
DCI image or to estimate an atlas from a set of spatially aligned image (see Sec-
tion 4). This process is therefore completely parallelizable, which significantly
decreases computational time. Furthermore, efficient initializations as described
above makes the actual algorithm converge extremely fast. For 27 input vox-
els each containing a three-compartment model (which is a typical situation
in the tridimensional interpolation of three-compartment models), less than 10
iterations are usually required to achieve convergence of the K-means. As a typi-
cal illustration of the computational time, the registration of three-compartment
DCI models at a resolution of 1mm×1mm×1mm containing 220×220×176 voxels
takes approximately 40 minutes on a 10 cores Linux machine. Amongst others,
this process requires tens of millions of calls to the weighted combinations of
DCI models (to interpolate the model at every iteration of the algorithm). This
demonstrates that the proposed method can be used in practice for the analysis
of DCI in a large number of subjects.

4 Applications

In this section, we demonstrate how the proposed framework for weighted combi-
nations of diffusion compartment models can be used in various applications. Un-
less otherwise mentioned, we present results for the signal-preserving approach



with the differential entropy as a cost function since it corresponds to the method
used in most of our published results. When appropriate, we compare the ob-
tained results with those of a heuristic approach described in [18]. The heuristic
approach considers DCI as multi-channel images with a tensor in each channel
and performs log-euclidean single-tensor processing in each channel [1]. Attribu-
tion of a tensor to a channel is based on the FA with the tensor with the highest
FA occupying the first channel. When, in a particular voxel, a channel is missing
a tensor (because the selection of the number of fascicles in that voxel resulted
in fewer tensors than the maximum number allowed), then the channel with the
highest fraction is split into two to enforce one-to-one correspondences.

Moving image Fixed image Registered image

1

2

1 2

Fig. 4. The capability to compute weighted combinations of DCI combined with an
appropriate similarity metric for block matching (here the generalized correlation co-
efficient for DCI) enables us to spatially align DCI.

4.1 Registration

Registration is pervasive in medical imaging. A subject’s image can be registered
to an atlas for further comparison between groups (we will discuss this appli-



cation in a following section) or to a previous image from the same subject for
longitudinal analysis.

We developed a block matching approach to registration of DCI in [20,16].
This approach requires the definition of a similarity metric specifically dedicated
to DCI models and a method to interpolate DCI images. Our definition of a
generalized correlation coefficient as a similarity metric can be found in [17]
and the interpolation of DCI was performed using the framework presented in
this chapter. Examples of registered images using this approach are depicted
in Fig. 4. To assess the performance of this registration approach, ten random
log-Euclidean polyaffine fields were applied to the DCI of 24 subjects and noise
at 6 different levels was then added to both the original and the transformed
DCI. Details of the experiment can be found in [16]. Registering DCI using the
presented approach is significantly more accurate than performing it with the
heuristic multi-channel approach : both the magnitude and the variance of the
registration errors are significantly smaller (Fig. 5).

The poor performance of the multi-channel approach can be understood by
its inability to deal with the absence of one-to-one correspondence. Fig. 5(b-c)
illustrates how the heuristic approach fails in those cases and results in aber-
rant tensors that may eventually mislead conclusions from population studies or
longitudinal studies.

4.2 Construction of an Atlas of the Brain Microstructure

An atlas of the brain microstructure represents the average microstructure in
a standardized anatomy. Such an atlas is an important asset to conduct pop-
ulation studies as we will see in a subsequent section. Constructing an atlas
typically consists in iterating between the following three steps: registering all
subjects to a common frame, averaging the aligned images, and applying the
average inverse transform to the mean image [5]. The first and last steps require
interpolation of DCI and the second step requires averaging of DCI. Both in-
terpolation and averaging can be interpreted as a weighted combination of DCI
models and we can therefore use the presented framework to build an atlas of
the brain microstructure. The result, after ten iterations, is depicted in Fig. 6
with highlighted regions that are known to present crossing fascicles.

4.3 Filtering

Filtering DCI data proves very useful when the models have been estimated
from noisy data. Filtering consists in replacing every voxels of the image by a
weighted combination of voxels in a neighborhood. This is a simple application
of the weighted combination operator for DCI. We illustrate this capability by
generating a noisy version of the phantom presented in Fig. 1. To obtain a
realistic noisy version of this phantom, we generated synthetic DWI in a three-
shell HARDI sequence with 30 gradient directions on each shell and with b-
values of 1000, 2000 and 3000s/mm2. We added Rician noise to each DWI with
a scale parameter of 40 (= S0/10) and estimated the DCI model from these
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Fig. 5. (a) Registering the DCI with the proposed approach to weighted combinations
is significantly more accurate than the multi-channel heuristic, with registration errors
that have both smaller magnitude (top table) and smaller variance (bottom table)
(* p < 0.05, ** p < 0.005, *** p < 0.001). The poor performance of the heuristic
approach to registration can be understood from its inability to deal with the absence
of one-to-one comparisons between compartments. The model in the middle is the
result of interpolating the models on the left and on the right with equal weights, (b)
using the presented approach to interpolate DCI and (c) using the heuristic approach.
(Figure reproduced from [16].)



Fig. 6. From our capability to register and average DCI, we can build an atlas of the
brain microstructure. This atlas represents the average microstructure in a standardized
anatomy. Regions where fascicles cross are accurately represented, such as (middle) the
corona radiata where projections of the corpus callosum and cortico-spinal tracts cross,
and (right) a region where the pyramidal tracts (vertical lines) and the medial cerebellar
peduncle (horizontal lines) cross.

noisy DWI using the technique developed in [14]. The noisy result is depicted
in Fig. 7. We then applied a 3 × 3 Gaussian filter with a standard deviation of
0.5 and a 5× 5 Gaussian filter with a standard deviation of 1 to the noised DCI
using the microstructure-preserving weighted combination operator. The result,
also depicted in Fig. 7, shows that aberrant tensors are adequately filtered and
brought closer to the source image.

Importantly, this filtering approach leverages information from both single-
tensor and multi-tensor areas in an adaptive manner: the green fibers in the
highlighted region of Fig. 7 are regularized in part by the single-tensor region
located above the two-tensor region whereas the orange fibers are regularized by
the single-tensor region located to the right.

4.4 Application to Multi-Fiber Tractography

Single-tensor tractography typically consists in (i) shooting tracts from seeding
voxels in the direction of the tensor, (ii) making one step in that direction and
(iii) interpolating the DTI field at the new location and reiterating the process
from there. The capability to interpolate DCI fields thus enables us to perform
multi-fiber tractography that can disentangle crossing fibers. However, if inter-
polation leads to aberrant tensors, as with the heuristic approach, then spurious
tracts may appear (false positives) and expected tracts may go missing (false
negatives). In [18], this effect was demonstrated on a simple synthetic phantom
consisting of two crossing fascicles (Fig. 8). With the proposed approach, how-
ever, tracts can reliably be drawn even in the region of crossing fibers and under
the influence of noise.

4.5 Population Studies of the Microstructure

One of the most important applications of diffusion compartment imaging is to
learn how diseases affect the brain microstructure. This can be achieved by con-



Source Noised Filtered (3x3, σ=0.5) Filtered (5x5, σ=1.0)

Fig. 7. Gaussian smoothing of DCI based on the weighted combination operator. The
highlighted area presents voxels with very noisy tensor estimates that are being regu-
larized by the filter.
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Fig. 8. The capability to compute weighted combinations enables us to perform multi-
fiber tractography by interpolating the DCI field at each step. Using the heuristic
multi-channel approach to interpolate DCI field results in more spurious tracts (higher
false positive rate) and more missing tracts (lower true positive rate), mostly when the
noise level increases.



ducting DCI-based population studies. Conducting population studies requires
to construct an atlas of the brain microstructure and to register individual DCI
to it. These techniques have been described in the above sections. Once all sub-
jects have been aligned to a common coordinate frame, the parameters of the
DCI models can be statistically analyzed. In [20,16], two different statistical tools
for DCI analysis were introduced: fascicle-based spatial statistics and isotropic
diffusion analysis. The idea behind these two tools is that some properties of DCI
models pertain to individual fascicles whereas some other properties pertain to
the surrounding extra-axonal volume. These tools therefore contrast with tra-
ditional DTI-based tools, such as tract-based spatial statistics (TBSS [15]) that
investigate group differences in microstructure on a per-voxel basis.

Fascicle-based spatial statistics (FBSS) consists in comparing some property
of the fascicle (e.g., FA, MD, radial diffusivity, axial diffusivity, etc.) along a
particular fascicle of interest drawn on the atlas. Specifically, FBSS proceeds in
the following steps:

1. Build a DCI atlas of the microstructure.
2. Perform multi-fiber tractography on the atlas to extract the fiber bundle of

interest (tractography is only computed on the atlas).
3. Select a representative fiber tract from the bundle of interest.
4. Spatially align the DCI of all subjects to the atlas.
5. Interpolate the DCI field from each subject along the fascicle of interest.
6. Select, for each subject and at every location along the fascicle, the tensor

most aligned with the fascicle.
7. Perform statistical analysis of the resulting vectors of microstructural fea-

tures.

Many of the steps above (atlas construction, registration and multi-fiber tractog-
raphy) require the presented framework. The last step was originally computed
using cluster-based statistics [20,16]. Recently, however, a Bayesian approach
to FBSS was introduced to circumvent the caveats of p-values in population
studies [22]. In the latter approach, a local model of the microstructure at the
population level is estimated and a Markov random field prior is assigned to its
latent variables to express spatial coherence. As an illustration, FBSS was con-
ducted in a population studies of Tuberous Sclerosis Complex (TSC) to compare
the dorsal language circuit (Fig. 9) between patients with TSC and controls and,
within patients with TSC, between those with autism spectrum disorder (ASD)
and those without the disorder [12]. The results depicted in Fig. 10 demonstrate
that FBSS reveals group differences that single-tensor DTI analysis fails to de-
tect. FBSS also reveals specific clusters that are missing when the multi-channel
heuristic processing of DCI is used. In particular, a cluster with significantly
lower FA in TSC patients with autism (TSC+ASD) in the vicinity of Broca’s
area (Region 1 in Fig. 9 and Fig. 10) was only revealed with FBSS.

Isotropic diffusion analysis (IDA) is used to compare properties that per-
tain to the extra-axonal space. It was shown that a higher fraction of water
molecules diffusing in this environment may be a surrogate to the presence of
neuroinflammation [11]. IDA proceeds in the following steps:
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Fig. 9. The dorsal language circuit is a set of fascicles thought to connect Broca’s area
in the frontal lobe (Region 1), Geschwind’s territory in the parietal lobe (Region 2),
and Wernicke’s area in the temporal lobe (Region 3).

1. Extract the scalar map of the fraction of isotropic diffusion (fiso) from the
aligned DCI of all subjects.

2. Transform the fiso maps in liso maps with liso = logit(fiso) to bring the
distribution of the statistics close to a Gaussian.

3. Perform cluster-based statistics on the resulting liso maps as in [9].

Fig. 11 presents the results of IDA in a population study comparing children
with TSC with a comorbid diagnosis of autism (TSC+ASD) and children with
TSC but without autism (TSC-ASD).

4.6 Estimation of Diffusion Compartment Models

Estimating a DCI model is an ill-posed problem when data at only a single b-
value are available [14,19]. In that case, additional information from an external
population of subjects can be incorporated in the estimation to regularize it [21].
This prior information is encoded in a probabilistic atlas of the brain microstruc-
ture which contains, in every voxel, a distribution over the model parameters.
This distribution is used as a prior in the estimation of the DCI models in a new
subject [19]. The distribution is spatially aligned to the subject’s space using the
proposed registration method. As a result, population studies of the brain mi-
crostructure can be conducted with single b-value data that are clinically widely
available.

5 Conclusion and Discussion

This chapter introduced a framework for the analysis of diffusion compartment
imaging data. At the heart of this framework is the capability to compute
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Fig. 10. Results of fascicle-based spatial statistics (FBSS) in a population studies com-
paring the dorsal language circuit in patients with tuberous sclerosis complex (TSC)
and controls and comparing, within patients with TSC, those with autism spectrum
disorder (TSC+ASD) and those without the disorder (TSC-ASD). The dark curves
are the mean fractional anisotropy in the group and shaded areas around the curve
represent two standard errors. Grey rectangles are locations where the FA is signifi-
cantly different between the groups. FBSS reveals microstructural differences that the
analysis of single-tensor DTI fails to detect. If a heuristic multi-channel approach is
used to compute weighted combinations of DCI models, then some significant clusters
go missing. The landmarks 1, 2 and 3 correspond to those in Fig. 9. (Figure adapted
from [16]).
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Fig. 11. IDA reveals clusters of significantly higher fraction of isotropic diffusion in
children with TSC and a comorbid diagnosis of autism spectrum disorder than in
children with TSC but without autism. The significant clusters are represented in the
atlas space on an axial (left), coronal (center) and sagittal (right) slice. When the
multi-channel heuristic approach is used (bottom line), significant clusters are located
in the same areas but are less spatially coherent. (Figure adapted from [16])

weighted combinations of DCI models. This is a challenging problem because
of the absence of one-to-one correspondences between the compartments of dif-
ferent DCI voxels (such as adjacent voxels or voxels from different subjects).

By combining all the compartments from all the DCI models of the weighted
combinations, one obtain a new DCI model. This complete model is, however,
not practical due to its large number of compartments. For this reason, we want
to estimate a simplified model that approaches the complete model. Two ap-
proaches were introduced to simplify the complete model: a signal-preserving
approach and a microstructure-preserving approach. The former leads to a sim-
plified model whose generated signal is close to that generated by the complete
model, whereas the latter has microstructural properties that are close to the
original models. Importantly, the microstructure-preserving framework preserves
all eigenvalues and can work equally well for tensors that have a cylindrical sym-
metry and for tensors that have all three eigenvalues different. In particular,
averaging, smoothing or interpolating ball-and-sticks models lead to a ball-and-
sticks models with the microstructure-preserving operator. This is not the case
with the signal-preserving operator for which combining ball-and-sticks models
may lead to multi-tensor models. In that sense, the microstructure-preserving
operator generalizes the approach of Cabeen et al. [3] for clustering ball-and-
sticks, and defines a unique framework that can be used whether the radial
diffusivities are assumed null or finite.



The proposed weighted combinations operator for DCI models has far-reaching
applications in microstructure imaging. We have shown in the last section how
it can be used to perform registration, tractography, smoothing, atlas construc-
tion, population studies and how it can help in estimating DCI. Importantly,
the operator is general enough to be incorporated in various implementations
of these applications. For instance, one may be interested in developing a more
advanced filtering technique for DCI based on bilateral smoothing. Such an im-
plementation would simply require to adapt the weights of a smoothing kernel
and the proposed operator could still be used. Similarly, one may want to use an-
other algorithm for tractography, such as multi-tensor filtered tractography [7].
There again, the weighted combination operator can be incorporated to better
represent the DCI field at a non grid location.

Incorporating the novel operator in various applications enables us to fully
leverage DCI models in population studies of the brain microstructure, from
the estimation of the models to the statistical analysis of DCI models aligned
to an atlas. This opens new opportunities for the in vivo analysis of the brain
microstructure in the normal development and in diseases and injury.

A Algorithms for the weighted combinations of DCI

The detailed algorithms for the combination of DCI are presented in Algo-
rithm 1 the signal-preserving version and in Algorithm 3 for the microstructure-
preserving version.
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7: wk ← αmfmi
8: Dc

k ←Dmi
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11: Ω ← Initialization({Dc

k, wk}, Ns) . Initialize clustering
12: while Ω has not converged do
13: for j in 1 to Ns do . Representation
14: Ds
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X
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wk
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+
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21: end for
22: c(k)← arg minx Distance(x, k)
23: Ωc(k) ← Ωc(k) ∪ {k}
24: end for
25: end while



Algorithm 2 Update step in signal-preserving weighted combinations of DCI
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(Ds
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˛̨1/2 wk
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Algorithm 3 Microstructure-preserving weighted combinations of DCI
1: Input: (1) A set ofM models {Mm}m=1,...,M so thatMm is described by fractions
fmi and tensors Dmi (i = 1, . . . , Nm), (2) The weights αm associated with each
model, (3) The number Ns of compartments in the output, (4) a constraint matrix
C.

2: Output: A multi-fascicle model: Ms such that SMs(b, g) =
PNs
j=1 fje

−bgT Ds
jg

3: k ← 0
4: for m in 1 to M do . Construct the complete model Mc

5: for i in 1 to Nm do
6: k ← k + 1
7: wk ← αmfmi
8: Dc

k ←Dmi

9: end for
10: end for
11: Ω ← Initialization({Dc

k, wk}, , Ns, C) . Initialize clustering
12: while Ω has not converged do
13: for j in 1 to Ns do . Representation
14: Ds

j ←WeightedMean
˘

(wk,D
c
k)
¯
k∈Ωj

. given by Equation (6) or (8)

15: fj ←
X
k∈Ωj

wk

16: end for
17: Reset all Ωj to empty sets
18: for k in 1 to Nc do . Clustering
19: if ∃ k′ < k : C(k, k′) = 1 then . Check if k must be forced to some cluster
20: c(k)← c(k′)
21: Ωc(k) ← Ωc(k) ∪ {k}
22: else
23: ForbiddenClusters ← {j|Ωj ⊃ k′ < k and C(k, k′) = −1}
24: for j in 1 to Ns do
25: if j ∈ ForbiddenClusters then
26: Distance(j, k)←∞
27: else
28: Distance(j, k)← d′(Ds

j ,D
c
k) . d′ given by Equation (7) or (9)

29: end if
30: end for
31: c(k)← arg minx Distance(x, k)
32: Ωc(k) ← Ωc(k) ∪ {k}
33: end if
34: end for
35: end while
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