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A Mathematical Framework for the
Registration and Analysis of Multi-Fascicle Models
for Population Studies of the Brain Microstructure

Maxime Taquet∗, Benoit Scherrer, Olivier Commowick,
Jurriaan M. Peters, Mustafa Sahin, Benoit Macq, Simon K. Warfield

Abstract—Diffusion tensor imaging (DTI) is unable to repre-
sent the diffusion signal arising from multiple crossing fascicles
and freely diffusing water molecules. Generative models of the
diffusion signal, such as multi-fascicle models, overcome this
limitation by providing a parametric representation for the signal
contribution of each population of water molecules. These models
are of great interest in population studies to characterize and
compare the brain microstructural properties. Central to popu-
lation studies is the construction of an atlas and the registration of
all subjects to it. However, the appropriate definition of registra-
tion and atlasing methods for multi-fascicle models have proven
challenging. This paper proposes a mathematical framework to
register and analyze multi-fascicle models. Specifically, we define
novel operators to achieve interpolation, smoothing and averaging
of multi-fascicle models. We also define a novel similarity metric
to spatially align multi-fascicle models. Our framework enables
simultaneous comparisons of different microstructural properties
that are confounded in conventional DTI. The framework is
validated on multi-fascicle models from 24 healthy subjects and
38 patients with tuberous sclerosis complex, 10 of whom have
autism. We demonstrate the use of the multi-fascicle models
registration and analysis framework in a population study of
autism spectrum disorder.

Index Terms—Multi-Fascicle, Multi-Tensor, Microstructure,
Interpolation, Registration, Diffusion MRI, Population Studies

I. INTRODUCTION

Diffusion magnetic resonance imaging enables in vivo inves-
tigation of the brain microstructure. Diffusion tensor imaging
(DTI) has long been used in this context. However, DTI
confounds the signal arising from different fascicles and from
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diffusion of free water, challenging the interpretation of scalar
measures such as the fractional anisotropy (FA) and mean
diffusivity (MD) [1]. This limitation makes DTI inadequate
in the vast majority of the white matter since 60-90% of
voxels contain more than one fascicle, according to recent
estimates [2].

Various models have been proposed to overcome the lim-
itations of DTI. Among them, generative models such as
multi-tensor models [3], [4], CHARMED [5], NODDI [6] and
DIAMOND [7] seek to represent the signal contribution from
different populations of water molecules. These models are
based on underlying biological assumptions and are of great
interest to characterize and compare white-matter properties.
For example, assessment of the free water diffusion arising
from the extracellular space may be useful for the character-
ization of edema or inflammation [8]. A neuroinflammatory
response may indeed lead to an increase in the amount of free
diffusion [9]. Modeling of each individual fascicle may be
useful to characterize properties such as the fascicle density,
the axonal diameter distribution or the myelin integrity [10].

In this context, multi-tensor models are particularly interest-
ing for three reasons. First, they enable the direct generaliza-
tion of conventional measures computed from DTI (FA, MD,
etc.) by enabling their computation for each fascicle indepen-
dently. Second, they provide a model for the unrestricted water
diffusion. Third, they can be estimated from short acquisition
sequences that are clinically available [3], [11]. At each voxel,
multi-tensor models represent the diffusion signal M for a
gradient direction g and a b-value b by:

M = S0

N∑
i=1

fie
−bgT Dig, (1)

where N is the maximum number of fascicles crossing in
one voxel and fi is the volumetric fraction of fascicle i (with∑
i fi = 1). Unrestricted water diffusion is represented as one

of the compartments with an isotropic tensor (D = DisoI3).
Conducting population studies based on multi-fascicle mod-

els (MFM) requires the alignment of all models to a common
coordinate system (the atlas). Registering and atlasing multi-
tensor images are known to be challenging and many studies
attempt to perform population analyses without resorting to
them [12], [13], [14], [15]. In [12], a T2-weighted image
of the subject is registered to a DWI at b = 0 and corre-
spondence between subjects is achieved by segmenting the
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anatomy based on a T1-weighted atlas. In tract-based spatial
statistics (TBSS) [13], single-tensor images are estimated and
FA images are used to spatially align subjects. To inter-
pret anisotropies in crossing fiber areas, heuristics based on
the mode and FA of the tensor are used. In crossing-fiber
TBSS [15], a ball-and-sticks model is estimated but spatial
alignment is still based on single-tensor FA images. None
of these approaches attempt to register multi-tensor models
directly.

Direct registration of multi-fascicle models is important
since the latter provide increased contrast in areas where T2-
weighted images and FA images are almost constant (as will
be shown in Section IV-C). Furthermore, multi-tensor image
registration can be made invariant with respect to differences
in FA and MD, which is important when those properties need
to be compared after alignment. The challenges of registering
and analyzing multi-fascicle models stems from difficulties in
processing multi-tensors. In particular, interpolating, averag-
ing, smoothing and defining robust similarity metrics for multi-
fascicle models cannot be directly extended from the single-
tensor case. This is because the j-th tensor in one voxel does
not necessarily correspond to the same fascicle as the j-th
tensor in another voxel. Furthermore neighboring voxels may
contain different number of fascicles.

Interpolation and smoothing are required in registration
to apply transforms and to prevent aliasing in multi-scale
approaches. Building an atlas further requires averaging MFM.
From a mathematical perspective, interpolating, smoothing
and averaging all amount to computing weighted combina-
tions of MFM. In this paper, we propose a mathematical
framework to compute weighted combinations of MFM and a
similarity metric to register them. These developments enable
registration and analysis of multi-fascicle models which open
new opportunities for population studies of microstructural
properties. These contributions extend our previous work [16]
by providing detailed derivations, experiments and discussions.

Section II introduces the mathematical framework to process
multi-fascicle models. Section III details how the mathematical
framework is applied to statistically analyze properties of the
brain microstructure across populations. Section IV presents
results on in vivo data. Finally, Section V concludes.

II. MATERIAL

This section introduces the components of the proposed
mathematical framework for multi-fascicle models.

A. Weighted combinations of multi-fascicle models for inter-
polation, averaging and smoothing

Computing weighted combinations of multi-fascicle models
is at the basis of interpolation, smoothing and averaging.
The linear combination of K mixture models each with N
components results in a mixture with KN components that

we call the complete model:

Mc =
K∑
k=1

wkMk =
K∑
k=1

wk

N∑
j=1

fkj S
k
j (g) (2)

≡
KN∑
i=1

f ci S
c
i (g) = Sc0

KN∑
i=1

f ci e
−bgT Dc

i g. (3)

In most practical applications, increasing from N to KN
the number of components is not desirable. We therefore
estimate a simplified model, Ms, with N components which
best approximates the complete model:

Ms =
N∑
j=1

fsj S
s
j (g) = Ss0

N∑
j=1

fsj e
−bgT Ds

jg (4)

= arg min
Ms

D(Mc,Ms), (5)

where D(., .) is some discrepancy measure between the
complete and simplified models. This problem is known as
mixture model simplification for which efficient approaches
have recently been proposed [17], [18], [19]. In [17], the sim-
plified mixture model is defined as that which minimizes the
cumulative differential relative entropy between the complete
and simplified models:

D (Mc,Ms) =
N∑
j=1

∑
i:πi=j

f ciD
(
Sci (g)‖Ssj (g)

)
(6)

=
N∑
j=1

∑
i:πi=j

f ci

∫
R3
Sci (g) log

Sci (g)
Ssj (g)

dg.

The variables πi cluster the components Sci of the complete
mixture into N clusters each represented by a single com-
ponent of the simplified mixture, Ssj ; πi = j means that Sci
is best represented by Ssj . Banerjee et al. [17] showed that,
as long as Sci (g) and Ssj (g) belong to the exponential family,
Equation (6) can be optimized in an expectation-maximization
scheme for which both the E-step and the M-step can be
solved in closed form (Fig. 1). This makes the computation
of weighted combinations of multi-fascicle models tractable.
Mixtures of distributions from the exponential family is a
wide class of mixtures which includes Gaussian mixtures [4],
ball-and-sticks models [20], composite hindered and restricted
models [21], diffusion directions models [22], Watson and
Bingham distributions [6].

In the case of multi-tensor models, the E-step consists
in optimizing for the clustering variables πi assuming Ssj
are known, based on the Burg divergence B(., .) between
covariances Σ = D−1:

πi = arg min
j

B
(
Σc
i ,Σ

s
j

)
= arg min

j

[
Tr
(
Σc
iΣ

s
j
−1
)
− log

∣∣∣Σc
iΣ

s
j
−1
∣∣∣] . (7)

The M-step then consists in optimizing the parameters of
the simplified mixture (that is Ds

j and fsj ) to minimize (6)
providing that we know πi. Davis and Dhillon [18] proved
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Fig. 1. Computing weighted combinations of multi-fascicle models amounts to computing the complete mixture Mc and simplifying it in an EM scheme
to obtain Ms. The E-step is a clustering problem and the M-step consists in averaging log-tensors in each cluster.

that this step amounts to computing the weighted average of
covariance matrices and fractions in each cluster:

Σs
j =

∑
i:πi=j

f ci Σ
c
i∑

i:πi=j
f ci

and fsj =
∑
i:πi=j

f ci . (8)

Alternating the E-step (7) and M-step (8) until convergence
provides the parameters (fsj and Ds

j) of the weighted com-
bination of mixtures. Initialization is required to control the
local minimum to which EM will converge. We initialize the
clustering variables πi by spectral clustering using the cosine
similarity matrix between the primary eigenvector ei of each
tensor Dc

i [23]. We found this initialization to be efficient
in our experiments. However, since the algorithm typically
converges in a few steps, one may consider running it multiple
times with various initializations and selecting the result that
yields the lowest cumulative differential relative entropy.

One may be concerned about the swelling effect due to aver-
aging covariance matrices in (8). This motivates the definition
of a log-Euclidean version of the mixture model simplification
described above, as it has been defined for single-tensor
interpolation [24]. This is achieved by replacing the covariance
matrices by their matrix logarithm before performing the EM.
The update of the covariance matrices now reads:

log Σs
j =

∑
i:πi=j

f ci log Σc
i∑

i:πi=j
f ci

.

Since log Σ = logD−1 = − logD, the logarithmic ver-
sion of the weighted combination of multi-fascicle models
is equivalent to its single-tensor counterpart in voxels with
only one tensor. This is not the case in the Euclidean version
since covariance matrices, rather than tensors, are averaged. A
pseudocode of the method is presented in Algorithm 1.

Importantly, due to the construction of a complete model,
the framework described above does not depend on the label
i assigned to tensors in the multi-tensor model and accounts
for cases where the number of tensors differs between voxels.

B. A generalized correlation coefficient as a similarity metric
for multi-fascicle models

To register multi-fascicle models, a similarity metric be-
tween multi-tensor images needs to be defined. Since regis-
tration is used for population studies, the similarity metric
must be invariant to inter-subject variability. In particular, since

Algorithm 1 Weighted Combinations in one voxel
1: Input: K multi-fascicle models Mk with weights wk

and the number N of fascicles in the output.
2: Output: A multi-fascicle model:

∑N
j=1 f

s
j e
−bgT Ds

jg

3: for k in 1 to K do . Construct the complete model Mc

4: for j in 1 to N do
5: i← (k − 1)N + j
6: f ci ← wkf

k
j

7: Dc
i ←Dk

j

8: end for
9: end for

10: π ← Initialization({Dc
i , f

c
i }j≤NK) . Initialize clustering

11: while π has not converged do
12: for j in 1 to N do . M-Step
13: logDs

j ←
(∑

i:πi=j
f ci logDc

i

)/(∑
i:πi=j

f ci

)
14: fsj ←

∑
i:πi=j

f ci
15: end for
16: for i in 1 to KN do . E-Step
17: for j in 1 to N do
18: Bi(j)← Tr

(
Dc
i
−1Ds

j

)
− log

∣∣∣Dc
i
−1Ds

j

∣∣∣
19: end for
20: πi ← arg minlBi(l)
21: end for
22: end while

mean diffusivity and fractional anisotropy are typically used as
potential biomarkers for diseases, the similarity metric must be
invariant to changes in FA and MD. This observation has lead
Zhang et al. to define a single-tensor similarity metric based on
deviatoric tensors, making it invariant to changes in MD [25],
though not robust to other differences in diffusivity profiles. In
this section, we generalize the correlation coefficient widely
used in scalar images when intensities differ between subjects
and we show that this similarity metric is invariant under
changes in FA and MD.

The correlation coefficient as a similarity metric for block
matching is defined as the scalar product between the normal-
ized blocks. For voxels with values in R, the blocks R and
S defined over a domain Ω with |Ω| voxels are elements of
R× ...× R = R|Ω| and the correlation coefficient reads:

ρ(R,S) =
〈

R− µR
‖R− µR‖

,
S − µS
‖S − µS‖

〉
, (9)
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where µ is the mean of the image values in the block and 〈., .〉
is the canonical scalar product in R|Ω|. It is invariant if R is
replaced by aR+ b.

For vector images with values in Rn, blocks are elements
of Rn× ...×Rn = (Rn)|Ω|. The correlation coefficient can be
generalized to vector images by redefining the means µR and
µS as the projection of the block onto a block T ∈ (Rn)|Ω|

that has a constant value at each voxel, i.e. T (x) = t0 ∀x [26]:

R− µR = R− 〈R, T 〉‖T‖2 T. (10)

The factor 〈R, T 〉 /‖T‖2 is a scalar that we call the scalar
mean and is equal to µR for scalar images. Equation (9) is
therefore a particular case of (10) for n = 1 and t0 = 1. This
generalized correlation coefficient can be used in any vector
space endowed with an inner product. It is invariant if R is
replaced by aR + bT where a and b are scalars and T is the
chosen constant block.

Let us first generalize the correlation coefficient to single-
tensor diffusion images which will prove useful for the gen-
eralization to multi-tensor images. Single-tensor blocks are
elements of (S+

3 )|Ω|, where S+
3 is the space of 3×3 symmetric

positive definite matrices. It is typically more convenient to
work in the log-tensor space in which blocks are elements
of (S3)|Ω|. This space is endowed with the Frobenius inner
product and the correlation coefficient of (10) can be readily
applied. Choosing t0 = I3, the correlation coefficient is invari-
ant under linear transformation of the log-tensor eigenvalues:
log λi → log λ′i = a log λi + log b due to the invariance
logD → logD′ = a logD + log bI3. It is instructive to
observe what the definition of the scalar mean becomes in
this space with the Frobenius inner product. We have:

µS3 =
〈D,T 〉
‖T ‖2 (11)

=
∑

x∈Ω 〈logD(x), I3〉F∑
x∈Ω 〈I3, I3〉F

(12)

= log

(∏
x∈Ω

λ1(x)λ2(x)λ3(x)

) 1
3|Ω|

(13)

=̂ log
(
λGΩ
)
. (14)

The generalized scalar mean for blocks of single-tensors is
therefore the logarithm of the geometric mean λGΩ of diffusiv-
ities over the domain Ω.

Defining a scalar product in the space (SM)|Ω| of blocks
of multi-tensors seems impractical if not impossible. We fur-
ther generalize the correlation coefficient (10) by substituting
the inner product 〈., .〉, by a more general scalar mapping:
m(., .) : S |Ω|×S |Ω| → R for any space S |Ω|. The generalized
correlation coefficient becomes:

ρ(R,S) = m

(
R−m(R, T )T

nm(R−m(R, T )T )
,

S −m(S, T )T
nm(S −m(S, T )T )

)
,

where nm(X)2 = m(X,X) is a generalization of the norm,
and T is assumed normalized (nm(T ) = 1).

This expression does not guarantee the invariance of the
generalized correlation coefficient (GCC) with respect to linear

changes of the blocks: R → R′ = aR + bT . Furthermore, in
order to remain interpretable, the GCC must be symmetric,
equal to one in case of perfect match and lower than one in
any other case:

ρ(aR+ bT, S) = ρ(R,S) (15)
ρ(R,S) = ρ(S,R) (16)
ρ(R,R) = 1 (17)
|ρ(R,S)| ≤ 1. (18)

These constraints on ρ impose constraints on the scalar map-
ping m. One can show that constraints (15-18) are satisfied if
the following constraints are respected by m:

m(aR+ bT, T ) = am(R, T ) + bm(T, T ) (19)
m(R,S) = m(S,R) (20)
nm(aR) = anm(R) (21)
|m(R,S)| ≤ nm(R)nm(S). (22)

The latter generalizes the Cauchy-Schwartz inequality. Being
a scalar product is a sufficient but unnecessary condition to
respect these constraints. Therefore, constraints (19-22) as
well as the choice of a constant block T and suitable basic
operations (to define the multiplication by a scalar and the
addition of the constant block T ), stand together as a model
to generate correlation coefficients in potentially any space,
even when an inner product cannot be defined.

In the case of multi-fascicle models, we further want
the similarity metric between two multi-tensor blocks
M1(x) =

∑N
i=1 f

1
i (x)e−bg

T D1
i (x)g and M2(x) =∑N

i=1 f
2
i (x)e−bg

T D2
i (x)g to be equal to the single-tensor

similarity metric if the blocks contain only one tensor in each
voxel. This can be achieved if the scalar mapping is equal
to the Frobenius inner product when all but one fractions are
equal to zero. We therefore add a fifth constraint on the scalar
mapping:

If f1
j = 1, f1

i 6=j = 0, f2
k = 1, f2

i6=k = 0,

⇒ m(M1,M2) =
∑
x∈Ω

〈
logD1

j (x), logD2
k(x)

〉
F
. (23)

We define the multiplication of multi-tensors by a scalar a
as the multiplication of all log-tensors by a and the addition
of the constant block T as the addition of t0 to all log-tensors.
These definitions naturally generalize the single-tensor case. A
generalized scalar mapping m comes by computing pairwise
scalar products between corresponding tensors. This requires
to pair tensors between the two blocks at each voxel. We
introduce the following notation:

d(p,x) =
N∑
i=1

f1
i (x)f2

p(i)(x)
〈

logD1
i (x), logD2

p(i)(x)
〉
,

where p is the pairing function which associates one and only
one tensor of M1 to one and only one tensor of M2. For
N−fascicle models, there are N ! such pairings. We define the
scalar mapping for multi-tensor images as:

m(M1,M2) =
∑
x∈Ω

d

(
arg max

p

∣∣d(p,x)
∣∣,x). (24)
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Atlas

Single-Tensor 
Atlas

Fig. 2. Single-tensor and multi-fascicle atlases overlaid on the T1-weighted MRI atlas. The multi-fascicle atlas presents tensors with higher fractional
anisotropies than the single-tensor atlas. This is due to the account of both the free water diffusion in the isotropic compartment and the multiple fascicle
present in the voxel. The highlighted regions represent the corona radiata where projections of the corpus callosum cross cortico-spinal tracts, and a region
where the pyramidal tracts (vertical lines) and the medial cerebellar peduncle (horizontal lines) cross.

In practice, the values of d(p,x) for all N ! pairings p are
computed and we select the one with the highest absolute
value. This scalar mapping satisfies (19-23). The absolute
value is required by Condition (23) for cases where the
Frobenius inner product between the tensors is negative. To
better interpret this generalized scalar mapping, it is instructive
to assess how it generalizes the concept of scalar means and
norm to multi-fascicle models. The generalized scalar mean is
given by:

µSM =
m(M, T )
m(T, T )

=
∑

x∈Ω

∑N
i=1 fi(x) 1

N 〈logDi(x), I3〉F∑
x∈Ω

∑N
i=1

1
N2 〈I3, I3〉F

= log

(∏
x∈Ω

N∏
i=1

(
λi1(x)λi2(x)λi3(x)

) fi(x)
3|Ω|

)
.(25)

Remarkably, the generalized scalar mean for multi-fascicle
model is the geometric mean of the diffusivities within the
block for which all fascicles contribute in a ratio that is
equal to their volumetric fraction fi in their voxel. As for
the generalized norm of multi-fascicle models, it is given by:

n2
m(M) = m(M,M) =

∑
x∈Ω

N∑
i=1

fi(x)2‖ logDi(x)‖2F,

(26)
that is the sum of the Frobenius norms of each log-tensor,
weighted by the squared fractions. To demonstrate the lat-
ter expression, we need to show that the absolute value

of d in (24) is maximized if the pairing p pairs a fas-
cicle (in M1 = M) with itself (in M2 = M). The
proof is straightforward using the Cauchy-Schwartz inequality
on elements X = (f1 logD1, ..., fN logDN ) and Yp =
(fp(1) logDp(1), ..., fp(N) logDp(N)). Both the generalized
scalar mean and the generalized norm therefore have direct
interpretations in terms of multi-fascicle models.

More importantly, the proposed generalized scalar mapping
leads to a GCC that is invariant under linear transformations
of the eigenvalues of each log-tensor. In other words, ρ
for multi-fascicle models is invariant under the following
transformations (i = 1, 2, 3):

log λi → a log λi + log b,∀a ∈ R and ∀b ∈ R+,

or, equivalently

λi → bλai , ∀a ∈ R and ∀b ∈ R+, (27)

for all fascicles. In particular, this invariance property encom-
passes differences in mean diffusivity (MD) for unchanged FA
if a 6= 1 and b = 1. Similarly, changes in FA with unchanged
MD can be obtained by varying a and b in a specific manner.
Indeed, MD is preserved under changes of the eigenvalues
following Equation (27), if b(λa1 + λa2 + λa3) = λ1 + λ2 + λ3.
For any given set of eigenvalues and any given a, there exists a
b that satisfies this relation. One can therefore fix a to match
the desired FA and subsequently fix b to respect this MD-
preserving relation (since b does not affect the FA). Finally,
by varying both a and b in an unconstrained manner, various
changes in MD and FA can be accounted for by the invariance
property of the GCC.
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This similarity metric therefore allows registration of sub-
jects with locally different diffusivity profiles. Importantly,
because of the presence of the fractions f1 and f2 in the
scalar mapping, the GCC accounts for cases where the number
of tensors is different in different voxels (the corresponding
fraction will simply be set to zero).

III. METHODS

With the framework developed in the previous section, we
can now perform population studies by constructing a multi-
fascicle atlas and registering all subjects to it. From there,
we can employ our novel operators including interpolation
and averaging of multi-fascicle models to perform different
statistical analyses of brain microstructural properties.

A. Registration and Atlasing

Multi-fascicle models are estimated in the coordinate system
of a T1-weighted MRI of the same subject (see Section III-D).
The registration between multi-fascicle models is initialized by
affine registration of the T1-weighted MRI using the Baladin
method [27], yielding a transformation T 0.

The weighted combinations of multi-fascicle models and the
GCC are introduced in a robust multi-scale block matching
registration algorithm developed in [28]. A dense deformation
field is estimated through the following steps:

· For each pyramid level p = 1, ..., P

· For each iteration i = 1, ..., N

� Estimate sparse pairings C between R and
F ◦ T i−1 by block-matching

� Interpolate a dense correction field δT i from C
using a Gaussian kernel and weighted by the
confidence in the matches as in [29].

� Reject a fixed amount of outliers from C based
on their dissimilarity with the estimated δT i

� Estimate an outlier-free correction δT̃ i

� Compose the correction δT̃ i with the current es-
timate of the transform T i = T i−1 ◦ δT̃ i

� Apply elastic regularization to the field T i

In our implementation, P = 4, N = 10, block sizes
are 5 × 5 × 5, and the outlier removal rate is 20%. The
weighted combinations of multi-fascicle models are used to
interpolate multi-tensor images when applying the deformation
or constructing the multi-scale representation of the image.
When warping tensor images (and hence multi-tensor images),
tensors need to be reoriented. This reorientation is performed
using the finite-strain rationale [30].

Registration is then used iteratively to build an atlas based
on the method developed in [31]. This method essentially
alternates between aligning and averaging images. To average
multi-tensor images, we use the weighted combination of
multi-fascicle models described above. Ten iterations are used
to build the final atlas. The resulting atlas for single-tensor
and multi-tensor images are depicted in Fig. 2.

(a)

(b)

(c)

?

Fig. 3. Fascicle-based spatial statistics (FBSS) proceeds in three steps. (a)
Fascicles (grey line) are drawn on the atlas with a sub-voxel resolution. The
point in the middle is at a non-grid location. (b) Multi-fascicle models are
interpolated at non-grid locations. (c) At each location along the fascicle, the
tensor most aligned to the fascicle is selected to compute the property of
interest (FA, MD, etc.).

B. Statistical Analysis: Fascicle-Based Spatial Statistics

With all subjects aligned to the multi-fascicle atlas, we can
compare properties of the aligned tracts through fascicle-based
spatial statistics (FBSS) (Fig. 3). Tractography is performed
once on the atlas using the multi-fascicle tractography method
described in [32], [33], [34] and adapted to include the multi-
fascicle interpolation. For each registered subject, the tensor
most aligned with the tract is selected and its property of
interest (FA, MD, etc.) is computed. This provides, for each
subject, a vector of length n (the number of points on the tract),
representing the microstructural property along the fascicle.

Point-by-point t-tests are carried out along the tract to
compare its properties between the two groups. This yields
a vector t of n t-scores. Since the smoothness of the tract
property depends on the individual, the tract and the resolution
of the tractography, we use a non-parametric correction for
multiple comparisons based on cluster-based statistics [35].
This method assumes that differences along the tract occur in
clusters of adjacent points and proceeds as follows:

1) Define a threshold t0 on the t-statistics.
2) Define a binary vector b of supra-threshold t-statistics:

b = (t > t0).

3) Detect the connected components C = {ci} in b.
4) For each connected component ci, compute its size si

(number of points) and its mass mi (sum of t-scores).
5) Randomly permute Np times the subjects in the groups

(i.e. randomly reassign subjects to either groups) and
perform Steps 1-4 for each permutation. For each permu-
tation k, record the maximum size skp and the maximum
mass mk

p among the detected clusters.
6) The recorded skp and mk

p describe the null distributions
of the size and mass of the clusters. Corrected for
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Fig. 4. Average RMS error of the deformation fields obtained by registering
a multi-fascicle model with itself after randomly relabeling tensors. Our
framework is invariant under relabeling leading to an error that is exactly zero.
By contrast, multi-channel registration yields non-zero deformation fields.

multiple comparisons, the p-values of each connected
component ci testing for its likelihood to be due to
chance alone are:

psi =
1

Np + 1

1 +
Np∑
k=1

δ(skp > si)


and pmi =

1
Np + 1

1 +
Np∑
k=1

δ(mk
p > mi)


for the size statistics and the mass statistics, respectively.

With FBSS, local fascicle segments where the two groups
significantly differ can be discovered. Several t−thresholds
t0 are typically used to assess the robustness of the findings.
Higher t0 yield smaller clusters of stronger differences.

C. Statistical Analysis: Isotropic Diffusion Analysis

Large isotropic fraction fiso indicates an excessive extracel-
lular volume [36] which is in turn a surrogate for the presence
of edema or neuroinflammation [8]. Isotropic diffusion analy-
sis (IDA), i.e. the statistical analysis of the isotropic fraction,
is thus of strong interest for population studies of disease
involving these pathologies. The isotropic fraction is non-
Gaussian since it ranges between 0 and 1. We apply the logit
transform to fiso prior to computing t-tests. This transform
brings the distribution of fiso closer to normality. Specifically,
we transform fiso-maps into liso-maps where:

liso = logit(fiso) = log
(

fiso

1− fiso

)
.

To prevent liso to take on infinite values when fiso = 0 or 1, we
bound the latter within [10−6, 1−10−6]. We then carry cluster-
based statistics on the liso-maps with the cluster size and cluster
masses as quantities of interest, as described in [35].

D. In vivo data

In vivo DWI were acquired on a Siemens 3T Trio scanner
with a 32 channel head coil using the CUSP-45 gradient
sequence [3]. This sequence includes 30 diffusion-encoding
gradients on a shell at b = 1000s/mm2 and 15 extra gradients

in the enclosing cube of constant TE with b-values up to
3000s/mm2. Eddy current distortion was minimized using a
twice-refocused spin echo sequence [37]. Other acquisition
parameters were set to FOV= 220mm, matrix= 128 × 128,
number of slices=68, resolution = 1.7 × 1.7 × 2mm3. Data
acquisition was conducted using a protocol approved by the In-
stitutional Review Board (IRB). The DW images were aligned
to the 1×1×1mm3 T1-weighted MRI with rigid registration
(using the mean b = 0 image as a moving image) and the
gradients were reoriented appropriately. This compensates for
patient head motion and for residual geometric distortions due
to magnetic field inhomogeneity and eddy current.

A multi-fascicle model with three tensors including an
isotropic compartment were estimated as in [3]. Images
were acquired for 24 healthy controls and 38 patients with
tuberous sclerosis complex (TSC): 10 diagnosed with autism
(TSC+ASD), 17 diagnosed without (TSC-ASD) and 11 too
young for diagnosis.

IV. RESULTS

In this section, we validate the presented framework for
multi-fascicle models. We systematically compare our results
with those obtained when multi-tensor images are seen as
a stack of single-tensor images on which multi-channel ap-
proaches to registration and averaging can be applied.

A. Relabeling Invariance Study

Multi-fascicle models assign arbitrary labels i to tensors
in Equation (1). The framework must therefore be invariant
under relabeling of tensors. In this experiment, we randomly
relabeled tensors 10 times for each of the 24 healthy controls
and performed registration between the result and the original
image. Using the proposed framework, the deformation fields
obtained were exactly the identity. By contrast, using the
multi-channel registration, a significantly non-zero deforma-
tion field resulted from the registration of relabeled multi-
fascicle models (Fig. 4). This result demonstrates the failure of
multi-channel registration for multi-fascicle models. In what
follows, tensors are labeled based on their FA (D1 has the
highest FA and DN the lowest) to allow a fair comparison
between the two approaches.

B. T−1 ◦ T Study: Assessment of the Interpolation Error

For any transformation T , the composition T−1 ◦T is equal
to the identity. Therefore, for any image A, T−1 ◦T ◦A = A.
However, if we first compute (T ◦A) and then apply T−1 to
the result, we do not obtain exactly the original image A due
to interpolation error. Comparing the result Ã = T−1◦(T ◦A)
to the original A thus provides estimates of the interpolation
error, independently from the similarity metric.

We investigated the residual error of T−1◦T◦A to compare
the interpolation error of the proposed approach for linear
combinations and the multi-channel alternative. The experi-
ment was conducted with three different affine transformations
T that were applied to the multi-fascicle models of the 24
healthy controls: (1) a transformation that maps the DWI to
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Fig. 5. Estimation of the interpolation errors demonstrates the superiority
of the proposed approach compared to the multi-channel alternative to
compute linear combinations of multi-fascicle models. The bar plots show
the interpolation error for four metrics (∆FA, ∆MD, Fro and ∆Dir) under
three different transformations.

the T1-weighted image, (2) a translation by half a voxel in
all directions, (3) a rotation of 45 degrees around the vertical
axis.

The result Ã is compared to the original multi-fascicle
model A in terms of the following four similarity metric

Fig. 6. (Left) Performing interpolation for each tensor independently (con-
sidered as channels of a multi-channel image) confounds fascicles resulting
in an inflated result. (Right) Weighted combination of multi-fascicle models
introduced in our mathematical framework clusters similar fascicles to avoid
the inflation effect. (a-b) Results obtained on synthetic data by interpolating
the multi-fascicle models at the extremities. (c-d) Results obtained on in vivo
data by applying a linear transform to a multi-fascicle model.

computed at each voxel:

∆2
FA =

N∑
i=1

fi + f̃i
2

(FA(Di)− FA(D̃i))2 (28)

∆2
MD =

N∑
i=1

fi + f̃i
2

(MD(Di)−MD(D̃i))2 (29)

Fro2 =
N∑
i=1

fi + f̃i
2
‖Di − D̃i‖2F (30)

∆Dir =
N∑
i=1

fi + f̃i
2

(1− |e1,i.ẽ1,i|) , (31)

where e1,i is the principal eigenvector of tensor Di with unit
norm. The last equation assesses how aligned the resulting
tensors are to the original tensors.

The results, summarized in Fig. 5, demonstrate that the use
of the proposed method decreases the interpolation error as
compared to the multi-channel alternative, for all similarity
metrics and for all three transformations. On average, this
decrease varies in magnitude from 38% for ∆MD to 73%
for ∆Dir. One-tailed paired t-tests indicate that the decreases
are significant in all cases (p < 10−12). An example of
interpolation obtained with both methods is depicted in Fig. 6
and presents a portion of the corona radiata where fascicles
cross. In this region, the multi-channel approach confounds
the fascicles and fails to interpolate the multi-fascicle model.

TABLE I
SUMMARY STATISTICS OF THE TARGET REGISTRATION ERROR IN THE

SCAN-RESCAN STUDY

Metric Mean St. dev. P(Accuracy ≤ 1)
CFA 1.79 2.79 67.3%
CDTI 2.18 3.05 59.4%
CMC 3.34 4.18 47.5%
GCC 0.98 1.66 83.4%

C. Scan-Rescan Study: Evaluation of the Similarity Metric

In this section, we independently assess the accuracy of the
similarity metric. We exploited two sets of 45 DWI acquired
on the same subject during the same scanning session. The
subject was required not to move and remained still throughout
the acquisition. The two sets of DWI are thus intrinsically
aligned. A multi-fascicle model as well as a single-tensor DTI
were estimated from each set. The two multi-fascicle models
differ due to acquisition noise, artifacts, and estimation errors.
This scan-rescan experiment therefore provides a unique op-
portunity to estimate the accuracy of the proposed similarity
metric in a realistic scenario.

A total of 495 landmarks were defined on a regular grid
within the first image (Fig. 7(a)). Landmarks were spaced 7
voxels apart in all directions. Blocks of size 5 × 5 × 5
were defined around each landmark and correspondence were
sought in a neighborhood of size 21× 21× 21 in the second
image. Since there is no transformation between the two
images, the true correspondence xtrue is located at the center
of the neighborhood. The accuracy of the best match xmax
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Fig. 7. The GCC for multi-fascicle models outperforms other metrics in
terms of registration accuracy, as assessed by a scan-rescan experiment. (a)
495 regularly spaced landmarks are used for the experiment. (b) Similarity
maps in four neighborhoods (circles indicate true matches) showing that GCC
is the most specific metric. (c) In regions with no contrast in FA, the GCC
is able to find correct matches due to robust patterns observed in multi-
fascicle models. (d) The accuracy of the GCC is significantly better than
all other metrics as seen by the cumulative distribution function (CDF). (e)
No significant difference in saliency between the metrics are observed, except
for a significantly higher saliency with CDTI.

(that maximizes the similarity C(x)) and the saliency of the
true match are:

Accuracy = ‖xmax − xtrue‖

Saliency =
C(xtrue)− C̄

σc
, (32)

where C̄ and σc are the mean and standard deviation of the
similarity metric within the neighborhood.

Results for these two indices were compared amongst four
different metric (1) the correlation coefficient applied to FA
images (CFA), (2) the correlation coefficient generalized to
single-tensor DTI (CDTI), (3) the multi-channel correlation
coefficient applied to multi-tensors (CMC) and the GCC for
multi-fascicle models (GCC). Fig. 7(b) depicts the similarity
maps for four different neighborhoods with each metric.

Neighborhood 1 in Fig. 7(b) illustrates the case of a specific
white matter landmark, for which all four metrics perform
equally well. Neighborhood 2 illustrates a case of a specific
white matter landmark located at the intersection of crossing
fascicles. In this case, both metrics based on multi-fascicle
models find the correct match. Matching based on FA has

DTI-TK Our framework
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Fig. 8. Registering multi-fascicle models with our framework leads to
higher alignment accuracies than registering single-tensor DTI with DTI-
TK. (a) Quantitative assessment shows that registration errors using our
framework are significantly lower than those obtained with DTI-TK [25].
(b) The difference in registration error is mostly visible in areas with crossing
fascicles, where single-tensor DTI models have low contrast compared to
multi-fascicle models. The zoomed-in areas are located in the corona radiata.

more spurious maxima and matching based on DTI is offset
because the single-tensor is a poor model of the diffusion
signal in this region. Finally, Neighborhoods 3 and 4 show
landmarks located at the boundary between the white and
grey matter. In this area the microstructure is more complex.
Multi-fascicle models are required in these regions to find a
correct match. The multi-channel metric fails to detect the
correct correspondence if tensors are not properly paired (see
Neighborhood 4).

Fig. 7(c) depicts the volumetric fraction (shown as a color
image) in areas where the FA displays no contrast. The
fractions show a clear pattern of alternation between isotropic
diffusion (blue) and single (green) or multi-fascicle (brown)
orientation. These patterns are repeated in both the scan and
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Fig. 9. Our mathematical framework leads to higher registration accuracies
than the multi-channel alternative: the RMS errors (top) and its variance
(bottom) are significantly lower. Results are shown for 1,440 registrations
performed at various SNR for synthetic deformation fields (* p < 0.05,
** p < 0.005, *** p < 0.001).

the rescan and therefore enable accurate matching.
Quantitatively, the GCC for multi-fascicle models signifi-

cantly outperforms all other metrics in terms of accuracy (one-
tailed paired t-test: p < 10−8), as depicted in Fig. 7(d) and
summarized in Table I. The average gain in accuracy CFA is
45%. Importantly, the probability for the accuracy to be lower
or equal to 1, that is the fraction of landmarks for which the
best match was found in the direct neighborhood of the true
match, is P (Accuracy ≤ 1) > 80% for the GCC while it is
lower than 70% for all other metrics. These results suggest that
the remaining registration error would likely be eliminated by
regularization and outlier removal in the registration algorithm.
No significant difference was observed in terms of saliency
except for a significantly larger saliency for CDTI which may
partially counterbalance its poorer accuracy in registration.

D. Comparison with Single-Tensor DTI Registration

As an alternative to the proposed approach for registration,
one may suggest to register single-tensor DTI and use the
resulting deformation fields to deform the multi-fascicle mod-
els. Such a method would not require any similarity metric
between multi-tensors but would still require our framework
to apply the deformation field to the multi-fascicle models. In
this experiment, however, we illustrate that directly registering
multi-fascicle models is more accurate than registering DTI.

We compared DTI registration and multi-fascicle registra-
tion under the application of a synthetic deformation field. Us-
ing a full dataset of 45 DWI form one subject, resampled to the
T1-weighted space at a resolution of 1 mm×0.86 mm×0.86
mm, we estimated both a DTI and a multi-fascicle model.
Both models were deformed by the same random synthetic
log-Euclidean polyaffine transform (the true field) obtained by
drawing parameters from a Gaussian with zero mean and 0.05
standard deviation for 27 regularly spaced affine components
(this results in a field with a mean magnitude of 6.9 voxels and
a maximum magnitude of 42 voxels) [38]. The single-tensor
registration was performed using DTI-TK (version 2.3.1) [25]
with the default parameters and after properly rescaling ten-
sors. The multi-fascicle registration was performed using our
framework. The resulting fields were applied to the original

multi-fascicle model and the results were compared, in terms
of metrics (28)-(31), to the multi-fascicle model deformed
by the true field. We also computed the norm (∆field) of
the difference between the deformation field obtained by
registration and the true field. All comparisons were conducted
within a mask that excludes the background.

In terms of all five metrics, registering the multi-fascicle
models with our framework significantly improves the align-
ment accuracy compared to single-tensor registration with
DTI-TK (one-sided paired t-test: p < 10−6 for all six metrics)
as depicted on Fig. 8(a). The differences in accuracy between
the two approaches are mostly visible in areas with crossing
fascicles, such as the corona radiate as shown in the zoomed-
in areas of Fig. 8(b). In these regions, single-tensor DTI
have low contrast and DTI-TK is therefore less reliable than
our approach which takes advantage of the full multi-fascicle
model in the registration.

E. Synthetic Fields Study

In this experiment, we compare the registration accuracies
when synthetic deformation fields are applied to multi-fascicle
models. Ten random log-Euclidean polyaffine deformation
fields are generated by drawing parameters from a Gaussian
with zero mean and 0.05 standard deviation for 27 regularly
spaced affine components [38]. Each of the ten deformations
are applied to the 24 multi-fascicle models of the control
subjects. Symmetric matrices of Gaussian noise with zero
mean and standard deviation at six different levels (0.1, 0.2,
0.3; and 0.5, 1.0, 1.5) were then added to the log of all tensors
in both the original and the transformed image, corresponding
to SNR of (30dB, 24dB, 21dB, 17dB, 11dB, 7dB). The
original and the transformed images were then registered and
the resulting deformation field was compared to the initial
synthetic field in term of its root mean squared (RMS) error.
All 1,440 registrations (24 subjects × 10 deformation fields
× 6 noise levels) were performed with both the proposed
framework and the multi-channel alternative.

On average, the root mean squared (RMS) error of the
deformation field is 17% higher when the multi-channel regis-
tration is used instead of the proposed framework. A one-tailed
paired t-test on the RMS for the transformation at each SNR
shows that the difference in RMS between the approaches is
significant: p < 10−5 for all SNR between 11dB and 30dB
and p = 0.02 for SNR=7dB (Fig. 9-Top). The variance of
the RMS is also decreased by 45% on average. A one-tailed
F-test reveals that this decrease is significant for all SNR
(p < 0.001) except for SNR=24dB and 7dB (Fig. 9-Bottom).
This experiment indicates that even when tensors are labeled
based of their FA, the proposed framework outperforms the
multi-channel alternative.

F. Morphometric Contrast Study

The deformation field obtained by registering a subject to
an atlas provides a measurement of the local morphometric
difference between the subject and a standard anatomy. The
determinant of the Jacobian |J | of the deformation fields at
every voxel provides information about the amount of local
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Fig. 10. Morphometry results show areas with a significant volume deficit within the grey and white matter of TSC patients. (a) Multi-fascicle registration and
multi-channel registration reveal more differences than single-tensor and the T1-weighted registrations. The differences observed with multi-fascicle registration
are more consistent with the known anatomy than those observed with multi-channel registration, as seen for example in the left and right internal capsules.

volume differences (|J | < 1 indicates a decreased volume and
|J | > 1 indicates an increased volume).

Widespread volume deficits in the white and grey matter
of patients with TSC have been previously reported [39].
However, the amount of differences detected depends on the
accuracy of the registration because the statistical power of
the test depends on the registration accuracy [40]. Because of
the increased level of microstructure they represent, we expect
multi-fascicle models to reveal more morphometric differences
than single-tensor models and scalar T1-weighted MRI. To
assess the statistical power of all modalities (T1, single-tensor
DTI and multi-fascicle models), we used the common voxel-
based morphometry method [41]: register all subjects to the
atlas, compute the log-jacobian, smooth it by a kernel of 8mm
FWHM and correct for family-wise error rate at p = 0.05.

Results in Fig. 10(a) show that multi-fascicle models reveal
more differences than single-tensors and T1-weighted MRI,
as expected. This is likely due to an increased statistical
power resulting from a higher registration accuracy when the
structure of the white matter is better represented. The number
of significant voxels does not differ between the proposed ap-
proach and the multi-channel alternative. However, the spatial
distribution of the volume deficit findings (Fig. 10(b)) better
follows the anatomy than the multi-channel alternative as seen,
for example, in the left and right internal capsules.

G. Application: Fascicle-Based Spatial Statistics of the Dorsal
Language Circuit

FBSS can detect local abnormalities in white matter
pathways, which helps defining foci of neurological disorders.
In this section, we investigate whether local decreases in FA
along the dorsal language circuit (Fig. 11) can be discovered
by FBSS.

Tractography of the dorsal language circuit was performed
using the automatic seeding method of [42], [33]. A repre-
sentative tract that captures the geometry of the bundle was
manually selected. One-tailed fascicle-based spatial statistics

1

2

3

Fig. 11. The dorsal language circuit is composed of white matter fascicles
thought to connect Broca’s area in the frontal lobe (Region 1), Geschwind’s
territory in the parietal lobe (Region 2), and Wernicke’s area in the temporal
lobe (Region 3). The median tract was manually selected from those tracts to
perform fascicle-based spatial statistics (FBSS).

was first performed between the 38 patients with TSC and
the 24 healthy controls to test whether TSC patients have
lower FA along the tract than healthy controls (Fig. 12-top
row). Results found with both the multi-fascicle approach and
the multi-channel approach consistently show that differences
between TSC patients and healthy controls are widespread
over the tract. This is consistent with recent models of tuberous
sclerosis complex presented as a widespread decreased white
matter microstructural integrity [32] and a global loss of
connectivity [43]. Analysis based on single-tensor images did
not reveal significant differences between the groups (except
for a small cluster near the dorsal end of the tract). This is
probably due to DTI being unable to distinguish the signal
arising from each fascicle (one of them generating the group
difference) and from free diffusion.

One-tailed fascicle-based spatial statistics was also per-
formed between TSC+ASD and TSC-ASD patients to further
understand the impact of autism on the properties of fascicles
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Fig. 12. Fascicle-based spatial statistics of multi-fascicle models reveal local differences in the white fascicle properties that single tensor DTI cannot. Curves
show the mean FA along the median tract of the dorsal language circuit in each group. Shaded area along the curves represent two standard errors. Grey
rectangles indicate that the FA in that cluster is significantly different between the two groups. The top row studies differences between patients with tuberous
sclerosis complex (TSC) and healthy controls. The bottom row further investigates differences between TSC patients with (TSC+ASD) and without autism
(TSC-ASD). Landmarks 1, 2 and 3 correspond to those in Fig. 11.

in the language system (Fig. 12-bottom row). A cluster of
significantly lower FA was found in the middle of the tract, i.e.
in the white matter close to the Geschwind’s territory, a region
that has previously been associated with the interpretation of
facial emotions [44]. Furthermore, using the proposed frame-
work for multi-fascicle registration and analysis, a second
cluster of significantly lower FA was found in the white
matter close to Broca’s area, a cortical region associated with
speech production whose activity was shown to be impaired in
patients with autism spectrum disorder [45]. Again, no local
difference was observed based on single-tensor images.

Findings of lower FA in TSC+ASD compared to TSC-ASD
were previously reported in the literature [32], [33]. However,
for the first time, our framework enables the detection of local
differences, improving our knowledge of alterations in the
brain microstructure related to autism spectrum disorder.

H. Application: Isotropic Diffusion Analysis in autism
Isotropic diffusion analysis allows whole-brain inspection

of differences in isotropic fraction fiso whose excess relates to
the presence of neuroinflammation and edema among others.
To investigate in vivo whether autism spectrum disorder may
result from a neuroinflammatory response (as suggested by
post-mortem studies [46]), we performed isotropic diffusion
analysis to compare the TSC+ASD and TSC-ASD groups.
Cluster-based statistics was performed at four different thresh-
olds: t0 = 2, 2.5, 3, and 3.5 to assess the robustness of the
findings with respect to the threshold used.

Consistently for all thresholds, clusters of significantly
higher fiso were detected in patients with autism (Fig. 13).

Both the size and mass of these clusters show significant
departure from the null distribution (p < 0.05, Table II).
The multi-channel approach also found significant clusters but
these were smaller in size and more sensitive to the choice of
threshold (no significant cluster was found for t0 = 3.5). The
location of the significant cluster detected with both methods
coincide and corresponds to part of the visual system (Fig. 13).

These findings are consistent with recent studies of autism in
children which have demonstrated that appropriate maturation
of visual system is crucial for social cognition develop-
ment [47]. Furthermore, while autism is believed to potentially
result from a neuroinflammatory process, in vivo evidence
of such neurological mechanism are missing. These results
illustrate how the proposed techniques for the analysis of
multi-fascicle models can provide new insights into the brain
microstructure. The validation of the neuroinflammatory pro-
cess in autism would however require further studies including
more subjects and other imaging modalities (such as PET
imaging and T2 mapping).

V. CONCLUSION

Diffusion tensor imaging confounds the diffusion signal
arising from different compartments and may therefore not
be reliable for population studies of the brain microstructure.
In particular, studies based on DTI cannot separate differences
in properties of the fascicles due to demyelination or axonal
injury, from differences in extracellular volume fraction due to
neuroinflammation, edema or partial voluming with CSF. By
representing the signal arising from different compartments
with distinct parameterizations, multi-fascicle models are able



13

TABLE II
SIZE AND MASS STATISTICS OF THE SIGNIFICANT CLUSTERS FROM ISOTROPIC DIFFUSION ANALYSIS.

Threshold Cluster
Cluster Size Cluster Mass

Multi-Channel Multi-Fascicle Multi-Channel Multi-Fascicle
Value p-value Value p-value Value p-value Value p-value

2 Cluster 1 22408 0.046 30927 0.05 58457 0.047 82224 0.047
Cluster 1 5126 0.039 14034 0.028 15766 0.043 43581 0.028

2.5 Cluster 2 7448 0.025 - - 22875 0.026 - -
Total 12574 14034 38641 43581

Cluster 1 1837 0.035 6270 0.017 6503 0.038 22219 0.017
3 Cluster 2 2004 0.029 - - 6983 0.034 - -

Total 3841 6270 13486 22219
3.5 Cluster 1 - - 1864 0.02 - - 7667 0.021
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Fig. 13. Multi-fascicle models reveal clusters of increased isotropic fraction
in autism, potentially indicating the presence of neuroinflammation. Clusters
found with our framework (top) are larger and more coherent than those
obtained with the multi-channel alternative (results shown for t0=3).

to explain the origin of the observed differences. This property
makes multi-fascicle models of great interest for population
studies of the brain microstructure.

The cornerstone of image-based population studies is the
construction of an atlas and the registration of all subjects to
it. In this paper, we introduced a framework for registration
and atlasing of multi-fascicle models. A mixture model sim-
plification method was introduced to compute weighted com-
binations of multi-fascicle models, as used for interpolation,
smoothing and averaging. As a similarity metric, a generalized
correlation coefficient was developed to be invariant under
linear transformations of the eigenvalues of each fascicle in
the log-domain, making it robust to inter-subject variability.

Once all subjects are aligned to the atlas, population studies
can be carried out to investigate microstructural properties in
brain diseases. We introduce a system of two statistical analy-
ses of the brain microstructure: fascicle-based spatial statistics
(FBSS) and isotropic diffusion analysis (IDA). The former
allows discoveries of local differences in the microstructural
properties of the fascicle in a specific pathway. The latter
allows detection of differences in extracellular volume fraction
which may relate to neuroinflammation and edema. Together,
these analyses allow for comprehensive investigation of the
brain microstructure. We illustrated its use in a population
study of autism spectrum disorder related to tuberous sclerosis
complex and showed that the use of multi-fascicle models in
this context increases the sensitivity of the statistical tests.
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[45] L. De Fossé, S. M. Hodge, N. Makris, D. N. Kennedy, V. S. Caviness,
L. McGrath, S. Steele, D. A. Ziegler, M. R. Herbert, J. A. Frazier
et al., “Language-association cortex asymmetry in autism and specific
language impairment,” Annals of neurology, vol. 56, no. 6, pp. 757–766,
2004.

[46] D. L. Vargas, C. Nascimbene, C. Krishnan, A. W. Zimmerman, and
C. A. Pardo, “Neuroglial activation and neuroinflammation in the brain
of patients with autism,” Annals of neurology, vol. 57, no. 1, pp. 67–81,
2005.

[47] A. Klin, D. J. Lin, P. Gorrindo, G. Ramsay, and W. Jones, “Two-year-
olds with autism orient to non-social contingencies rather than biological
motion,” Nature, vol. 459, no. 7244, pp. 257–261, 2009.


