Espaces quotients

Exercice 1 Donnez une base de V et une base de E/V lorsque...

- 1. $E = \mathbb{R}^3$, $V = \text{sev}\langle (0,0,2), (2,0,1) \rangle$
- 2. $E = \mathbb{R}^3$, $V = \{(x, y, z) \mid x + 2y + 3z = 0\}$
- 3. $E = \mathbb{R}[X]_{\leq 3}$, $V = \{p(X) \mid p(0) = p'(0) = 0\}$.

Exercice 2 Si V_1 et V_2 sont des sous-espaces de dimension finie de E, montrez que les espaces $V_1/(V_1 \cap V_2)$ et $(V_1 + V_2)/V_2$ sont canoniquement isomorphes.

Indication : utilisez la propriété universelle du premier et une application linéaire naturelle de V_1 dans $(V_1 + V_2)/V_2$.

Exercice 3 On donne un opérateur $A: E \to E$ et un sous-espace V de E. Vérifiez si V est stable pour A et si c'est le cas, décrivez l'opérateur $\overline{A}: E/V \to E/V$: donnez une base de E/V et la matrice de \overline{A} dans cette base.

- 1. $A: \mathbb{R}^3 \to \mathbb{R}^3: (x, y, z) \mapsto (x, x + y + z, z) \text{ et } V = \text{sev}((1, 1, -1), (-1, 2, 1)),$
- 2. $A: \mathbb{R}[X]_{\leq 3} \to \mathbb{R}[X]_{\leq 3}: p(X) \mapsto p'(X)$ et $V = \{a_0 + a_1X + a_2X^2 + a_3X^3 \mid a_0 a_1 + a_2 = 0\},$
- 3. $A: \mathbb{R}^4 \to \mathbb{R}^4: (x, y, z, t) \mapsto (y + z t, x z + t, x y t, x y z)$ et $V = \text{sev}\langle (1, -1, 1, 1), (-1, 1, 2, 2), (2, -2, 1, 1) \rangle$.

Exercice 4 Soit $A: \mathbb{R}^3 \to \mathbb{R}^3$ telle que

$$_{\mathsf{can}}(A)_{\mathsf{can}} = \left(\begin{array}{ccc} 1 & -1 & -1 \\ 1 & -2 & 0 \\ 0 & -1 & 0 \end{array} \right).$$

Soit $V_1 = \text{sev}\langle (1,1,1)\rangle$ et $V_2 = \{(x_1,x_2,x_3) \mid x_1 - 2x_2 + x_3 = 0\}$. Observez que V_1 est stable pour A, donnez une base de \mathbb{R}^3/V_1 et la matrice de \overline{A} dans cette base. Observez ensuite que V_2/V_1 est stable pour \overline{A} , donnez une base de $(\mathbb{R}^3/V_1)/(V_2/V_1)$ et la matrice de $\overline{(A)}$ dans cette base.

Exercice 5 Pour chacune des matrices \mathcal{A} suivantes, trouvez une matrice \mathcal{B} inversible telle que $\mathcal{B}^{-1}\mathcal{A}\mathcal{B}$ soit triangulaire supérieure.

$$1. \begin{pmatrix} 0 & 1 & 1 \\ -1 & 2 & 1 \\ -1 & 0 & -1 \end{pmatrix}, \quad 2. \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \quad 3. \begin{pmatrix} 1 & \frac{1}{2} & 0 \\ 1 & 1 & 1 \\ 0 & -\frac{1}{2} & 1 \end{pmatrix},$$

$$4. \begin{pmatrix} 1 & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{3}{2} & -1 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}, \quad 5. \begin{pmatrix} 3 & 1 & 0 \\ 0 & 2 & 1 \\ -1 & -1 & 1 \end{pmatrix}.$$

Exercice 6 Soit $A: \mathbb{R}[X]_{\leq 2} \to \mathbb{R}[X]_{\leq 2}: a+bX+cX^2 \mapsto a-bX+(a+c)X^2$. Trouvez une base e de $\mathbb{R}[X]_{\leq 2}$ telle que $e(A)_e$ soit triangulaire supérieure.

Exercice 7 On considère l'opérateur sur \mathbb{C}^3 dont la matrice dans la base canonique est

$$\mathcal{A} = \left(\begin{array}{ccc} 0 & i & 1\\ 0 & 1 & i\\ 0 & i & -1 \end{array}\right).$$

Trouvez une base de \mathbb{C}^3 dans la quelle la matrice de cet opérateur est triangulaire supérieure.

Exercice 8 Soit

$$\mathcal{A} = \left(\begin{array}{cccc} -7 & -4 & 13 & 1 \\ 0 & 3 & -4 & -2 \\ -5 & -2 & 8 & 0 \\ 6 & 4 & -11 & 0 \end{array} \right).$$

Sachant que le polynôme caractéristique de A est $(X-1)^4$, donnez une matrice inversible qui triangularise A.