Groupes

Exercice 1 Soit G un ensemble muni d'une loi de composition binaire * tel que

- 1. * est associative
- 2. $\exists e \in G \text{ tel que } \forall x \in G, e * x = x$
- 3. $\forall x \in G, \exists x' \in G \text{ tel que } x' * x = e$

Montrer que G vérifie la simplification à gauche. En déduire que G est un groupe.

Exercice 2 Soit G un groupe et H une partie de G. Montrer que H est un sousgroupe de G si et seulement si H est non vide et $xy^{-1} \in H$ pour tout $x, y \in H$.

Exercice 3 Soit G un groupe et H une partie finie non vide de G telle que $xy \in H$ pour tout $x, y \in H$. Alors H est-il un sous-groupe de G?

Exercice 4 Soit E un ensemble non vide. On considère $\mathcal{P}(E)$ l'ensemble des parties de E. Est-ce que $(\mathcal{P}(E), \cap)$, $(\mathcal{P}(E), \cup)$ et $(\mathcal{P}(E), \triangle)$ sont des groupes?

Exercice 5 Soient G et H des groupes. Définir le groupe produit direct $G \times H$.

Exercice 6 Définir tous les groupes d'ordre 2,3,4.

Exercice 7 Soient $f: G \to G'$ un homomorphisme de groupes, H un sous-groupe de G et H' est un sous-groupe de G'.

- 1. Montrer que f(H) est un sous-groupe de G'.
- 2. Montrer que $f^{-1}(H')$ est un sous-groupe de G.
- 3. Montrer que f est surjectif si et seulement si Im(f) = G'.
- 4. Montrer que f est injectif si et seulement si $Ker(f) = \{1\}$.

Exercice 8 Montrer que $f: G \to G: x \mapsto x^2$ est un homomorphisme de groupes si et seulement si G est commutatif.

Exercice 9 Soit K un corps et

$$H = \left\{ \left(\begin{array}{cc} 1 & \alpha \\ 0 & 1 \end{array} \right) \mid \alpha \in K \right\} \subset \mathsf{GL}_2(K).$$

Montrer que H est un sous-groupe de $GL_2(K)$ et qu'il est isomorphe à K.